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Abstract. We investigate a first-order conditional probability logic with equ-
ality, which is, up to our knowledge, the first treatise of such logic. The
logic, denoted LFPOIC=, allows making statements such as: CP>s(φ, θ), and
CP6s(φ, θ), with the intended meaning that the conditional probability of φ

given θ is at least (at most) s. The corresponding syntax, semantic, and ax-
iomatic system are introduced, and Extended completeness theorem is proven.

1. Syntax and semantics

The recent papers [1, 3, 6], discuss conditional probability extensions of classic
propositional logic, while [2] introduces a first-order conditional probability logic in
which iterations of conditional probability operators are not allowed. In this paper,
we abandon that restriction and also extend logical language by adding equality,
which causes changes in the corresponding syntax and semantics. Solving those
issues is the main novelty presented in this paper.

Let [0, 1]Q denote the set of all rational numbers from the interval [0, 1]. The
language L of the LFOICP=-logic consists of countable sets of variables V ar =
{x1, x2, . . .}, relation symbols Rm

i , the relation symbol = which is, of course, inter-
preted rigidly as equality, and function symbols Fn

j , where m and n are arities of
these symbols, logical connectives ∧ and ¬, the quantifier ∀, and binary conditional
probability operators CP>s and CP6t for all s ∈ [0, 1]Q, t ∈ [0, 1)Q. Constants are
function symbols whose arity is 0.

Terms and atomic formulas are defined as in the first-order classical logic with
equality. The set of formulas ForFOICP= is the smallest set containing atomic
formulas and closed under the following formation rules: if φ and θ are formulas,
then ¬φ, CP>s(φ, θ), CP6t(φ, θ), φ∧θ and (∀x)φ are formulas. We use the standard
abbreviations for other connectives, while P>s(φ) denotes CP>s(φ,⊤). A formula
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ψ is a sentence if no variable is free in ψ. The subset of all sentences is denoted by
SentFOICP= . We call a set T ⊂ ForFOICP= a theory if T contains only sentences.

Semantics to the set of LFOICP=-formulas is given in the possible-world style.

Definition 1.1. An LFOICP=-model is a structure M = 〈W,D, I,Prob〉
where:

− W is a nonempty set of objects called worlds,
− all worlds have a nonempty set D as a domain,
− I associates an interpretation of function and relation symbols with every

world w ∈ W such that the meanings of the terms are same in all worlds
(we say that terms are rigid) and I(w)(Rm

i ) is a subset of Dm,
− Prob is a probability assignment which assigns to every w ∈ W a proba-

bility space Prob(w) = 〈W (w), H(w), µ(w)〉, where:
− W (w) is a nonempty subset of W ,
− H(w) is an algebra of subsets of W (w),
− µ(w) is a finitely additive probability measure on H(w).

The fact that φ ∈ ForFOICP= holds in a world w of some LFOICP=-model
M for a valuation v of variables is denoted as (M,w, v) � φ and the notation
[φ]vw = {u ∈ W (w) | (M,u, v) � φ} is used throughout the paper.

Definition 1.2. Let M = 〈W,D, I,Prob〉 be an LFOICP=-model and v be a
valuation. The satisfiability of φ ∈ ForFOICP in w ∈ W for a given valuation v is
defined as follows:

− if φ is a classical first-order atomic formula, then (M,w, v) � φ if and
only if w � φ(a1, . . . , an), where ai, i = 1, . . . , n, are the names for ai =
v(w)(xi), and w is considered as a classical first-order model,

− if φ ≡ ¬ψ, then (M,w, v) � ¬ψ if and only if (M,w, v) 2 ψ,
− if φ ≡ ψ ∧ θ, then (M,w, v) � ψ ∧ θ if and only if (M,w, v) � ψ and

(M,w, v) � θ,
− if φ ≡ (∀x)ψ(x), then (M,w, v) � (∀x)ψ(x) if and only if for every d ∈
D(w) (M,w, v) � ψ(d), where d is a name for d,

− if φ ≡ CP>s(ψ, θ), then (M,w, v) � CP>s(ψ, θ) if and only if either

µ(w)([θ]vw) = 0, or µ(w)([θ]vw) > 0 and
µ(w)([ψ ∧ θ]vw)

µ(w)([θ]vw)
> s,

− if φ ≡ CP6s(ψ, θ), then (M,w, v) � CP6s(ψ, θ) if and only if either

µ(w)([θ]vw) = 0 and s = 1, or µ(w)([θ]vw) > 0 and
µ(w)([ψ ∧ θ]vw)

µ(w)([θ]vw)
6 s.

