
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 93 (107) (2013), 1–18 DOI: 10.2298/PIM1307001O

ON THE CLASS GAMMA AND

RELATED CLASSES OF FUNCTIONS

Edward Omey

Communicated by Slobodanka Janković

Abstract. The gamma class Γα(g) consists of positive and measurable func-
tions that satisfy f(x + yg(x))/f(x) → exp(αy). In most cases the auxil-
iary function g is Beurling varying and self-neglecting, i.e., g(x)/x → 0 and
g ∈ Γ0(g). Taking h = log f , we find that h ∈ EΓα(g, 1), where EΓα(g, a)
is the class of positive and measurable functions that satisfy (f(x + yg(x)) −

f(x))/a(x) → αy. In this paper we discuss local uniform convergence for
functions in the classes Γα(g) and EΓα(g, a). From this, we obtain several
representation theorems. We also prove some higher order relations for func-
tions in the class Γα(g) and related classes. Two applications are given.

1. Introduction and definitions

Let f(x) denote a measurable function defined on R and positive for large
values of x. The class Γα(g) consists of the functions f for which there exists a
measurable and positive function g such that

(1.1) lim
x→∞

f(x + yg(x))

f(x)
= eαy, ∀y ∈ R.

Notation: f ∈ Γα(g). If α = 0, we write f ∈ Γ0(g). If α > 0, then w.l.o.g. we
assume that α = 1 and we write f ∈ Γ(g). If α < 0, we may assume that α = −1
and then we write f ∈ Γ−(g). Clearly f ∈ Γ−(g) if and only if 1/f ∈ Γ(g).

If g(x) = c 6= 0, a constant, then (1.1) can be replaced by a relation of the form

lim
x→∞

f(x + y)

f(x)
→ eβy, ∀y ∈ R.

Notation: f ∈ L(β). If f ∈ L(β), then we have f(log(x)) ∈ RV (β), a regularly
varying function. Recall that a positive and measurable function f is regularly
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varying with index β if it satisfies

lim
x→∞

f(xy)

f(x)
= yβ, ∀y > 0.

Notation: f ∈ RV (β). The class L(β) appears in studying subexponential distribu-
tion functions, cf. Embrechts et al. (1997). The classes RV (β) and Γα(g) appear in
the context of extreme value theory, cf. de Haan (1970). For regular variation and
applications, we refer to Bingham et al. (1987). For nondecreasing functions f , we
have the following property. For a proof we refer to Geluk and de Haan (1987) or
Bingham et al. (1987).

Lemma 1.1. Suppose that f is nondecreasing and that (1.1) holds. Then

(i) Relation (1.1) holds l.u. in y;

(ii) We have g ∈ Γ0(g), g(x)/x → 0 and

(1.2)
g(x + yg(x))

g(x)
→ 1, ∀y ∈ R, l.u. in y.

In Lemma 1.1 and throughout the paper, we use the abbreviation “l.u." for
“local uniform" convergence. Also throughout the paper we take limits as x → ∞.
Lemma 1.1 motivates the following definitions. A measurable and positive function
g is called Beurling varying if it satisfies g(x)/x → 0 and g ∈ Γ0(g). Notation:
g ∈ B. The function g is called self-neglecting if g ∈ B and if (1.2) holds. Notation:
g ∈ SN . It has been proved by Bloom (1976) that if g ∈ B is continuous, then
g ∈ SN . For an elegant proof, we refer to Geluk and de Haan (1987, Theorem
1.34). It is not clear whether g ∈ B alone implies that g ∈ SN . The classes B and
SN were used in connection with Tauberian theory, cf. Bingham and Goldie (1983)
and also in connection with differential equations, cf. Omey (1981).

In the present paper we plan to study l.u. in (1.1) without assuming that f is
a monotone function. This answers a question of Geluk and de Haan (1987, p. 41).
At the same time we will study the rate of convergence in (1.1). Taking logarithms
in (1.1), we obtain that log f(x + yg(x)) − log f(x) → αy. We look at this kind
of relationship more generally and introduce the class EΓα(g, a) of (ultimately)
positive and measurable functions f satisfying

(1.3)
f(x + yg(x)) − f(x)

a(x)
→ αy, ∀y ∈ R.

If a(x) = o(f(x)), (1.3) shows that f ∈ Γ0(g) with a remainder term. In the
case where g = a, the class EΓ appears in Tenenbaum (1980) and in Bingham and
Goldie (1983) in connection with one-sided Tauberian theorems.

If g(x) = c 6= 0, a constant, then (1.3) implies that h ∈ Πα(L), where h(x) =
f(log(x)) and L(x) = a(log(x)). The class h ∈ Πα(L) is the class of positive and
measurable functions such that

(1.4)
h(xy) − h(x)

L(x)
→ α log y, ∀y > 0,

where L ∈ RV (0), cf. de Haan (1974). If (1.4) holds then it holds l.u. in y > 0.
For monotone increasing functions f ∈ Γα(g), we can define the inverse function
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h(x) = f−1(x). If (1.1) then it follows that h ∈ Πα(L), where L(x) = g(h(x)) ∈
RV (0), cf. de Haan (1974).

Examples. (1) If f(x) = exp(−x/2) (cf. normal density) we have f ∈ Γ−(g)
where g(x) = 1/x.

