GENERALIZATION OF THE GRACE-HEAWOOD THEOREM

Radoš Bakić
Communicated by Žarko Mijajlović

Abstract

Using the theorem of Walsh we give a generalization of the theorems of Grace.

1. Introduction

All the polynomials in this paper are complex. The following theorem is well known and is due to Walsh [1.

THEOREM 1.1. If all the zeros of a polynomial $f(z)=a_{0}+a_{1} z+\cdots+z^{n}$ lie in the circle $|z| \leqslant r$, then all the zeros of the polynomial $F(z)=f(z)+c$, lie in the circle $|z| \leqslant r+\sqrt[n]{|c|}$.

Due to translation, previous theorem can be slightly generalized:
THEOREM 1.2. If all the zeros of a polynomial $f(z)=a_{0}+a_{1} z+\cdots+z^{n}$ lie in the circle $|z-d| \leqslant r$, then all the zeros of the polynomial $F(z)=f(z)+c$, lie in the circle $|z-d| \leqslant r+\sqrt[n]{|c|}$.

For polynomials $f(z)=a_{0}+a_{1} z+\cdots+z^{n}$ and $g(z)=b_{0}+b_{1} z+\cdots+z^{n}$ let us define

$$
A(f, g)=a_{0}-\frac{a_{1} b_{n-1}}{\binom{n}{1}}+\frac{a_{2} b_{n-2}}{\binom{n}{2}}-\cdots+(-1)^{n-1} \frac{a_{n-1} b_{1}}{\binom{n}{n-1}}+(-1)^{n} b_{0}
$$

The polynomials $f(z)$ and $g(z)$ are called apolar if $A(f, g)=0$. The following theorem, due to Grace, is the basic one for us.

THEOREM 1.3. If $f(z)$ and $g(z)$ are apolar and if one of them has all its zeros in a circular region C, then at least one zero of the other one is in C.

[^0]
2. Main result

A question arises what happens when $f(z)$ and $g(z)$ are not apolar. We prove the following simple result.

THEOREM 2.1. For polynomials $f(z)=a_{0}+a_{1} z+\cdots+z^{n}$ and $g(z)=b_{0}+$ $b_{1} z+\cdots+z^{n}$ the following holds: if all the zeros of $f(z)$ are contained in some circular region of radius r, then a zero of $g(z)$ is contained in concentric circular region of radius $r+\sqrt[n]{|A(f, g)|}$.

Proof. Polynomials $f(z)-A(f, g)$ and $g(z)$ are apolar. If C is a circular region of a radius r containing all zeros of $f(z)$, then the concentric circular region of a radius $r+\sqrt[n]{|A(f, g)|}$ contains all the zeros of the polynomial $f(z)-A(f, g)$ (Theorem 1.2). Then, applying Theorem 1.3, we obtain the desired result.

Now we want to prove a theorem that is, in a sense, dual to Theorem 1.1.
LEMMA 2.1. Let $f(z)=a_{0}+a_{1} z+\cdots+z^{n}$, be a polynomial having a zero in a circular region $|z| \leqslant r$. Then $f(z)+c$ has a zero in the circular region

$$
|z| \leqslant r+\sqrt[n]{|c|}
$$

Proof. Let b be a zero of $f(z),|b| \leqslant r$. It is easy to see that $0=A(f(z)$, $\left.(z-b)^{n}\right)=A\left(f(z)+c,(z-b)^{n}-c\right)$. Hence, polynomials $f(z)+c$ and $(z-b)^{n}-c$ are apolar. Since all zeros of $(z-b)^{n}$ are in the circle $|z| \leqslant r$, by Theorem 1.1. it follows that all the zeros of $(z-b)^{n}-c$ are in the circle $|z| \leqslant r+\sqrt[n]{|c|}$. Finally, because of apolarity of $f(z)+c$ and $(z-b)^{n}-c$, we conclude that $f(z)+c$, has a zero in the circle $|z| \leqslant r+\sqrt[n]{|c|}$.

Similarly as before, due to translation, we can slightly reformulate the statement of the previous lemma.

Lemma 2.2. Let $f(z)=a_{0}+a_{1} z+\cdots+z^{n}$, be a polynomial having a zero in a circular region $|z-d| \leqslant r$. Then $f(z)+c$ has a zero in the circular region

$$
|z-d| \leqslant r+\sqrt[n]{|c|}
$$

Our main result is a generalization of the following theorem due to Grace and Heawood [2].

THEOREM 2.2. If z_{1} and z_{2} are zeros of the polynomial $f(z), \operatorname{deg}(f)=n>1$, then its derivative has a zero in the circular region

$$
\left|z-\frac{1}{2}\left(z_{1}+z_{2}\right)\right| \leqslant \frac{1}{2}\left|z_{1}-z_{2}\right| \cot \left(\frac{\pi}{n}\right) .
$$

Now we are going to prove the following theorem.
ThEOREM 2.3. Let $f(z)=a_{0}+a_{1} z+\cdots+z^{n}$ be a polynomial. Then for any distinct z_{1} and z_{2}, the circular region

$$
\left|z-\frac{1}{2}\left(z_{1}+z_{2}\right)\right| \leqslant \frac{1}{2}\left|z_{1}-z_{2}\right| \cot \left(\frac{\pi}{n}\right)+\sqrt[n-1]{\frac{|a|}{n-1}}, \text { where } a=-\frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{z_{2}-z_{1}}
$$

contains a zero of the derivative $f^{\prime}(z)$.

Proof. Choose some distinct z_{1} and z_{2}, and consider the polynomial

$$
F(z)=f(z)+a z+b, \text { where } a=-\frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{z_{2}-z_{1}}, \quad b=\frac{z_{1} f\left(z_{2}\right)-z_{2} f\left(z_{1}\right)}{z_{2}-z_{1}} .
$$

Then we have $F\left(z_{1}\right)=F\left(z_{2}\right)=0$, and $F^{\prime}(z)=f^{\prime}(z)+a$. By Theorem 2.2, the circular region

$$
\left|z-\frac{1}{2}\left(z_{1}+z_{2}\right)\right| \leqslant \frac{1}{2}\left|z_{1}-z_{2}\right| \cot \left(\frac{\pi}{n}\right)
$$

contains a zero of $F^{\prime}(z)$. Then, by Lemma 2.2 applied on $F^{\prime}(z)-a=f^{\prime}(z)$ and $r=\frac{1}{2}\left|z_{1}-z_{2}\right| \cot \left(\frac{\pi}{n}\right)$, we conclude that a zero of $f^{\prime}(z)$ is contained in the circular region

$$
\left|z-\frac{1}{2}\left(z_{1}+z_{2}\right)\right| \leqslant \frac{1}{2}\left|z_{1}-z_{2}\right| \cot \left(\frac{\pi}{n}\right)+\sqrt[n-1]{\frac{|a|}{n-1}}
$$

and the theorem is proved.

References

1. J. L. Walsh, On the location of the roots of certain types of polynomials, Trans. Amer. Math. Soc. 24 (1922), 163-180.
2. M. Marden Geometry of Polynomials, American Mathematical Society, 1966.
```
Zavod za unapređivanje
obrazovanja i vaspitanja
1 1 0 0 0 ~ B e o g r a d ~
Serbia
bakicr@gmail.com
```


[^0]: 2010 Mathematics Subject Classification: Primary 26C10.
 Key words and phrases: Zeros of polynomials.