We say that a formula φ holds in a world w of an LFOICP=-model M and
denote it by (M,w) � φ if for every valuation v, (M,w, v) � φ.

Since the satisfiability of a sentence φ in w does not depend on the given
valuation v, and for all valuations sets [φ]vw coincide we denote the set of all worlds
u ∈ W (w) of an LFOICP=-model M where φ holds by [φ]w . We may omit the
subscript when the meaning of [φ] is clear from the context: if it is written µ(w)([φ]),
then it is connoted [φ] = [φ]w .
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By the above definition the conditional probability of φ given ψ is 1 when
µ(w)([ψ]vw) = 0 and we have expanded Kolmogorov’s definition of the conditional
probability in a rather usual way following [6] and [7].

Definition 1.3. A formula φ ∈ ForFOICP= is satisfiable if there exist an
LFOICP=-model M , a world w in M , and a valuation v such that (M,w, v) � φ.
A set T of formulas is satisfiable if there exist an LFOICP=-model M , some world
w in M , and a valuation v such that (M,w) � φ, for every φ ∈ T . A formula φ is
valid if for every LFOICP=-model M , and every world w from M , (M,w) � φ.

We focus on the class of models satisfying the requirement that for every φ ∈
SentFOICP= and every w from a model M , [φ]w is a measurable set, i.e., [φ]w ∈
H(w), and that class will be denoted by LFOICP=

Meas. Also, we consider the class
LFOICP=

All of all LFOICP=
Meas-models having property that for each w ∈ W every

subset of W (w) is µ(w)− measurable.

Definition 1.4. A probabilistic k-nested implication Φk(τ, (θi)i<ω) for the
formula τ based on the sequence (θi)i<ω of formulas is defined by recursion:

Φ0(τ, (θi)i<ω) ≡ θ0 → τ, Φk+1(τ, (θi)i<w) ≡ θk+1 → P>1(Φk(τ, (θi)i<ω)).

For example Φ3(τ, (θi)i<ω) ≡ θ3 → P>1(θ2 → P>1(θ1 → P>1(θ0 → τ))).

2. Axioms

The axiomatic system AxLFOICP for LFOICP contains the following axiom
schemata:

Axiom 1 all the axioms of the classical propositional logic,
Axiom 2 ∀x(φ → ψ) → (φ → ∀xψ), where x is not a free variable in φ
and φ, ψ ∈ ForFOICP,
Axiom 3 ∀xφ(x) → φ(t), where φ(t) is obtained by substitution of all free
occurrences of x in the first-order formula φ(x) by the term t which is free
for x in φ(x),
Axiom 4 ∀x(x = x),
Axiom 5 ∀x∀y(x = y → (φ(x, x) ↔ φ(x, y))), for φ ∈ ForFOICP.
Axiom 6 CP>0(φ, θ),
Axiom 7 CP<s(φ, θ) → CP6s(φ, θ),
Axiom 8 CP6s(φ, θ) → CP<t(φ, θ), t > s,
Axiom 9 P>0(θ) → (CP>s(φ, θ) ↔ CP61−s(¬φ, θ)),
Axiom 10 (P>s(φ) ∧ P>t(θ) ∧ P>1(¬(φ ∧ θ))) → P>min{1,s+t}(φ ∨ θ),
Axiom 11 (P6s(φ) ∧ P<t(θ)) → P<s+t(φ ∨ θ), s+ t 6 1,
Axiom 12 P=0(θ) → CP=1(φ, θ),
Axiom 13 (P>t(θ) ∧ P6s(φ ∧ θ)) → CP6min{ s

t
,1}(φ, θ), t 6= 0

Axiom 14 (P6t(θ) ∧ P>s(φ ∧ θ)) → CP>min{ s

t
,1}(φ, θ), t 6= 0

and inference rules:

Rule 1 modus ponens,

Rule 2
φ

∀xφ
, φ ∈ ForFOICP,
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Rule 3
φ

P>1(φ)
, φ ∈ ForFOICP,

Rule 4
Φk(CP>s− 1

n

(ψ, χ), (θi)i<ω), for every integer n > 1
s

Φk(CP>s(ψ, χ), (θi)i<ω)
,

Rule 5
Φk(CP6s+ 1

n

(ψ, χ), (θi)i<ω), for every integer n > 1
1−s

Φk(CP6s(ψ, χ), (θi)i<ω)
.

