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Abstract. We present some fixed point results for mappings which satisfy
Hardy–Rogers rational type, quasicontraction type, weak contraction type and
generalized fψ type cyclic conditions in 0-complete partial metric spaces. Pre-
sented results generalize or improve many existing fixed point theorems in the
literature. To demonstrate our results, we give throughout the paper some
examples. One of the possible applications of our results to well-posed and
limit shadowing property of fixed point problems is also presented.

1. Introduction

The Banach Contraction Principle is a very popular tool in solving existence
problems in many branches of Mathematical Analysis and its applications. It is
no surprise that there is a great number of generalizations of this fundamental
theorem. They go in several directions—modifying the basic contractive condition
or changing the ambiental space.

Concerning the first direction we mention Hardy–Rogers and Ćirić quasicon-
traction type conditions (see [40]), so called weakly contractive conditions of Alber
and Guerre-Delabriere [6] and Rhoades [41], and altering distance functions used
by Khan et al. [23] and Boyd and Wong [10].

Cyclic representations and cyclic contractions were introduced by Kirk et al. [25]
and further used by several authors to obtain various fixed point results for not nec-
essarily continuous mappings (see, e.g., [12,20,22,32]).

On the other hand, Matthews [26] introduced the notion of a partial met-
ric space as a part of the study of denotational semantics of dataflow networks.
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In partial metric spaces, self-distance of an arbitrary point need not be equal to
zero. Several authors obtained many useful fixed point results in these spaces—we
mention just [7,11,15,29,31,42,44].

Some results for cyclic contractions in partial metric spaces were very recently
obtained in [1,2,5,8,28].

In this paper, we introduce various types of cyclic contraction conditions,
named as Hardy–Rogers rational type cyclic contraction, quasicontraction type
cyclic contraction, weak contraction type cyclic contraction, and cyclic generalized
fψ-contraction in partial metric spaces and develop new fixed point results for such
cyclic contraction mappings in 0-complete partial metric spaces. Our results are
extensions or refinements of recent fixed point theorems of Abbas et al. [1], Agarwal
et al. [5], di Bari and Vetro [8], Karapinar [20], Karapinar et al. [22], and some
other papers. Examples are given to support the usability of the results and to
show that some of these extensions are proper. At the end one of the possible ap-
plications of our results to well-posed and limit shadowing property of fixed point
problems is also presented.

We note that in very recent papers [14,16,43], it was shown that in some cases
partial metric fixed point results can be obtained directly from their standard met-
ric counterparts. However, some conclusions important for applications of partial
metrics in information sciences cannot be obtained in this way. For example, using
the method from [14] one cannot conclude that p(x, x) = 0 = p(fx, fx) when x
is a fixed point of f ; and using methods of [43] 0-completeness cannot be used.
Moreover, some of our results are new even in the standard metric context, and we
decided to treat uniformly all cases.

2. Preliminaries

A very powerful tool in solving existence problems in many branches of analysis
is the Banach fixed point theorem (or Banach’s contraction principle), which assures
that every contraction from a complete metric space into itself has a unique fixed
point. Recall that a self-mapping T : X → X , where (X, d) is a metric space, is
said to be a contraction if there exists 0 < k < 1 such that for all x, y ∈ X ,

(2.1) d(Tx, T y) 6 kd(x, y).

Inequality (2.1) implies continuity of T . A natural question is whether we can find
contractive conditions which will imply the existence of a fixed point in a complete
metric space but will not imply continuity.

One of the remarkable generalizations of the Banach’s contraction principle
was reported by Kirk, Srinivasan and Veeramani [25] via cyclic contraction.

Definition 2.1. [25] Let X be a nonempty set, m ∈ N and let f : X → X
be a self-mapping. Then X =

⋃m

i=1 Ai is a cyclic representation of X with respect
to f if

(a) Ai, i = 1, . . . ,m are nonempty subsets of X ;
(b) f(A1) ⊂ A2, f(A2) ⊂ A3,. . . , f(Am−1) ⊂ Am, f(Am) ⊂ A1.

They proved the following fixed point result.
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Theorem 2.1. [25] Let (X, d) be a complete metric space, f : X → X and
let X =

⋃m
i=1 Ai be a cyclic representation of X with respect to f . Suppose that f

satisfies the following condition

d(fx, fy) 6 ψ(d(x, y)), for all x ∈ Ai, y ∈ Ai+1, i ∈ {1, 2, . . . ,m},

where Am+1 = A1 and ψ : [0, 1) → [0, 1) is a function, upper semi-continuous from
the right and 0 6 ψ(t) < t for t > 0. Then, f has a fixed point z ∈

⋂m
i=1 Ai.

Notice that although a contraction is continuous, cyclic contraction need not
be. This is one of the important gains of this theorem.

In 2010, Păcurar and Rus introduced the following notion of cyclic weaker
ϕ-contraction.

Definition 2.2. [32] Let (X, d) be a metric space, m ∈ N , A1, A2, . . . , Am be
closed nonempty subsets of X and X =

⋃m
i=1 Ai. An operator f : X → X is called

a cyclic weaker ϕ-contraction if
(1) X =

⋃m

i=1 Ai is a cyclic representation of X with respect to f ;
(2) there exists a continuous, nondecreasing function ϕ : [0, 1) → [0, 1) with

ϕ(t) > 0 for t ∈ (0, 1) and ϕ(0) = 0 such that d(fx, fy) 6 d(x, y) − ϕ(d(x, y)), for
any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m, where Am+1 = A1.

They proved the following result.

Theorem 2.2. [32] Suppose that f is a cyclic weaker ϕ-contraction on a
complete metric space (X, d). Then, f has a fixed point z ∈

⋂m

i=1 Ai.