(2) Suppose that f(x) =
∫

∞

x
exp(−y2/2) dy. (cf. the tail of a normal distribu-

tion). In this case we have that

lim
x→∞

f(x)

x−1 exp(−x2/2)
= 1.

Using Example 1, we find that h ∈ Γ−(1/x).

(3) If f ∈ RV (α) then we have f(xy)/f(x) → yα, l.u. in y > 0, cf. Bingham et
al. (1987). For any function g(x) such that g(x)/x → 0, it follows that

f(x + yg(x))

f(x)
=

f(x(1 + yg(x)/x))

f(x)
→ 1.

It follows that f ∈ Γ0(g) and the relation f(x+yg(x))/f(x) → 1 holds l.u. in y ∈ R.
Clearly f ∈ RV (α) implies that f ∈ L(0).

(4) If g ∈ RV (β) and g(x)/x → 0, then g ∈ SN .

(5) Suppose that g(x) → ∞ and that the first derivative satisfies g(1)(x) → 0.
Then g ∈ SN .

Here is the outline of the paper. In the present paper we study l.u. in (1.3)
and without assuming that f is a monotone function. This answers a question of
Geluk and de Haan (1987, p. 41). In the main result of Section 2.1 we prove l.u.
convergence for functions satisfying (1.3). This result implies that we also have
l.u. convergence in (1.1). Local uniform convergence then opens the gate to a
number of representation theorems that are presented in Subsection 2.2. In Section
3 we discuss remainder terms in the above definitions (1.1) and (1.3) and obtain
several rate of convergence results. In Section 4, we conclude the paper with some
applications.

2. The class EΓα(g, a)

If f ∈ Γ(g) is not monotone, it is a natural question to try to find general
conditions under which (1.1) still holds l.u. in y. The main result of this section
is stated in terms of the class of functions EΓα(g, a) defined as follows. A positive
and measurable function f is in the class EΓα(g, a) with measurable and positive
auxiliary functions g and a if

(2.1)
f(x + yg(x)) − f(x)

a(x)
→ αy, ∀y ∈ R.

All the results that follow require that f is ultimately of one sign.
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2.1. Local Uniform Convergence. In the next result we state conditions
under which (2.1) implies that (2.1) holds l.u. in y. The result is due to de Haan
and Omey (1990) and is based on Delange (1955) and Bingham and Goldie (1983).
See also Bingham et al. (1987, Theorem 1.2.1).

Theorem 2.1. Suppose that g ∈ SN and that a ∈ Γ0(g). If f ∈ EΓα(g, a),
then (2.1) holds l.u. in y.

Proof. The proof is divided into several parts. First we consider the case
where α = 0, a ∈ Γ0(g) and where a satisfies

(2.2)
a(x + yg(x))

a(x)
→ 1, l.u. in y ∈ R.

To prove l.u. convergence in (2.1), first we prove l.u. convergence in each interval
of the form [0, h] where h > 0. Choose ε such that 0 < ε < h and for x > 0 define
the following sets:

I(x) = {y : x 6 y 6 x + 2hg(x)},

E(x) =
{

t ∈ I(x) : |f(t) − f(x)| > ε
3 a(x)

}

,

W (x) =
{

c ∈ [0, 2h] : |f(x + cg(x)) − f(x)| > ε
3 a(x)

}

.

Since all functions involved are measurable, these sets are measurable. Moreover,
L(E(x)) = g(x)L(W (x)), where L(.) denotes Lebesgue measure. By (2.1) we have
L(W (x)) → 0. Thus, for ε > 0 we can find x1 such that

(2.3) L(E(x)) = g(x)L(W (x)) 6 ε
3 g(x), ∀x > x1.

From (2.2) and g ∈ SN , we have, uniformly in c ∈ [0, 2h] that

1

2
6

g(x + cg(x))

g(x)
6 2, ∀x > x2,(2.4)

1

2
6

a(x + cg(x))

a(x)
6 2, ∀x > x2.(2.5)

From (2.3) and (2.4), it follows that

L(E(x + cg(x)) 6
2ε

3
g(x), ∀c ∈ [0, 2h], ∀x > x2.

It follows that L(E(x) ∪ E(x + cg(x)) 6 εg(x), ∀c ∈ [0, 2h], ∀x > x2. For the
intervals I(x), we have L(I(x) ∩ I(x + cg(x))) > hg(x), ∀c ∈ [0, h], ∀x > x3.
Combining these inequalities, we find that for c ∈ [0, h] and x > x3, the set

A = (I(x) ∩ I(x + cg(x)) r (E(x) ∪ E(x + cg(x)))

has positive Lebesgue measure and hence is not empty. If t ∈ A, we have

|f(t) − f(x)|
a(x)

6
ε

3
,

|f(t) − f(x + cg(x))|
a(x + cg(x))

6
ε

3
.

From this and (2.5) it follows that

|f(x + cg(x)) − f(x)|
a(x)

6
ε

3
+

ε

3

a(x + cg(x))

a(x)
6 ε, ∀c ∈ [0, h], x > x3.
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It follows that (2.1) holds uniformly in [0, h].
Now we consider uniform convergence on intervals of the form [−h, 0] where

h > 0. Let y = x + cg(x), c ∈ [−h, 0]. Since g ∈ SN , for ε > 0 we have that

1 − ε 6
g(y)

g(x)
6 1 + ε, ∀c ∈ [−h, 0], x > x1.