Let us discuss the system AxLFOICP. The axioms 1–5 and the rules 1 and
2 correspond to the classical first-order reasoning, while the axioms 6–14 concern
the probabilistic part of our system. Axiom 6 announces the nonnegativity and
Axioms 7 and 8 the monotonicity of the conditional probability. Axiom 9 claims
that CP>s(φ, θ) and CP61−s(¬φ, θ) are equivalent if the condition has a positive
probability. Axioms 10 and 11 correspond to the finite additivity of measures, while
Axioms 12–14 describe the relationship between the conditional and absolute prob-
ability. Rule 3 is a form of modal necessitation. Rules 4 and 5 are the generalization
of the infinitary rules which correspond to the Archimedean rule for real numbers,
and do not occur in the previous papers.

Definition 2.1. φ ∈ ForFOICP is a theorem, which we denote by ⊢ φ, if there
exists a denumerable sequence of formulas φ0, φ1, . . . , φ called the proof, such that
each member of the sequence is an instance of some axiom schemata or is obtained
from the previous formulas using an inference rule.

φ is deducible from a set of sentences T (T ⊢ φ) if there is an at most countable
sequence of formulas φ0, φ1, . . . , φ called the proof, such that each member of the
sequence is an instance of some axiom schemata, or is contained in T or is obtained
from the previous formulas using an inference rule, with the exception that the
inference rule 3 can be applied to the theorems only.

Definition 2.2. A theory T is consistent if there is at least one formula from
ForFOICP which can not be deduced from T . A theory T is maximal consistent if
it is consistent and for each φ ∈ SentFOICP, either φ ∈ T or ¬φ ∈ T .

The set of all formulas which are deducible from T is called the deductive closure
of T and denoted by Cn(T ). A theory T is deductively closed if T = Cn(T ).

3. Soundness and completeness

Some of the following results can be proved in the way analogous to ones
presented in [4, 6, 7], so we emphasize only the main differences and new ideas.

Theorem 3.1 (Soundness). The axiomatic system AxLFOICP= is sound with

respect to the class of LFOICP=
Meas-models.

Proof. Axioms 4 and 5 are obviously valid (for the validity of the latter axiom
the assumption about constant domains and rigidness of terms is essential), and it
remains to prove, using the induction on k, that rule R4 produces a valid formula
from a set of valid premises. In fact we are going to show that if in a world w of
some model M for a given valuation v holds Φk(CP>s− 1

n

(ψ, χ), (θi)i<ω), for every
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n > 1
s
, then (M,w, v) � Φk(CP>s(ψ, χ), (θi)i<ω). For the induction basis k = 0 we

point out to the above mentioned literature, and assume that it is fulfilled for k = j.
Suppose that there are an LFOICP=

Meas-model M1, a world w1, and a valuation v1,
such that (M1, w1, v1) � Φj+1(CP>s− 1

n

(ψ, χ), (θi)i<ω) for every n > 1
s
, and

(M1, w1, v1) 2 θj+1 → P>1(Φj(CP>s(ψ, χ), (θi)i<ω)).

We conclude (M1, w1, v1) � θj+1 ∧ ¬P>1(Φj(CP>s(ψ, χ), (θi)i<ω)), and for each
n > 1

s

(M1, w1, v1) � P>1(Φj(CP>s− 1

n

(ψ, χ), (θi)i<ω)),

meaning that for each world u from some subset S ⊆ W (w1) whose µ(w1) measure
is equal to 1 holds (M1, u, v1) � Φj(CP>s− 1

n

(ψ, χ), (θi)i<ω). By the induction

hypothesis (M1, u, v1) � Φj(CP>s(ψ, χ), (θi)i<ω) for all worlds from S ⊆ W (w1),
µ(w1)(S) = 1, implying (M1, w1, v1) � P>1(Φj(CP>s(ψ, χ), (θi)i<ω), and the initial
supposition leads to contradiction. �

Theorem 3.2 (Deduction theorem). If T is a theory and φ, ψ ∈ SentFOICP= ,

then T ∪ {φ} ⊢ ψ if and only if T ⊢ φ → ψ.