Recently, Petric [33] established metrical fixed point theorems for some con-
tractive orbital mappings involving a cyclic condition.

The following definitions and properties can be seen, e.g., in [7,11,15,26,31,
42,44].

Definition 2.3. A partial metric on a nonempty set X is a function p : X×X
→ R+ such that for all x, y, z ∈ X :

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) 6 p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) 6 p(x, z) + p(z, y) − p(z, z).

The pair (X, p) is called a partial metric space.

It is clear that, if p(x, y) = 0, then from (p1) and (p2) x = y. But if x = y,
p(x, y) may not be 0.

Each partial metric p on X generates a T0 topology τp on X which has as a base
the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

A sequence {xn} in (X, p) converges to a point x ∈ X (in the sense of τp)
if limn→∞ p(x, xn) = p(x, x). This will be denoted as xn → x (n → ∞) or
limn→∞ xn = x. Clearly, a limit of a sequence in a partial metric space need
not be unique. Moreover, the function p(·, ·) need not be continuous in the sense
that xn → x and yn → y imply p(xn, yn) → p(x, y).
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If p is a partial metric on X , then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y) − p(x, x) − p(y, y)

is a metric on X . It is called the associated metric with the partial metric p.

Example 2.1. (1) A paradigmatic example of a partial metric space is the pair
(R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+. The associated metric is

ps(x, y) = 2 max{x, y} − x− y = |x− y|.

(2) If (X, d) is a metric space and c > 0 is arbitrary, then p(x, y) = d(x, y) + c
defines a partial metric on X and the corresponding metric is ps(x, y) = 2d(x, y).

Other examples of partial metric spaces which are interesting from the compu-
tational point of view may be found in [13,26].

Definition 2.4. Let (X, p) be a partial metric space. Then:

(1) A sequence {xn} in (X, p) is called a Cauchy sequence if
limn,m→∞ p(xn, xm) exists (and is finite). The space (X, p) is said to be
complete if every Cauchy sequence {xn} in X converges, with respect to
τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

(2) [42] A sequence {xn} in (X, p) is called 0-Cauchy if limn,m→∞ p(xn, xm)=0.
The space (X, p) is said to be 0-complete if every 0-Cauchy sequence in X
converges (in τp) to a point x ∈ X such that p(x, x) = 0.

Lemma 2.1. Let (X, p) be a partial metric space.

(a) [4, 21] If p(xn, z) → p(z, z) = 0 as n → ∞, then p(xn, y) → p(z, y) as
n → ∞ for each y ∈ X.

(b) [42] If (X, p) is complete, then it is 0-complete.

The converse assertion of (b) does not hold as the following easy example shows.

Example 2.2. [42] The space X = [0,+∞) ∩ Q with the partial metric
p(x, y) = max{x, y} is 0-complete, but is not complete. Moreover, the sequence
{xn} with xn = 1 for each n ∈ N is a Cauchy sequence in (X, p), but it is not a
0-Cauchy sequence.

It is easy to see that every closed subset of a 0-complete partial metric space
is 0-complete.

Let (X, d) be a metric space and f : X → X be a mapping. Then it is said
that f satisfies the orbital condition if there exists a constant k ∈ (0, 1) such that

(2.2) d(fx, f2x) 6 kd(x, fx),

for all x ∈ X .
Condition (2.2) in metric spaces was used in [18] (the term was introduced

in [2], see also [3]). The respective result in the partial metric case can be stated
as follows:
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Theorem 2.3. Let (X, p) be a 0-complete partial metric space and f : X → X
be continuous such that

(2.3) p(fx, f2x) 6 k p(x, fx)

holds for all x ∈ X, where k ∈ (0, 1). Then there exists z ∈ X such that p(z, z) = 0
and p(Tz, z) = p(Tz, T z).

Recall that (see [18]) a map f : X → X is said to have property (P) if it satisfies
Fix(f) = Fix(fn) for each n ∈ N (here, X is a nonempty set and Fix(f) is the set
of fixed points of f). It is known that the orbital condition implies property (P )
in metric spaces [18], as well as in partial metric space [19]. We state explicitly
the last result:

Lemma 2.2. Let (X, p) be a partial metric space, f : X → X be a selfmap such
that Fix(f) 6= ∅. Then f has the property (P ) if (2.3) holds for some k ∈ (0, 1)
and either (i) for all x ∈ X, or (ii) for all x 6= fx.

Recently, Di Bari and Vetro [8] proved fixed point theorems for cyclic weaker
ϕ-contractions in partial metric spaces. Karapinar, Erhan and Ulus [22] also proved
fixed point results using weakly contractive type cyclic contractive condition.

2.1. Contractive conditions. Let (X, p) be a partial metric space and f :
X → X be a selfmap. When constructing various contractive conditions, usually
one of the following sets is used:

M5
f (x, y) =

{
p(x, y), p(x, fx), p(y, fy), p(x, fy), p(y, fx)

}
,

M4
f (x, y) =

{
p(x, y), p(x, fx), p(y, fy), 1

2 (p(x, fy) + p(y, fx))
}
,

M3
f (x, y) =

{
p(x, y), 1

2 (p(x, fx) + p(y, fy)), 1
2 (p(x, fy) + p(y, fx))

}
.

Then, the contractive condition takes the form

(2.4) p(fx, fy) 6 λmaxM j
f (x, y), x, y ∈ X,

where λ ∈ [0, 1) (in some cases λ ∈ [0, 1
2 )) and j ∈ {3, 4, 5}. Mappings f satisfying

(2.4) with j = 5 for all x, y ∈ X (in metric case) are usually called quasicontractions
(Ćirić, see relation (24) in [40]).