We also have y = x + cg(x) 6 x 6 x + hg(x). Using y − x = cg(x) > cg(y)/(1 − ε),
we find that

y 6 x 6 y +
−c

1 − ε
g(y) 6 y +

h

1 − ε
g(y).

It follows that y 6 x 6 y+δg(y) where δ > 0. Clearly x is of the form x = y+θg(y),
where 0 6 θ 6 δ. To finish the proof in this case, we write

|f(x + cg(x)) − f(x)|
a(x)

=
|f(y) − f(y + θg(y)|

a(y)

a(y)

a(y + θg(y))
,

and we find

sup
−h6c60

|f(x + cg(x)) − f(x)|
a(x)

6 sup
06θ6δ

|f(y) − f(y + θg(y)|
a(y)

sup
06θ6δ

a(y)

a(y + θg(y))
.

By the first part of the proof, it follows that

sup
−h6c60

|f(x + cg(x)) − f(x)|
a(x)

→ 0.

Now we consider the case where α 6= 0. First note that a ∈ Γ0(g) implies that
log(a) ∈ EΓ0(g, 1). The first part of the proof of the theorem shows that

log(a(x + yg(x))) − log(a(x)) → 0, l.u. in y.

Hence (2.2) holds. Now define the function A(x) as follows:

A(x) = α

∫ x

x◦

a(z)

g(z)
dz.

This integral exists since g and a are locally bounded. Now observe that l.u. in y
we have

A(x + yg(x)) − A(x)

a(x)
= α

∫ y

0

a(x + zg(x))

g(x + zg(x))

ϕ(x)

a(x)
dz → αy,

since g ∈ SN and a ∈ Γ0(g). It follows that B(x) = f(x) − A(x) satisfies B ∈
EΓ0(g, a). By the first part of the proof, we find that

B(x + yg(x)) − B(x)

a(x)
→ 0

holds l.u. in y ∈ R. Hence (2.1) also holds l.u. in y ∈ R. �

Corollary 2.1. Suppose that g ∈ SN and that f ∈ Γα(g), α ∈ R. Then (1.1)
holds l.u. in y ∈ R.
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2.2. Representation theorems. Using the l.u. convergence in (2.1), we have
the following representation theorem for functions in the class EΓα(g, a). We use
the notation W (1) for the first derivative of a function W .

Theorem 2.2. Suppose that g ∈ SN , a ∈ Γ0(g) and that f is positive and

measurable. We have f ∈ EΓα(g, a) if and only if f(x) is of the form

f(x) = C + α

∫ x

x◦

a(z)

g(z)
dz + W (x) + V (x),

where W (1)(x)g(x)/a(x) → 0 and V (x)/a(x) → 0.

Proof. First assume that f ∈ EΓα(g, a). Using the notation as in the proof
of Theorem 2.1, we consider the functions A(x) and B(x) = f(x) − A(x). In
Theorem 2.1 we obtained that B ∈ EΓ0(g, a). Now let Φ(x) be defined as

Φ(x) =

∫ x

a

1

g(t)
dt,

and let Ψ(x) = B(Φ−1(x)). We have Φ ∈ EΓ1(g, 1), Φ−1 ∈ EΓ1(1, g(Φ−1)) and we
find that

Ψ(x + y) − Ψ(x)

a(Φ−1(x))
→ 0, l.u. in y ∈ R.

Taking integrals, it follows that
∫ 1

0 Ψ(x + y) dy − Ψ(x)

a(Φ−1(x))
→ 0,

or V (x) − Ψ(x) = o(a(Φ−1(x)), where

V (x) =

∫ 1

0
Ψ(x + y) dy =

∫ x+1

x

Ψ(t) dt.

Note that V (1)(x) = Ψ(x + 1) − Ψ(x) so that V (1)(x) = o(a(Φ−1(x)). We conclude
that Ψ(x) = V (x) + o(1) a(Φ−1(x)) and then also that B(x) = W (x) + o(1) a(x),
where W (x) = V (Φ(x)) satisfies W (1)(x) = V (1)(Φ(x))/g(x) = o(1) a(x)/g(x).
This gives the representation.

To prove the converse, we have

f(x + yg(x)) − f(x) = α

∫ x+yg(x)

x

a(z)

g(z)
dz + W (x + yg(x)) − W (x)

+ V (x + yg(x)) − V (x).

Now note that

W (x + yg(x)) − W (x) = g(x)

∫ y

0
W (1)(x + zg(x)) dz.

Using W (1)(x)g(x)/a(x) → 0, it follows that W ∈ EΓ0(g, a). For the other term,
we have

1

a(x)

∫ x+yg(x)

x

a(z)

g(z)
dz =

∫ y

0

a(x + zg(x))

a(x)

g(x)

g(x + zg(x))
dz → y,

since g ∈ SN and a ∈ Γ0(g). The result follows. �
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Corollary 2.2. Suppose that g ∈ SN , a ∈ Γ0(g) and that f is positive and

measurable. Then f ∈ EΓα(g, a) if and only f(x) is of the form

f(x) = C + α

∫ x

x◦

L(z)

g(z)
dz + V (x),

where L ∼ a ∈ Γ0(g) and V (x)/L(x) → 0.