The proof of Deduction theorem for LFOICP= differs from the proof of the
corresponding theorem presented in [4, 6, 7] in the case when infinitary rules are
applied. If σ = Φk(CP>s(ψ, χ), (θi)i<ω) is obtained from T ∪ {φ} using rule R4,
then:

1. T∪{φ} ⊢ θk → P>1(Φk−1(CP>s− 1

n

(ψ, χ), (θi)i<ω)), for each integer n > 1
s

2. T ⊢ (φ ∧ θk) → P>1(Φk−1(CP>s− 1

n

(ψ, χ), (θi)i<ω)), for n > 1
s
, by the

induction hypothesis and using an instance of the classical propositional
tautology (p → (q → r)) ↔ ((p ∧ q) → r)
For i 6= k the sequence (θi)i<ω coincides with (θi)i<ω , and θk ≡ φ ∧ θk.
Introducing that notation we obtain

3. T ⊢ (φ∧θk) → P>1(Φk−1(CP>s(ψ, χ), (θi)i<ω)), by the application of the
rule R4 on 2

4. T ⊢ φ → (θk → P>1(Φk−1(CP>s(ψ, χ), (θi)i<ω)))

The next corollary follows from several applications of the previous theorem,
and makes more evident the necessity of imposing rigidness of terms.

Corollary 3.1. x = y → P>1(x = y) is a theorem of LFOICP=.

Proof. We deduce as follows:

1) ⊢ ∀x∀y(x = y → (P>1(x = x) ↔ P>1(x = y))) is an instance of A5,
2) ⊢ P>1(x = x) → (x = y ↔ P>1(x = y)), is obtained from 1) using

A3 and Deduction theorem, and an instance of a propositional tautology
(p → (q → r)) ↔ (q → (p → r)),

4) ⊢ P>1(x = x), using A4, A3, Deduction theorem and R3,
5) ⊢ x = y → P>1(x = y), from 4) and 3) using Modus ponens. �

Lemma 3.1. a) For all s, t ∈ [0, 1]Q and φ, θ ∈ ForFOICP, if s 6 t, then

⊢ CP>t(φ, θ) → CP>s(φ, θ).
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b) For all s, t ∈ [0, 1]Q, t 6= 0 and φ, θ ∈ ForFOICP, holds ⊢ (P=t(θ) ∧P=s(φ∧ θ)) →
CP=min{ s

t
,1}(φ, θ).

c) ⊢ P>1(φ → θ) → (P>s(φ) → P>s(θ)) for all φ, θ ∈ ForFOICP.

d) P>1(φ1), P>1(φ2) ⊢ P>1(φ1 ∨ φ2) ∧ P>1(φ1 ∧ φ2).

Proof. As an illustration we prove d), while the other statements are left to
the reader. We deduce as follows:

1) ⊢ P>1(φ1 → (φ1 ∨ φ2)), applying Rule 3 to an instance of a propositional
tautology ,

2) ⊢ P>1(φ1 → (φ1 ∨φ2)) → (P>1(φ1) → P>1(φ1 ∨φ2)), by c) of this lemma,
3) P>1(φ1) ⊢ P>1(φ1 ∨φ2), from 1) and 2) using R1 and Deduction theorem,
4) ⊢ P>1(φ1) ↔ P60(¬φ1), an instance of A9,
5) ⊢ P<s(¬φ1) → P<s(¬φ1 ∧ φ2), using similar arguments as above and

contraposition,
6) P60(¬φ1) ⊢ P< 1

n

(¬φ1), for every n > 0, by A8,

7) P60(¬φ1) ⊢ P6 1

n

(¬φ1 ∧ φ2), for every n > 0, from 5) and 6), and by A7,

8) P60(¬φ1) ⊢ P60(¬φ1 ∧ φ2), from 7) using R5,
9) ⊢ P>1((¬φ1 ∧φ2) ∨ (φ1 ∧φ2)) → (P>0(¬φ1 ∧ φ2) ∨P>1(φ1 ∧ φ2)), by A11

and contraposition,
10) ⊢ P>1(φ2) → P>1((¬φ1 ∧ φ2) ∨ (φ1 ∧ φ2)), using the previous clause of

this lemma
11) P>1(φ2) ⊢ P>0(¬φ1 ∧ φ2) ∨ P>1(φ1 ∧ φ2), from 9) and 10),
12) P>1(φ1) ⊢ P60(¬φ1 ∧ φ2), from 4) and 8),
13) P>1(φ1), P>1(φ2) ⊢ P>1(φ1 ∧ φ2), from 11) and 12). �

Lemma 3.2. Let T be a consistent theory. Then:

a) for every formula φ ∈ ForFOICP, either T ∪ {φ} or T ∪ {¬φ} is consistent;

b) if ¬Φk(CP>s(ψ, χ), (θi)i<ω) ∈ T , then there exists an integer n > 1
s

such

that T ∪ {θk → ¬Φk−1(CP>s− 1

n

(ψ, χ), (θi)i<ω)} is consistent. Also, if

¬Φk(CP6s(ψ, χ), (θi)i<ω) ∈ T , then there exists an integer n > 1
1−s

such

that T ∪ {θk → ¬Φk−1(CP6s+ 1

n

(ψ, χ), (θi)i<ω)} is a consistent theory.