On the other hand, Hardy–Rogers type contractive conditions (relation (18)
in [40]) use the expression

Θf (x, y) = Ap(x, y) +Bp(x, fx) + Cp(y, fy) +Dp(x, fy) + Ep(y, fx),

where nonnegative constants A,B,C,D,E satisfy some additional condition, de-
pending on the concrete situation. The contractive condition is of the form

p(fx, fy) 6 Θf(x, y).

Weak contractive conditions in Banach spaces were first used by Rhoades in [41].
Subsequently, a lot of variations of these conditions were introduced (see, e.g.,
results in metric spaces in [38, 45] and in partial metric spaces in [27]). These
conditions are (in the metric case) of the form d(fx, fy) 6 m(x, y) − ϕ(m(x, y)),
where m(x, y) depends in a certain way on the elements of the set M5

f (x, y). Here
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ϕ : [0,+∞) → [0,+∞) is a lower-semicontinuous function such that ϕ(t) = 0 if
and only if t = 0. Sometimes an additional function ψ is introduced, but it was
showed [17] that its usage can be avoided.

3. Hardy–Rogers rational type cyclic contractions

in partial metric spaces

We will prove some fixed point theorems for self-mappings defined on a 0-
complete partial metric space and satisfying certain Hardy–Rogers rational type
cyclic contractive conditions. To achieve our goal, we introduce the notion of a
Hardy–Rogers rational type cyclic contraction.

Definition 3.1. Let (X, p) be a partial metric space, m ∈ N, A1, A2, . . . , Am
be nonempty subsets of X and X =

⋃m
i=1 Ai. An operator f : X → X is called a

Hardy–Rogers rational type cyclic contraction if:
(1) X=

⋃m

i=1Ai is a cyclic representation of X with respect to f and Am+1 =A1;
(2) there exist nonnegative constants A,B,C,D,E, F with

(3.1) A+B + C +D + E + F < 1

such that

(3.2) p(fx, fy) 6 Φf (x, y),

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m, where

Φf (x, y) = Ap(x, y) +Bp(x, fx) + Cp(y, fy) +Dp(x, fy)

+ Ep(y, fx) + F
p(x, fx) · p(y, fy)

1 + p(x, y)
.

The main result of this section is the following:

Theorem 3.1. Let (X, p) be a 0-complete partial metric space, m ∈ N, A1,
A2,. . . , Am be nonempty closed subsets of (X, p) and Y =

⋃m

i=1 Ai. Suppose that
f : Y → Y is a Hardy–Rogers rational type cyclic contraction. Then, f has a
unique fixed point z ∈ Y . Moreover, p(z, z) = 0 and z ∈

⋂m

i=1 Ai. Each Picard
sequence xn = fnx0, x0 ∈ Y converges to z in topology τp.

Proof. Let x0 be an arbitrary point of Y . Then there exists some i0 such
that x0 ∈ Ai0 . Now x1 = fx0 ∈ Ai0+1 and, similarly, xn := fxn−1 = fnx0 ∈ Ai0+n

for n ∈ N, where Am+k = Ak. In the case p(xn0
, xn0+1) = 0 for some n0 ∈ N0, it

is clear that xn0
is a fixed point of f . Now assume that p(xn, xn+1) > 0 for all n.

Since f : Y → Y is a Hardy–Rogers rational type cyclic contraction, we have that
for all n ∈ N

p(xn, xn+1)

= p(fxn−1, fxn) 6 Ap(xn−1, xn) +Bp(xn−1, xn) + Cp(xn, xn+1)

+Dp(xn−1, xn+1) + Ep(xn, xn) + F
p(xn−1, xn) · p(xn, xn+1)

1 + p(xn−1, xn)
6 (A+B +D)p(xn−1, xn) + (C +D + F )p(xn, xn+1) + (E −D)p(xn, xn)
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(it was used that p(xn−1, xn) < 1 + p(xn−1, xn)). Similarly, starting from
p(xn+1, xn) = p(fxn, fxn−1),

p(xn+1, xn) 6 (A+C+E)p(xn, xn−1)+(B+E+F )p(xn+1, xn)+(D−E)p(xn, xn)

is obtained. Adding up, it follows that p(xn+1, xn) 6 λp(xn, xn−1), with λ =
2A+B+C+D+E

2−B−C−D−E−2F < 1, which is a consequence of (3.1).
It follows that

(3.3) p(xn, xn+1) 6 λnp(x0, x1) and lim
n→∞

p(xn, xn+1) = 0.

Then p(xn, xn) 6 p(xn, xn+1) implies that limn→∞ p(xn, xn) = 0. Also, for n > m,

p(xn, xm) 6 (λm + · · · + λn−1)p(x0, x1),

and so limm,n→∞ p(xn, xm) = 0. Hence, {xn} is a 0-Cauchy sequence. Since Y is
closed in (X, p), then (Y, p) is also 0-complete and there exists z ∈ Y =

⋃m
i=1 Ai

such that limn→∞ p(xn, z) = 0 = p(z, z). Notice that the iterative sequence {xn}
has an infinite number of terms in Ai for each i = 1, . . . ,m. Hence, in each Ai,
i = 1, . . . ,m, we can construct a subsequence of {xn} that converges to z. Using
that each Ai, i = 1, . . . ,m, is closed, we conclude that z ∈

⋂m

i=1 Ai and thus
⋂m

i=1 Ai 6= ∅.
In order to prove that z is a fixed point of f , use (p4) and (3.2) (which is

possible since z belongs to each Ai) to obtain

p(z, fz) 6 p(z, xn+1) + p(xn+1, fz) − p(xn+1, xn+1)(3.4)

6 p(z, xn+1) + p(fxn, fz)

6 p(z, xn+1) +Ap(xn, z) +Bp(xn, xn+1) + Cp(z, fz) +Dp(xn, fz)

+ Ep(xn+1, z) + F
p(xn, xn+1) · p(z, fz)

1 + p(xn, z)
.