Proof. From Theorem 2.2, we have that

f(x) = C + α

∫ x

x◦

a(z)

g(z)
dz + W (x) + V (x),

where W (1)(x)g(x)/a(x) → 0 and V (x)/a(x) → 0. It follows (with possibly a
different value for C) that

W (x) =

∫ x

a

ε(z)a(z)

g(z)
dz.

Taking L(x) = (1 + ε(x)/α)a(x), the result follows. �

2.3. Representation theorems for SN . In this section we prove represen-
tation theorems for the class SN . For a different proof of the first result, we refer
to Geluk and de Haan (1987, Theorem 1.35).

Theorem 2.3. We have g ∈ SN if and only if g is of the form

g(x) = U(x) W (x),

where U(x) → 1 and W (1)(x) → 0.

Proof. Starting form g ∈ SN , we define Φ(x), where

Φ(x) =

∫ x

a

1

g(u)
du.

Since g(x) > 0 and g(x)/x → 0, we find that Φ(x) ↑ ∞. As in the proof of
Theorem 2.2, we have Φ−1 ∈ EΓ1(1, g(Φ−1)). Now we consider the function Ψ(x) =
g(Φ−1(x)). Using the identity

Ψ(x + y) = g
(

Φ−1(x) +
Φ−1(x + y) − Φ−1(x)

g(Φ−1(x))
g(Φ−1(x))

)

,

and g ∈ SN , it follows that Ψ(x+ y)/Ψ(x) → 1. Hence we obtain that Ψ(log(x)) ∈
RV (0). The representation theorem (cf. Bingham et al. (1987)) for RV (0) shows
that

Ψ(log(x)) = c(x) exp

∫ x

a

ε(z)z−1dz,

where c(x) → c > 0 and ε(t) → 0. Replacing log(x) by t, and then t by Φ(x), we
find that

g(x) = D(x) exp

∫ x

x◦

ε∗(z)
1

g(z)
dz,

where D(x) → c > 0 and h(xε∗(x) = ε◦(Φ(x)) → 0. Taking U(x) = D(x)/c and

W (x) = c exp

∫ x

x◦

ε∗(z)
1

g(z)
dz,
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it follows that g(x) is of the desired form.
To prove the converse, first note that we have g(x)/x → 0. Next we consider

W (x) and we write

W (x + yg(x)) − W (x) = g(x)

∫ y

0
W (1)(x + zg(x)) dz.

Using W (1)(x) → 0, we obtain that W ∈ EΓ0(g, g). Now we write

g(x + yg(x)) − g(x)

g(x)
= I + II

where

I = U(x + yg(x))
W (x + yg(x)) − W (x)

g(x)
, II =

U(x + yg(x)) − U(x)

U(x)
.

It follows that I + II → 0 l.u. in y and this proves the result. �

Alternatively, we can also use the following representation for RV (0), cf. Omey
and Segers (2010, Theorem 4.3).

Proposition 2.1. The positive and measurable function L is in the class

RV (0) if and only if there exists real numbers a > 0 and c and measurable functions

u(x), v(x) such that u(x)/L(x) → 0, v(x)/L(x) → 0 and

L(t) = c + u(t) +

∫ t

a

v(z)z−1dz.

Applying this result to Ψ, we find the following alternative for Theorem 2.3.

Proposition 2.2. We have g ∈ SN if and only if g is of the form

g(x) = c + A(x) +

∫ x

a

B(u)

g(u)
du,

where A(x)/g(x) → 0 and B(x)/g(x) → 0.

2.3.1. Representation theorem for Γα(g). In the next result we characterize the
class Γα(g). In the case of nondecreasing f , the proof was given in Geluk and de
Haan (1987, Theorem 1.28).

Corollary 2.3. Suppose that g ∈ SN and suppose that f is positive and

measurable. We have f ∈ Γα(g) if and only if f is of the form

f(x) = A(x) B(x) exp
(

α

∫ x

x◦

1

g(z)
dz

)

,

where A(x) → 1 and g(x)B(1)(x)/B(x) → 0.

Proof. If f ∈ Γα(g) we have log(f) ∈ EΓα(g, 1) and Theorem 2.2 shows that

log f(x) = C + α

∫ x

x◦

1

g(z)
dz + W (x) + o(1),

where W (1)(x) g(x) → 0. Taking B(x) = exp(C + W (x)), we have B(1)(x) =
B(x) W (1)(x) and g(x) B(1)(x)/B(x) → 0. �
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2.3.2. Characterization inspired by de Haan. It is well known that f ∈ RV (α)
and g ∈ RV (β), α, β > 0, implies that f(g(x)) ∈ RV (αβ). Inspired by de Haan
(1974), we connect regular variation and the class Γ to obtain new characterizations
for the classes Γα(g) and EΓ(ϕ, a).

Theorem 2.4. (i) Let g ∈ SN . We have f ∈ Γα(g) if and only if f is of the

form f(x) = A(G(x)), where A ∈ RV (α) and G ∈ Γ(g).
(ii) Let g ∈ SN and a ∈ Γ0(g). We have f ∈ EΓα(g, a) if and only if f is of

the form f(x) = A(G(x)), where A ∈ Πα(L) with L ∈ RV (0) and G ∈ Γ(g).