Definition 3.1. A set T of formulas is saturated if for each formula of the
form ¬(∀x)φ(x) which is contained in T there exists a term t such that ¬φ(t) ∈ T .

In order to prove the completeness theorem, the following theorem that states
that every consistent theory T can be extended to a saturated maximal consistent
theory T ∗ in some broader language is needed.

Theorem 3.3. Let T be a consistent set of sentences in the first-order prob-

ability language L, and C a countably infinite set of new constant symbols. Then

T can be extended to a saturated maximal consistent theory T ∗ in the language

L∗ = L ∪ C.

Proof. Let φ0, φ1, . . ., be an enumeration of all sentences in L∗. We define a
sequence of theories Ti, i ∈ ω as follows:

1) T0 = T ,
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2) if Ti∪{φi} is consistent, then Ti+1 = Ti∪{φi}, otherwise Ti+1 = Ti∪{¬φi},
3) if the set Ti+1 is obtained by adding a formula of the form ¬(∀x)ψ(x) to

the set Ti, then for some c ∈ C which does not occur in any of the formulas
φ0, . . . , φi, we add ¬ψ(c) to Ti+1 such that Ti+1 remains consistent,

4) if a formula of the form ¬Φk(CP>s(ψ, χ), (θi)i<ω) is added, then for some
positive integer n, θk → ¬Φk−1(CP>s− 1

m

(ψ, χ), (θi)i<ω) is also added to

Ti+1, so that Ti+1 is consistent,
5) if a formula of the form ¬Φk(CP6s(ψ, χ), (θi)i<ω) is added, then for some

positive integer m, θk → ¬Φk−1(CP6s+ 1

m

(ψ, χ), (θi)i<ω) is also added to

Ti+1, so that Ti+1 is consistent,
6) T ∗ =

⋃
i<ω Ti.

T ∗ has required properties. �

The next corollary summarizes some obvious properties of saturated maximal
consistent theories.

Corollary 3.2. Let T be a saturated maximal consistent theory in L and

φ, ψ ∈ SentL. Then:

a) if T ⊢ φ, then φ ∈ T , i.e. every saturated maximal consistent theory is

deductively closed;

b) if t = sup{r | P>r(φ) ∈ T } and t ∈ [0, 1]Q, then P>t(φ), P6t(φ) ∈ T .

Definition 3.2. A cut theory P−
T corresponding to a theory T in the language

L is the set of sentences P−
T = {φ ∈ SentFOICP= | P>1(φ) ∈ T }.

Lemma 3.3. If P−
T ⊢ ψ, then T ⊢ P>1(ψ).

Proof. We use the transfinite induction on the length of the proof for ψ from
P−

T . If the proof is finite ψ1, . . . , ψl, ψ and T ⊢ P>1(ψi) for each i = 1, . . . , l, then:

1) ψ1 ∧ . . . ∧ ψl ⊢ ψ
2) ⊢ P>1((ψ1 ∧ . . . ∧ ψl) → ψ), by Rule 3
3) ⊢ P>1((ψ1 ∧ . . . ∧ ψl) → ψ) → (P>1(ψ1 ∧ . . . ∧ ψl) → P>1(ψ)), by

Lemma 3.1c)
4) P>1(ψ1 ∧ . . . ∧ ψl) ⊢ P>1(ψ), from 2) and 3) using R1 and Deduction

theorem
5) P>1(ψ1), . . . , P>1(ψl) ⊢ P>1(ψ1 ∧ . . . ∧ ψl), by Lemma 3.1d)
6) T ⊢ P>1(ψ)