Using Lemma 2.1.(a) and passing to the limit when n → ∞ in (3.4), we obtain that

(1 − C −D)p(z, fz) 6 0,

and hence p(z, fz) = 0. We have proved that fz = z and p(z, z) = 0.
Finally, to prove the uniqueness of the fixed point, let u be another fixed point

of f in Y , with p(u, z) 6= 0. By the cyclic character of f , we have u, z ∈
⋂m

i=1 Ai.
Since f is a Hardy–Rogers rational type cyclic contraction, we have

p(u, z) = p(fu, fz) 6 Ap(u, z) +Bp(u, u) + Cp(z, z) +Dp(u, z)

+ Ep(u, z) + F
p(u, fu) · p(z, fz)

1 + p(u, z)
6 (A+B + C +D + E)p(u, z) < p(u, z),

a contradiction. It follows that p(u, z) = 0 and u = z. Thus z is a unique fixed
point of f . �

As corollaries we obtain partial metric versions of well-known Banach [26],
Kannan and Chatterjea fixed point results (relations (1), (4) and (11) in [40]) in
the cyclic variant.
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Corollary 3.1. Let (X, p) be a 0-complete partial metric space, m ∈ N, A1,
A2, . . . , Am be nonempty closed subsets of (X, p) and Y =

⋃m
i=1 Ai. Let f : Y → Y

be such that:
(1) Y =

⋃m

i=1 Ai is a cyclic representation of Y with respect to f ;
(2) there exists λ ∈ [0, 1) such that one of the following conditions hold for all

x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m:

p(fx, fy) 6 λp(x, y),

p(fx, fy) 6
λ

2

[
p(x, fx) + p(y, fy)

]
,

p(fx, fy) 6
λ

2

[
p(x, fy) + p(y, fx)

]
.

where Am+1 = A1. Then, f has a unique fixed point z ∈ Y . Moreover, p(z, z) = 0
and z ∈

⋂m

i=1 Ai.

Example 3.1. Let X = R be equipped with the usual partial metric p(x, y) =
max{x, y}. The partial metric space (X, p) is 0-complete. Suppose A1 = [0, 1],
A2 = [0, 1

2 ], A3 = [0, 1
4 ], A4 = [0, 1

8 ] and Y =
⋃4
i=1 Ai = [0, 1]. Define f : Y → Y

such that fx = x
2 for all x ∈ Y . It is clear that

⋃4
i=1 Ai is a cyclic representation

of Y with respect to f .
Take A = 1

2 , B = C = 0 and D = E = F = 1
8 , i.e.

Φf (x, y) =
1
2
p(x, y) +

1
8
p(x, fy) +

1
8
p(y, fx) +

1
8
p(x, fx) · p(y, fy)

1 + p(x, y)

(the condition (3.1) on coefficients is fulfilled). Consider the following cases:
1◦ y 6 x. Then p(fx, fy) = max

{
x
2 ,

y
2

}
= x

2 , and

Φf (x, y) =
1
2
x+

1
8
x+

1
8

max
{

y,
x

2

}

+
1
8
x · y

1 + x
>

5
8
x.

Hence, p(fx, fy) = 1
2x 6 5

8x 6 Φf (x, y) is fulfilled.
2◦ x < y. Then p(fx, fy) = y

2 and

Φf (x, y) =
1
2
y +

1
8

max
{

x,
y

2

}

+
1
8
y +

1
8
x · y

1 + y
>

5
8
y.

Hence, p(fx, fy) = y
2 6 5

8y 6 Φf (x, y).
All conditions of Theorem 3.1 are satisfied and we deduce that f has a unique

fixed point z = 0 ∈ A1 ∩A2 ∩A3 ∩A4 and p(z, z) = 0 holds true.

In the next example we show that Theorem 3.1 can be used when its standard
metric counterpart cannot be used.

Example 3.2. Let X , p, Ai (i = 1, 2, 3, 4) and Y be as in the previous example.
Consider the mapping g : Y → Y given by gx = x2

1+x , and take A = 2
3 , B = C =

D = E = F = 0, i.e., Φg(x, y) = 2
3p(x, y). Then it is easy to see that g is a

Hardy–Rogers rational type cyclic contraction, since (for, say, x > y)

p(gx, gy) =
x2

1 + x
6

2
3
x = Φg(x, y).
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However, if we consider the same problem in the standard metric space (X, d), where
d(x, y) = |x− y| = ps(x, y), and take the respective Φ′

g(x, y) = 2
3d(x, y) = 2

3 |x− y|,
then contractive condition (3.2) takes the form

d(gx, gy) =
x2

1 + x
−

y2

1 + y
6

2
3

(x − y).

Putting x = 1, y = 1 − α, 0 < α < 1, this reduces to 1
2 − (1−α)2

2−α
6 2

3α, which is
easy shown to be equivalent to α(2α− 1) > 0, which is impossible for 0 < α < 1

2 .

We state a more involved example that is inspired with the one from [34].