Proof. (i) Starting from g ∈ SN we define the function G(x) by

G(x) = exp

∫ x

a

1

g(t)
dt.

Clearly G(x) is increasing and G ∈ Γ(g). It follows that G−1 ∈ Π1(L), where
L(x) = g(G−1(x)) ∈ RV (0). Taking A(x) = f(G−1(x)), we have

A(xy) = f
(G−1(xy) − G−1(x)

L(x)
g(G−1(x)) + G−1(x)

)

.

Since f ∈ Γα(g) and G−1 ∈ Π1(L), we obtain that A(xy)
A(x) → exp α log y = yα, and

A ∈ RV (α). It follows that f(x) = A(G(x)) as required. For the converse, we write

f(x + yg(x)) = A
(G(x + yg(x))

G(x)
G(x)

)

.

Since G ∈ Γ(g) and A ∈ RV (α), it follows that f ∈ Γα(g).
(ii) We use the function G(x) as before and let A(x) = f(G−1(x)). We have

A(xy) − A(x) = f
(G−1(xy) − G−1(x)

L(x)
g(G−1(x)) + G−1(x)

)

− f(G−1(x)).

Using f ∈ EΓα(g, a) and l.u. convergence, we obtain that

A(xy) − A(x)

a(G−1(x))
→ α log y,

and it follows that A ∈ Πα(L) with L(x) = a(G−1(x)). We conclude that f(x) =
A(G(x)) with A and G as required.

For the converse, we write

f(x + yg(x)) − f(x) = A
(G(x + yg(x))

G(x)
G(x)

)

− A(G(x)),

and it follows that f ∈ EΓα(g, a) with a(x) = L(G(x)). �

3. Remainder terms

3.1. Remainder term for the class Γ0(g) and EΓ1(g, a). In this section
we obtain a result that describes the asymptotic behaviour of the remainder term
in (2.1). In the first result we assume that f and g have derivatives.
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Proposition 3.1. (i) Suppose that f has a derivative f (1) ∈ Γ0(g). Then

(3.1) f(x + yg(x)) − f(x) ∼ g(x)f (1)(x) y

this is f ∈ EΓ1(g, a) with a(x) = g(x)f (1)(x).
(ii) Suppose that f has an N -th order derivative f (N) ∈ Γ0(g). Then

(3.2) f(x + yg(x)) − f(x) −
N−1
∑

k=1

gk(x)f (k)(x)
yk

k!
∼ gN (x)f (N)(x)

yN

N !
.

Proof. (i) For y > 0 we have

f(x + yg(x)) − f(x) = g(x)

∫ y

0
f (1)(x + zg(x)) dz

Using f (1) ∈ Γ0(g), we obtain the result.
(ii) Using (3.1) we have

f(x + yg(x)) − f(x) − g(x)f (1)(x) y = g2(x)

∫ y

0

∫ u1

0
f (2)(x + u2g(x)) du2du1,

and in general we have

I = gN(x)

∫ y

0

∫ u1

0
. . .

∫ uN−1

0
f (N)(x + uNg(x)) duN . . . du1,

where I denotes the left handside of (3.2). The result follows. �

Remarks. (1) In order to have expressions that make sense, we should have
g(x)f (i)(x) = o(f (i−1)(x)), 1 6 i 6 N . In this case (11) gives more precise approx-
imations as N grows.

(2) If f is such that f (N) ∈ RV (α), where α > 0, then f (i) ∈ RV (α + N − i),
0 6 i 6 N , and

xf (i)(x)

f (i−1)(x)
→ α + N − i.

The theorem can be applied with any function g for which g(x)/x → 0.

3.2. Remainder term for f ∈ Γ(g). In studying Γ(g) we have some freedom
in choosing the auxiliary function g. In studying the rate of convergence in the
definition of Γ(g), the choice of the auxiliary function g plays an important role. If
f ∈ Γ(g) and g1(x) ∼ g(x), then we also have f ∈ Γ(g1). The rate of convergence in
(1.1) depends on the choice of auxiliary function. The following example illustrates
this point.

Example. Let f(x) = x exp(x). In this case we have f ∈ Γ(g) with g(x) = 1.
Note that with this choice of g we have

x
(

exp(−y)
f(x + y)

f(x)
− 1

)

= y.
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We also have f ∈ Γ(g) with g(x) = f(x)/f (1)(x) = x/(1 + x). With this choice
of g we obtain that

exp(−y)
f(x + yg(x))

f(x)
=

(

1 +
y

1 + x

)

exp
(

− y

1 + x

)

.

Straightforward calculations show that

x2
(

exp(−y)
f(x + yg(x))

f(x)
− 1

)

→ −y2

2
.

The following proposition is a motivation for taking g = f/f (1).

Proposition 3.2. (i) Suppose that f has a nondecreasing derivative f (1). If

f ∈ Γ(g), then f (1) ∈ Γ(g) and g(x) ∼ f(x)/f (1)(x) ∈ SN .

(ii) Let g(x) = f(x)/f (1)(x). If g ∈ SN , then f ∈ Γ(g).

Proof. (i) Let y > 0. We have

f(x + yg(x)) − f(x) = g(x)

∫ y

0
f (1)(x + zg(x)) dz.