We consider the case when the proof is infinite ψ1, . . . , ψ. Suppose that some
ψj is of the form Φk(CP>s(ψ, χ), (θi)i<ω), and is obtained by an application of
infinitary rule R4 to formulas Φk(CP>s− 1

n

(ψ, χ), (θi)i<ω), n > 1
s
, which occur in

the proof sequence before ψj . Thus, by the induction hypothesis, we have that
T ⊢ P>1(Φk(CP>s− 1

n

(ψ, χ), (θi)i<ω)) for every n > 1
s
, and since (⊤ → p) ↔ p is a

tautology, using R4, we conclude T ⊢ P>1(ψ). �

The canonical model M for a consistent theory T is defined as follows. From
the set T of all maximal saturated extensions in the expanded language L∗ we pick
one which is a extension of T , denote it by T1, and set that the world w1 is T1. Note
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that P−
T1

is a consistent theory, since ⊤, P>1(⊤), P>1(⊤) ↔ P60(⊥) are contained

in every maximal theory, T1 included, and P−
T1

⊢ ⊥ would imply T1 ⊢ P>1(⊥)
contradicting consistency of T1. The corresponding probability space Prob(w1) is
determined with

W (w1) = {T ∗ ∈ T | P−
T1

⊆ T ∗}, [φ]w1
= {u ∈ W (w1) | φ ∈ u},

H(w1) = {[φ]w1
| φ ∈ SentL∗}, µ(w1)([φ]w1

) = {s | P>s(φ) ∈ w1}.

For each element from W (w1) we proceed with this procedure and so on. Let C
be the set of all constants from L∗. The relation ∼ on C is defined by ci ∼ cj iff
T1 ⊢ ci = cj , is an equivalence relation. Domain of the canonical model is D = C/ ∼
and its elements are classes of equivalence c∗. For w ∈ W , I(w) is an interpretation
such that:

− for every symbol of constant cj , I(w)(cj) = c∗ iff cj = c ∈ w,
− for every function symbol Fm

i , I(w)(Fm
i ) is a function from Dm to D

mapping (c∗
1, . . . , c

∗
m) to c∗

m+1 iff Fm
i (c1, . . . , cm) = cm+1 ∈ w,

− for every relation symbol Rm
i

I(w)(Rm
i ) = {(c∗

1, . . . , c
∗
m) ∈ Dm | Rm

i (c1, . . . , cm) ∈ w}.

Corollary 1 guarantees that terms are rigidly interpreted, cause t1 = t2 ∈ T1,
⊢ t1 = t2 → P>1(t1 = t2) implies t1 = t2 ∈ P−

T1
. It remains to be proved that

M = 〈W,D, I,Prob〉 is really an LFOICP=
Meas-model showing that H(w) is an

algebra of subsets of W (w), µ(w) is a finitely additive measure, and (M,w) � φ iff
φ ∈ w. Here we provide the proof for one fact, namely we prove that [φ]w ⊆ [ψ]w
implies µ(w)([φ]w) 6 µ(w)([ψ]w). For every u ∈ W (w), if φ ∈ u then ψ ∈ u, and
since u is a maximal theory, it means that φ → ψ ∈ u. Thus, P−

w ∪ {¬(φ → ψ)}
is not a consistent theory, and according to Deduction theorem P−

w ⊢ φ → ψ.
Using Lemma 3.3 we obtain w ⊢ P>1(φ → ψ), and by Lemma 3.1c) and Deduction
theorem w ⊢ P>s(φ) → P>s(ψ). We summarize these facts in two following lemmas:

Lemma 3.4. Let M = 〈W,D, I,Prob〉 be as above, w ∈ W and let φ, ψ be

sentences from Sent=FOICP. Then, the following hold:

a) H(w) is an algebra of subsets of W (w),
b) if [φ] = [ψ], then µ(w)([φ]) = µ(w)([ψ]),
c) if [φ] = [ψ], then P>s(φ) ∈ w iff P>s(ψ) ∈ w, and P6s(φ) ∈ w iff

P6s(ψ) ∈ w,

d) µ(w) is a finitely additive measure.

Lemma 3.5. M = 〈W,D, I,Prob〉, defined as above, is an LFOICP=
Meas-model.

Theorem 3.4 (Extended completeness theorem for LFOICP=
Meas). A theory T

is consistent if and only if it has an LFOICP=
Meas-model.

Proof. The direction from right to left follows from the soundness theorem.
The theory T can be extended to some saturated maximal consistent theory w in
the expanded language L∗, and for the canonical model M holds (M,w) � T . �
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Theorem 3.5 (Extended completeness theorem for LFOICP=
All). A theory T

is consistent if and only if it has an LFOICP=
All-model.

Proof. Applying the extension theorem for additive measures from [5] it is
possible to obtain finitely additive measures on the power set of W whose restric-
tions are µ(w) from the weak canonical model M . �
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