Example 3.3. Let X ⊂ ℓ1, X ∋ x = (xn)∞

n=1 iff xn > 0 for each n ∈ N. Define
a partial metric p on X by p((xn), (yn)) =

∑
∞

n=1 max{xn, yn} (it is easy to check
that axioms (p1)–(p4) hold true). Let α ∈ (0, 1) be fixed, denote 0 = (0)∞

n=1 and
consider the subsets A1 and A2 of X defined by A1 = A′ ∪ {0}, A2 = A′′ ∪ {0},
where

A′ ∋ xl = (xln)∞

n=1 iff xln =

{

0, n < 2l ∨ n = 2k − 1, k ∈ N,

αn, n = 2k > 2l
l = 1, 2, . . .

and

A′′ ∋ xl = (xln)∞

n=1 iff xln =

{

0, n < 2l− 1 ∨ n = 2k, k ∈ N,

αn, n = 2k − 1 > 2l− 1
l = 1, 2, . . .

Denote Y = A1 ∪A2 (obviously A1 ∩A2 = {0}).
Consider the mapping f : Y → Y given by:

f(0) = 0,

f((0, . . . , 0
︸ ︷︷ ︸

2l−1

, α2l, 0, α2l+2, 0, . . . )) = (0, . . . , 0
︸ ︷︷ ︸

2l

, α2l+1, 0, α2l+3, 0, . . . ),

f((0, . . . , 0
︸ ︷︷ ︸

2l

, α2l+1, 0, α2l+3, 0, . . . )) = (0, . . . , 0
︸ ︷︷ ︸

2l+1

, α2l+2, 0, α2l+4, 0, . . . ).

Obviously, f(A1) ⊂ A2 and f(A2) ⊂ A1, hence Y = A1 ∪A2 is a cyclic representa-
tion of Y with respect to f .

Take A = α, 0 6 B = C = D = E = F < 1−α
5 . Then A + B + C + D +

E +F < 1. Let us check the contractive condition (3.2) of Theorem 3.1. Take x =
(0, . . . , 0
︸ ︷︷ ︸

2l−1

, α2l, 0, α2l+2, 0, . . . ) ∈ A1 and y = (0, . . . , 0
︸ ︷︷ ︸

2m

, α2m+1, 0, α2m+3, 0, . . . ) ∈ A2

and assume, e.g., that l 6 m (the case l > m is treated similarly, as well as the
case when x or y is equal to 0). Then

p(x, y) = α2l + · · · + α2m−2 +
α2m

1 − α
,

p(fx, fy) = α2l+1 + · · · + α2m−1 +
α2m+1

1 − α
.
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Hence,

p(fx, fy) = αp(x, y) 6 Ap(x, y) +Bp(x, fx) + Cp(y, fy)

+Dp(x, fy) + Ep(y, fx) + F
p(x, fx)p(y, fy)

1 + p(x, y)
.

Obviously, f has a unique fixed point 0. Moreover, p(0,0) = 0.

Another consequence of Theorem 3.1 is the following:

Theorem 3.2. Let (X, p) and f satisfy conditions of Theorem 3.1. Then f sat-
isfies orbital condition (2.3). In particular, there exists z ∈ Y such that p(z, z) = 0
and p(fz, z) = p(fz, fz); also, f has the property (P ).

Proof. By Theorem 3.1, the set Fix(f) of fixed points of f is not empty. We
will prove that f satisfies condition (2.3) of Theorem 2.3. Let x ∈ Y be arbitrary.
Putting x = x and y = fx in condition (3.2) of Theorem 3.1, we get that

p(fx, f2x) 6 Ap(x, fx) +Bp(x, fx) + Cp(fx, f2x) +Dp(x, f2x) + Ep(fx, fx)

+ F
p(x, fx) · p(fx, f2x)

1 + p(x, fx)

6 (A+B +D)p(x, fx) + (C +D + F )p(fx, f2x) + (E −D)p(fx, fx),

as p(x, fx) 6 1 + p(x, fx) and, symmetrically,

p(f2x, fx) 6 Ap(fx, x) +Bp(fx, f2x) + Cp(x, fx) +Dp(fx, fx) + Ep(x, f2x)

+ F
p(fx, f2x) · p(x, fx)

1 + p(x, fx)

6 (A+ C + E)p(x, fx) + (B + E + F )p(fx, f2x) + (D − E)p(fx, fx).

Adding up, it follows that p(fx, f2x) 6 2A+B+C+D+E
2−(B+C+D+E+2F )p(x, fx) = λp(x, fx),

where 0 6 λ < 1 by assumption (3.1) of Theorem 3.1. Thus, f satisfies the
orbital condition. By Theorem 2.3, there exists z ∈ Y such that p(z, z) = 0 and
p(fz, z) = p(fz, fz). By Lemma 2.2, f has the property (P ). �

4. Quasicontraction cyclic type mappings in partial metric spaces

Theorem 4.1. Let (X, p) be a 0-complete partial metric space, m ∈ N, A1,
A2, . . . , Am nonempty closed subsets of X, Y =

⋃m

i=1 Ai and f : Y → Y . Suppose
that:

(a) Y =
⋃m

i=1 Ai is a cyclic representation of Y with respect to f ;
(b) there exists λ ∈ [0, 1) such that for any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . ,m

(with Am+1 = A1),

(4.1) p(fx, fy) 6 λ maxM j
f (x, y)

for j = 3, j = 4 or j = 5.

Then f has a unique fixed point z. Moreover, p(z, z) = 0 and z ∈
⋂m

i=1 Ai.
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Proof. We will prove the theorem in the case j = 5; the cases j = 3 and j = 4
will follow as consequences (note that, however, in these cases the proof could be
shorter).