Since f (1) is nondecreasing, we have

yg(x)f (1)(x) 6 f(x + yg(x)) − f(x) 6 yg(x)f (1)(x + yg(x)),

and from here also that

y
g(x)f (1)(x)

f(x)
6

f(x + yg(x))

f(x)
− 1 6 y

g(x)f (1)(x + yg(x))

f(x)
.

Taking limits, on the one hand we get that

lim sup
g(x)f (1)(x)

f(x)
6

1

y
(ey − 1).

On the other hand we have

f(x + yg(x))

f(x)
− 1 6 y

g(x)f (1)(x + yg(x))

f(x)
.

Now let t = x + yg(x) to see that

g(t)

g(x)

f(x)

f(t)

( f(t)

f(x)
− 1

)

6 y
g(t)f (1)(t)

f(t)
.

Since f ∈ Γ(g), we have (cf. Lemma 1.1) that g ∈ SN and hence that g(x) ∼ g(t).
It follows that

1

y
e−y(ey − 1) 6 lim inf

g(t)f (1)(t)

f(t)
.

Since y > 0 was arbitrary, it follows that g(x)f (1)(x)/f(x) → 1. Since g ∈ SN and
f ∈ Γ(g), we also get that f (1) ∈ Γ(g).

(ii) Integrating the equation g(x) = f(x)/f (1)(x), for y > 0 we get that

log
f(x + yg(x))

f(x)
=

∫ x+yg(x)

x

1

g(t)
dt =

∫ y

0

g(x)

g(x + zg(x))
dz.
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Using g ∈ SN , it follows that

log
f(x + yg(x))

f(x)
→ y,

and hence that f ∈ Γ(g). �

Now we are ready for the main result of this section. In Theorem 3.1 below we
obtain the precise asymptotic behaviour of the functions W (x, y) − 1 and R(x, y),
where

W (x, y) =
f(x + yg(x))

f(x)
exp(−y), R(x, y) = W (x, y) − 1 +

y2

2
g(1)(x).

Theorem 3.1. (i) Suppose that f ∈ Γ(g) where g(x) = f(x)/f (1)(x). Assume

that g(1) ∈ Γ0(g) and that g(1)(x) → 0. Then as x → ∞ we have

W (x, y) − 1 ∼ −y2

2
g(1)(x), l.u. in y.

(ii) Suppose that f ∈ Γ(g) where g(x) = f(x)/f (1)(x). Assume that g(2) is

ultimately of one sign and that g(2) ∈ RV (α − 2), where α < 1.

(a) If α 6= 0, as x → ∞, we have

1

(g(1)(x))2
R(x, y) → α + 1

α

y3

6
+

y4

8
, l.u. in y.

(b) If α = 0, as x → ∞, we have

1

g(x) g(2)(x)
R(x, y) = −y3

6
, l.u. in y.

Proof. (i) We use W (x, y) as defined above and we take H(x) = log f(x). We
have

(3.3) log W (x, y) = H(x + yg(x)) − H(x) − y.

Taking derivatives of H(x) we see that

H(1)(x) =
1

g(x)
, H(2)(x) = −g(1)(x)

g2(x)
.

Since H(2) ∈ Γ0(g), we can use (3.2) for H and with N = 2. We obtain that

H(x + yg(x)) − H(x) − yg(x) H(1)(x) ∼ g2(x) H(2)(x)
y2

2
,

so that

(3.4) H(x + yg(x)) − H(x) − y ∼ −g(1)(x)
y2

2
.

Since log(x) ∼ (x − 1) as x → 1, we have log W (x, y) ∼ W (x, y) − 1, and the first
result follows from (3.3) and (3.4).

(ii) For H(x) = log f(x), we find that

H(3)(x) = 2
(g(1)(x))2

g3(x)
− g(2)(x)

g2(x)
.
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If g(2)(x) ∈ RV (α − 2), α < 1, α 6= 0, we have (α − 1) g(1)(x) ∼ xg(2)(x) and
αg(x) ∼ x g(1)(x). It follows that

(3.5)
g3(x) H(3)(x)

(g(1)(x))2
→ 2 − (α − 1)

α
=

α + 1

α
.

If g(2)(x) ∈ RV (−2), then g(1)(x) ∼ xg(2)(x) and g ∈ Π(xg(1)(x)). Since
xg(1)(x)/g(x) → 0, in this case it follows that

(3.6)
g2(x) H(3)(x)

g(2)(x)
→ −1.

Using (3.2), we obtain that

H(x + yg(x)) − H(x) − g(x) H(1)(x)y − g2(x) H(2)(x)
y2

2
∼ g3(x) H(3)(x)

y3

3!
,

or

H(x + yg(x)) − H(x) − y + g(1)(x)
y2

2
∼ g3(x) H(3)(x)

y3

3!
.

Now we consider R(x, y). Using (x − 1) − log(x) ∼ 1/2(x − 1)2(1 + o(1)) as
x → 1, we obtain that W (x, y) − 1 − log W (y) ∼

1
2 (W (x, y) − 1)2, or equivalently

that W (x, y)−1−(H(x+yg(x))−H(x)−y) ∼ 1
2 (W (x, y)−1)2. Using W (x, y)−1 ∼

−g′(x)y2/2, it follows that

(3.7) R(x, y) = (H(x + yg(x)) − H(x) − y + g(1)(x)
y2

2
+ (1 + o(1))

1

8
y4(g(1)(x))2.

If α 6= 0, we use (3.5) and (3.7) to obtain that

1

(g(1)(x))2
R(x, y) → α + 1

α

y3

6
+

y4

8
.

If α = 0, we use (3.6) and (3.7) to obtain that

1

g(x) g(2)(x)
R(x, y) → −y3

3!
.

This proves the result. �

Remarks. 1) Since we should have g(x)/x → 0, it makes sense to assume that
g(1)(x) → 0. If g(1)(x) → α 6= 0, then g(x)/x → α and the corresponding function
f is regularly varying. The case where g(1)(x) → α 6= 0 was treated in detail by de
Haan (1996, Theorem 5).

2) Dekkers and de Haan (1989, Theorems A.7–A.10) study into detail results as
in Theorem 3.1(i) in the case where f(x) = 1 − F (x), where F (x) is a distribution
function. See also de Haan and Omey (1990).

3) In the case of α < 1, in (3.5) we used the fact that

g(x) g(2)(x)

(g(1)(x))2
→ α − 1

α
.

If
g(x) g(2)(x)

(g(1)(x))2
→ 1,
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we have that g(2) ∈ Γ(a), where a(x) ∼ g(x)/g(1)(x), cf. Geluk and de Haan (1987,
Theorem 1.28).

Examples. (1) If f(x)=exp(x/log(x)), we have g(x)=1+log(x)+1/(log(x)−1),
and we readily find that g(2)(x) ∼ −x2.

(2) If f(x) = exp(log(x))α, 0 < α < 1, we have g(x) = (log(x))1−α/α, and it
follows that g(2)(x) ∼ cx−2(log(x))−α ∈ RV (−2).

(3) Let f(x) be given by

f(x) =
1

∫

∞

x
yb exp(−y) dy

,

i.e. 1/f(x) is related to a gamma distribution. In this case we find that

g(x) =
f(x)

f (1)(x)
=

∫

∞

x
yb exp(−y) dy

xb exp(−x)
.

Note that

g(x) = x

∫

∞

1
tb exp(−tx + x) dt = x

∫

∞

0
(1 + u)b exp(−ux) du.

Using partial integration, we get that

g(x) = 1 + b

∫

∞

0
(1 + u)b−1 exp(−ux) du.

It readily follows that g(2)(x) ∼ 2bx−3 ∈ RV (−3).

(4) Let f(x) be given by

f(x) =
1

∫

∞

x
exp(−y2) dy

,

i.e. 1/f(x) is related to a normal distribution. We find that

g(x) =
f(x)

f (1)(x)
= exp(x2)

∫

∞

x

exp(−y2) dy.

Note that

2xg(x) =

∫

∞

0

(

1 +
v

x2

)

−1/2
exp(−v) dv.

We find that 2xg(x) → 1, x2g(1)(x) → −1/2 and x3g(2)(x) → 3/2.

4. Applications

4.1. Differential equations. There are several papers devoted to the asymp-
totic behaviour of positive, increasing solutions of the differential equation

(4.1) y(2)(x) = f(x) y(x)

where f(x) > 0 and y(2)(x) denotes the second derivative of y. One such result is
the following, cf. Omey (1981, 1997).
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Proposition 4.1. Define q > 0 by q2(x)f(x) = 1 and suppose that q(1)(x) → 0.

Then the positive increasing solutions (4.1) satisfy:

(i) q(x)y(1)(x)/y(x) → 1;

(ii) y ∈ Γ(q), y(1) ∈ Γ(q) and y(2) ∈ Γ(q).

Proof. Let K(x) = q(x) y(1)(x)/y(x) > 0. Clearly we have

q(x) K(1)(x) = q(1)(x) K(x) + 1 − K2(x).

First suppose that K(1)(x) > 0, x > x. In this case K(x) ↑ A, where A 6 ∞. If
A = ∞, we have

q(x) K(1)(x)

K(x)
= q(1)(x) +

1

K(x)
− K(x) → −∞.

This contradicts the assumption that K(1)(x) > 0. Hence A < ∞ and then we
obtain that q(x) K(1)(x) → 1−A2 > 0. If 1−A2 > 0, then K(1)(x) ∼ (1−A2)/q(x)
and since q(x)/x → 0, we obtain that xK(1)(x) → ∞ and then K(x) → ∞,
a contradiction again. It follows that A2 = 1 and A = 1. Next suppose that
K(1)(x) < 0, x > x◦. In this case K(x) ↓ A > 0 and we obtain that

q(x)K(1)(x) → 1 − A2.

Again we should have A2 = 1. Finally suppose that K(1)(xn) = 0 for a sequence
xn → ∞. In this case we have

K(xn) =
q(1)(xn) +

√

(q(1)(xn))2 + 4

2

for this sequence. Since K is monotone between zero’s of K(1)(x), we find that

K(xn) 6 K(x) 6 K(xn+1), xn 6 x 6 xn+1

(or a similar inequality with reversed inequality signs). Since K(xn) → 1, it follows
also in this case that K(x) → 1. This proves (i). Result (ii) now easily follows
because q ∈ SN . �

To obtain a rate of convergence result here, we could use y ∈ Γ(g) with g(x) =
y(x)/y(1)(x) and the result of Theorem 3.1(i). We want to establish a rate of
convergence result in terms of q(x), where q2(x)f(x) = 1. In the next result we use
both q(x) and Q(x) = 1/q(x).