For arbitrary x0 ∈ Y (and so x ∈ Ai for some i ∈ {1, . . . ,m}), form the sequence
{xn} in Y by xn+1 = fxn, n ∈ N0. Denote by Of (x0;n) = {x1, x2, . . . , xn}
the n-th orbit of x0 and by Of (x0; ∞) = {x1, x2, . . . } its orbit. Also, denote by
diamA = sup{ p(x, y) | x, y ∈ A } the diameter of a nonempty set A ⊂ X . Note
that diamA = 0 implies that A is a singleton, but the converse is not true.

If p(xn, xn+1) = 0 for some n ∈ N0, it follows that fxn = xn+1 = xn, i.e., xn
is a fixed point of f satisfying p(xn, xn) = 0. Suppose further that p(xn, xn+1) > 0
for each n ∈ N0.

Claim 1. diamOf (x0; ∞) 6 1
1−λ

p(x1, x2). Indeed, let 1 6 i, j 6 n. Then

(4.2) p(xi+1, xj+1) = p(fxi, fxj)

= λmax
{
p(xi, xj), p(xi, xi+1), p(xj , xj+1), p(xi, xj+1), p(xj , xi+1)

}
.

Since the points xi, xi+1, xj , xj+1 belong to the set Of (x0;n), it follows that

p(xi+1, xj+1) 6 λ diamOf (x0;n) < diamOf (x0;n).

Hence, there exists k 6 n such that diamOf (x0;n) = p(x1, xk). Since, by (p4),

p(x1, xk) 6 p(x1, x2) + p(x2, xk) − p(x2, x2) 6 p(x1, x2) + p(x2, xk),

we have
diamOf (x0;n) 6 p(x1, x2) + λ diamOf (x0;n),

i.e., diamOf (x0;n) 6 1
1−λ

p(x1, x2). Taking the supremum in this inequality, proof
of Claim 1 is obtained.

Claim 2. Let m > n > 1. Then p(xm+1, xn+1) 6 λn

1−λ
p(x1, x2).

Similarly as in (4.2), we have that

p(xm+1, xn+1) 6 λmax
{
p(xm, xn), p(xm, xm+1), p(xn, xn+1),

p(xm, xn+1), p(xn, xm+1)
}
.

Since xm, xm+1, xn, xn+1 ∈ Of (xn−1;m− n+ 2), we have

(4.3) p(xm+1, xn+1) 6 λ diamOf (xn−1;m− n+ 2) = λp(xn, xk1
)

for some k1, n+ 1 6 k1 6 m+ 1. Now, similarly,

p(xn, xk1
) 6 λmax

{
p(xn−1, xk1−1), p(xn−1, xn), p(xk1−1, xk1

),

p(xn−1, xk1
), p(xn, xk1−1)

}

6 λ diamOf (xn−2;m− n+ 3),

which, together with (4.3), gives p(xm+1, xn+1) 6 λ2p(xn−1, xk2
) for some k2 6

m+ 1. Continuing the process, we obtain that

p(xm+1, xn+1) 6 λn−1 diamOf (x0;m− 1) = λn−1p(x1, ykn−1
)

6 λn−1 · λ diamOf (x0;m) 6
λn

1 − λ
p(x1, x2)
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and Claim 2 is proved.
It follows that p(xm, xn) → 0 as m,n → ∞, i.e., {xn} is a 0-Cauchy sequence.

Since (X, p) is 0-complete and Y is closed, there exists z ∈ Y such that

lim
n→∞

p(xn, z) = 0 = p(z, z).

Moreover, z ∈
⋂m
i=1 Ai. Now we prove that also fz = z. Using property (p4) and

condition (4.1) with j = 5 (which is possible since z belongs to each Ai), we have

p(fz, z) 6 p(fz, fxn) + p(fxn, z)

6 λmax
{
p(z, xn), p(z, fz), p(xn, xn+1), p(z, xn+1), p(xn, fz)

}
+p(xn+1, z).

Since p(z, xn), p(xn, xn+1) and p(z, xn+1) tend to 0 as n → ∞, and since also
p(xn, fz) → p(z, fz) (by Lemma 2.1.(a)), if we suppose that p(fz, z) > 0, we get a
contradiction p(fz, z) 6 λp(fz, z). Hence, p(fz, z) = 0 and so fz = z.

Suppose that there exists z1 ∈ Y such that fz1 = z1. Then

p(z, z1) = p(fz, fz1)

6 λmax
{
p(z, z1), p(z, fz), p(zv1, fz1), p(z, fz1), p(z1, fz)

}

= λmax
{
p(z, z1), p(z, z), p(z1, z1), p(z, z1), p(z1, z)

}

= λp(z, z1) by (p2),

which is possible only if p(z, z1) = 0, and hence z = z1. Thus, we have proved that
the fixed point of f is unique. �

According to the well-known classification of Rhoades [40] (which obviously
holds for partial as well as for standard metric), Theorem 4.1 implies several other
fixed point results, e.g., those of Banach, Kannan, Chatterjea, Bianchini, Hardy–
Rogers and Zamfirescu. For example, we state Bianchini’s fixed point result (rela-
tion (5) in [40]) in its cyclic variant.

Corollary 4.1. Let (X, p) be a 0-complete partial metric space, m ∈ N, A1,
A2, . . . , Am nonempty closed subsets of X, Y =

⋃m

i=1 Ai and f : Y → Y . Suppose
that:

(a) Y =
⋃p

i=1 Ai is a cyclic representation of Y with respect to f ;
(b) there exists λ ∈ [0, 1) such that for any (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . ,m

(with Am+1 = A1),

p(fx, fy) 6 λmax{p(x, fx), p(y, fy)} or

p(fx, fy) 6 λmax{p(x, y), p(x, fx), p(y, fy)}.