Theorem 4.1. Suppose that y(x) is a positive increasing solution of (4.1).
Assume that Q(1)(x) > 0 and Q(1)(x) is nondecreasing for large values of x. If

Q(1) ∈ Γ0(q) and q(1)(x) → 0, then

y(x + zq(x))

y(x)
exp(−z) − 1 ∼ q(1)(x)

(

z − z2

2

)

.

Proof. To prove the result we introduce functions L, u and C by

L(x) = y(x)Q(x) − y(1)(x), u(x) = exp

∫ x

c

Q(s) ds, C(x) = u(x)L(x).
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Since q(1)(x) → 0, we have q ∈ SN , Q ∈ SN and u ∈ Γ(q). Straightforward
calculations show that

(4.2) C(1)(x) = u(x)y(x)Q(1)(x).

Note that C(1)(x) > 0 for x large. The conditions of the theorem ensure that C(1)

is nondecreasing. By assumption we have Q(1) ∈ Γ0(q). Since y, u ∈ Γ(q), it is easy
to see that

C(1)(x + yq(x))

C(1)(x)
→ exp(2y),

so that C(1) ∈ Γ(q/2). Now this implies (Lemma 1.1) that C(x) ∼ C(1)(x) q(x)/2.
Using (4.2), it follows that C(x) ∼ u(x) y(x) Q(1)(x) q(x)/2, and then also that
L(x) ∼ y(x) Q(1)(x) q(x)/2. Since L(x) = y(x) Q(x) − y(1)(x), we have that

1 − y(1)(x)

Q(x) y(x)
∼

Q(1)(x)

2
.

In terms of q(x) we find that

y(1)(x)

y(x)
− 1

q(x)
= (1 + ε(x))

q(1)(x)

2q(x)
.

where ε(x) → 0. Integration gives

log
(y(x + zq(x))

y(x)

)

− z = I + II,

where

I =

∫ z

0

( q(x)

q(x + θq(x))
− 1

)

dθ = −
∫ z

0

∫ θ

0

q(1)(x + zq(x))q(x)

q(x + θq(x))
dz dθ

II =

∫ z

0

(

1 + ε(x + θq(x))
) q(1)(x + θq(x))q(x)

q(x + θq(x))
dθ

For the first term we get I ∼ −q(1)(x) z2/2. For the second term we get II ∼

q(1)(x)z. It follows that

log
(y(x + zq(x))

y(x)
exp(−z)

)

∼ q(1)(x)
(

z − z2

2

)

.

Since q(1)(x) → 0, we obtain that

y(x + zq(x))

y(x)
exp(−z) − 1 ∼ q(1)(x)

(

z − z2

2

)

.

This proves the result. �
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4.2. Motion of tagged particles. In his paper about the motion of tagged
particles, Szatzschneider (1993) formulated the question to characterize positive
and measurable functions L that satisfy the following relation:

L(x + y
√

x) − L(x)
√

L(x)
→ 0.

We formulate the problem in a more general way and study functions f that
satisfy the following: f ∈ Γ0(g), g ∈ SN and

f(x + yg(x)) − f(x)
√

f(x)
→ αy.

To solve this problem, we define h(x) =
√

f(x). Clearly we have

h(x + yg(x)) − h(x) =
f(x + yg(x)) − f(x)

√

f(x + yg(x)) +
√

f(x)
.

Since f ∈ Γ0(g), we find that h(x + yg(x)) − h(x) → α
2 y. This is h ∈ EΓα/2(g, 1).

The Representation Theorem 2.2 for EΓ now shows that h is of the form

h(x) = C +
α

2

∫ x

x◦

1

g(z)
dz + W (x) + o(1)

where W (1)(x)g(x) → 0. For g(x) =
√

x, we get that

h(x) = C + α
√

x + W (x) + o(1),

where W (1)(x)
√

x → 0.

5. Concluding remarks

(1) In Theorem 3.1 we obtained a second order and a third order behaviour
of functions f ∈ Γ(g) assuming that g(2) ∈ RV (α − 2), α < 1. We plan to study
conditions to obtain higher order terms in another paper.

(2) In Theorem 2.4 we proved that f ∈ EΓα(g, a) implies that f(x) = A(G(x)),
where G ∈ Γ(g) and A ∈ Πα(L). We showed that we can take G nondecreasing.
Suppose that α 6= 0. If f is increasing, we also find that A is increasing. It follows
that the inverse function f−1(x) is given by f−1(x) = G−1(A−1(x)). Since G−1 ∈
Π1(g(G−1)) and A−1 ∈ Γα(L(A−1)), it follows that f−1 ∈ EΓβ(a(f−1), g(f−1)),
where β = 1/α.

(3) In Omey and Willekens (1987) and in Omey and Segers (2010) we studied
regular variation of order n and the class Π of order n. Starting from (cf. The-
orem 2.4) f(x) = A(G(x)) where G ∈ Γ(g) and A ∈ RV (α) or A ∈ Π(L), this
provides an alternative way to obtain higher order asymptotics for functions in the
classes Γ(g) and EΓα(g, a).
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