Then f has a unique fixed point z. Moreover, p(z, z) = 0 and z ∈
⋂m

i=1 Ai.

The following example illustrate the validity of Theorem 4.1.

Example 4.1. Let X = [0, 1] and a partial metric p : X × X → R+ be given
by

p(x, y) =

{

|x− y|, if x, y ∈ [0, 1),
1, if x = 1 or y = 1.
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If a mapping f : X → X is given by

fx =

{

1/2, if x ∈ [0, 1),
1/6, if x = 1,

and A1 = [0, 1
2 ], A2 = [ 1

2 , 1], then A1 ∪A2 = X is a cyclic representation of X with
respect to f . Moreover, mapping f is a cyclic contraction of type (4.1). Indeed,
consider the following cases:

1◦ x ∈ [0, 1
2 ], y ∈ [ 1

2 , 1) or y ∈ [0, 1
2 ], x ∈ [ 1

2 , 1). Then p(fx, fy) = p(1
2 ,

1
2 ) = 0

and relation (4.1) is trivially satisfied.
2◦ x ∈ [0, 1

2 ], y = 1 or y ∈ [0, 1
2 ], x = 1. Then p(fx, fy) = p(1

2 ,
1
6 ) = 1

3 and
maxM5

f (x, y) = p(x, y) = 1. Relation (4.1) holds for any λ ∈ (1
3 , 1).

Therefore, all conditions of Theorem 4.1 are satisfied (with m = 2), and so f
has a fixed point (which is z = 1

2 ∈
⋂2
i=1 Ai).

We give an easy example of a partial metric space which is not a metric space,
and a selfmap in it which is a quasicontraction and not a contraction.

Example 4.2. Consider the set X = {a, b, c} = {b, c} ∪ {a, b} = A1 ∪ A2,
equipped with the function p : X × X → R+ given by p(a, b) = p(b, c) = 1,
p(a, c) = 3

2 , p(x, y) = p(y, x), p(a, a) = p(c, c) = 1
2 and p(b, b) = 0. Obviously,

p is a partial metric on X , not being a metric (since p(x, x) 6= 0 for x = a or
x = c). Define a selfmap f on X by f :

(
a b c
b b a

)
. Then A1 ∪ A2 = X is a cyclic

representation of X with respect to f and f is not a (Banach)-contraction since
p(fc, fc) = p(a, a) = 1

2 = p(c, c) and there is no λ ∈ [0, 1) such that p(fc, fc) 6

λp(c, c). We will check that f is a cyclic contraction of type (4.1) with λ = 2
3 .

If x ∈ {a, b} and y ∈ {a, b}, then p(fx, fy) = p(b, b) = 0 and (4.1) trivially
holds.

Let x ∈ {a, b} and y = c; then we have the following two cases:

p(fa, fc) = p(b, a) = 1 6 2
3 · 3

2 = λmax
{
p(a, c), p(a, fa), p(c, fc), p(a, fc), p(c, fa)

}
,

p(fb, fc) = p(b, a) = 1 6 2
3 · 3

2 = λmax
{
p(b, c), p(b, fb), p(c, fc), p(b, fc), p(c, fb)

}
.

Finally, if x = y = c, then

p(fc, fc) = p(a, a) =
1
2
<

2
3

·
3
2

= λmax{p(c, c), p(c, fc)}.

Thus, conditions of Theorem 4.1 are satisfied (with m = 2) and the existence of a
fixed point of f (z = b ∈

⋂2
i=1 Ai) follows. The same conclusion cannot be obtained

by Banach-type fixed point results from [26,44].

We present another example showing the use of Theorem 4.1. It also shows
that there are situations when standard completeness of the p-metric, as well as
usual metric arguments cannot be used to obtain the existence of a fixed point.

Example 4.3. Let X = [0, 1]∩Q be equipped with the partial metric p defined
by p(x, y) = max{x, y} for x, y ∈ X . Let f : X → X be given by fx = x2

1+x , x ∈ X .
By Example 2.2, the space (X, p) is 0-complete (but not complete). Take λ = 1

2 .
The contractive condition (4.1) for (say) x > y takes the form
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p(fx, fy) = max
{ x2

1 + x
,
y2

1 + y

}

=
x2

1 + x

6
1
2

max
{
p(x, y), p

(
x, x2

1+x

)
, p

(
y, y2

1+y

)
, p

(
x, y2

1+y

)
, p

(
y, x2

1+x

)}

=
1
2

max
{
x, x, y, x,max

{
y, x2

1+x

}}
=

1
2
x,

and it is satisfied for all x, y ∈ X , since 0 6 x 6 1. Hence, all the conditions of
Theorem 4.1 are satisfied and f has a unique common fixed point (z = 0).

Since (X, p) is not complete, nor is the space (X, d), where d = ps is the
Euclidean metric, the existence of a (common) fixed point cannot be deduced using
known results.

It is well known that a quasicontraction f in a metric space need not be con-
tinuous, but that it is continuous at a fixed point of f . The same is true in the
partial metric case:

Corollary 4.2. Let (X, p) be a partial metric space and f : X → X. Let f
satisfy (4.1) for λ ∈ [0, 1) and all x, y ∈ X and let fz = z. Then f is continuous
at the point z, i.e., xn → z in τp ⇒ fxn → fz = z in τp.

Proof. By Theorem 4.1, there is a unique fixed point z of f and it satisfies
that p(z, z) = p(fz, fz) = 0. Suppose that {xn} is a sequence in X such that
xn → z in τp when n → ∞, i.e., limn→∞ p(xn, z) = p(z, z). We have to show that
fxn → fz = z in τp when n → ∞, i.e., that

(4.4) lim
n→∞

p(fxn, fz) = p(fz, fz) = p(z, z) = 0.

We have that

p(fxn, fz) 6 λmax
{
p(xn, z), p(xn, fxn), p(z, fz), p(xn, fz), p(z, fxn)

}

6 λmax
{
p(xn, z), p(xn, z) + p(fz, fxn), 0, p(xn, z), p(fz, fxn)

}

= λ
(
p(xn, z) + p(fz, fxn)

)
.

It follows that p(fxn, fz) 6 λ
1−λ

p(xn, z) → 0 when n → ∞, and (4.4) is proved. �

Theorem 4.2. Let (X, p) and f : Y → Y satisfy conditions of Theorem 4.1
with λ ∈ [0, 1

2 ). Then f satisfies orbital condition (2.3). In particular, there exists
z ∈ X such that p(z, z) = 0 and p(fz, z) = p(fz, fz); also, f has the property (P ).

Proof. According to Theorem 4.1, Fix(f) 6= ∅. We will prove condition (2.3)
of Theorem 2.3. Let x ∈ Y be such that x 6= fx. Then

p(fx, f2x) 6 λmax
{
p(x, fx), p(x, fx), p(fx, f2x), p(x, f2x), p(fx, fx)

}

6 λmax
{
p(x, fx), p(fx, f2x), p(x, fx) + p(fx, f2x), p(fx, f2x)

}

= λ
(
p(x, fx) + p(fx, f2x)

)
.

and it follows that p(fx, f2x) 6 λ
1−λ

p(x, fx), where λ
1−λ

< 1. According to Theo-
rem 2.3, f satisfies the orbital condition and there exists z ∈ Y such that p(z, z) = 0
and p(fz, z) = p(fz, fz). The last assertion follows from Lemma 2.2. �



FIXED POINT THEOREMS AND CYCLIC CONTRACTION 83

5. Weak contraction cyclic type mappings in partial metric spaces

Assertions similar to the following lemma (see, e.g., [38]) were used (and
proved) in the course of proofs of several fixed point results in various papers.

Lemma 5.1. Let (X, p) be a partial metric space and let {xn} be a sequence
in X such that {p(xn+1, xn)} is nonincreasing and that limn→∞ p(xn+1, xn) = 0. If
{xn} is not a 0-Cauchy sequence in (X, p), then there exist ε > 0 and two sequences
{mk} and {nk} of positive integers such that the following four sequences tend to ε
when k → ∞:

(5.1) p(xmk
, xnk

), p(xmk
, xnk+1), p(xmk−1, xnk

), p(xmk−1, xnk+1).

Theorem 5.1. Let (X, p) be a 0-complete partial metric space, m ∈ N, A1,
A2, . . . , Am nonempty closed subsets of X, Y =

⋃m
i=1 Ai and f : Y → Y . Suppose

that:

(a) Y =
⋃m

i=1 Ai is a cyclic representation of Y with respect to f ;
(b) there exists a function ϕ : [0,+∞) → [0,+∞) which is lower-semi-

continuous, ϕ(t) = 0 if and only if t = 0, and such that for any (x, y) ∈
Ai ×Ai+1, i = 1, 2, . . . ,m (with Am+1 = A1),

(5.2) p(fx, fy) 6 maxM4
f (x, y) − ϕ(maxM4

f (x, y)).

Then f has a unique fixed point z. Moreover, p(z, z) = 0 and z ∈
⋂m
i=1 Ai.

Proof. Let x0 ∈ A1 (such a point exists since A1 6= ∅). Define the sequence
{xn} in X by xn+1 = fxn, n = 0, 1, 2, . . . We shall prove that

(5.3) lim
n→∞

p(xn, xn+1) = 0.

If for some k, we have p(xk+1, xk) = 0, then (5.3) follows immediately. So, we can
suppose that p(xn, xn+1) > 0 for all n. From the condition (a), we observe that for
all n, there exists i = i(n) ∈ {1, 2, . . . ,m} such that (xn, xn+1) ∈ Ai ×Ai+1. Then,
apply assumption (5.2) for x = xn and y = xn+1 to obtain

p(xn+1, xn+2) = p(fxn, fxn+1)(5.4)

6 maxM4
f (xn, xn+1) − ϕ(maxM4

f (xn, xn+1)),

where

maxM4
f (xn, xn+1) = max

{
p(xn, xn+1), p(xn, xn+1), p(xn+1, xn+2),

1
2 (p(xn, xn+2) + p(xn+1, xn+1))

}

= max
{
p(xn, xn+1), p(xn+1, xn+2)

}
.

Suppose that p(xn+1, xn+2) > p(xn, xn+1) for some n ∈ N. Then (5.4) implies that

p(xn+1, xn+2) 6 p(xn+1, xn+2) − ϕ(p(xn+1, xn+2)).

By the properties of function ϕ it follows that p(xn+1, xn+2) = 0, which is already
excluded. Hence, p(xn+1, xn+2) 6 p(xn, xn+1), for all n ∈ N0. Thus, the sequence
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{p(xn+1, xn)} is nonincreasing. Since it is bounded from below, there exists r > 0
such that limn→∞ p(xn+1, xn) = r. Passing to the (upper) limit in

p(xn+1, xn) 6 p(xn, xn−1) − ϕ(p(xn, xn−1),

we get that r 6 r − ϕ(r), and using the properties of ϕ, that r = 0.
Next, we claim that {xn} is a 0-Cauchy sequence in the space (X, p). Suppose

that this is not the case. Then, using Lemma 5.1 we get that there exist ε > 0
and two sequences {mk} and {nk} of positive integers such that nk > mk > k and
sequences (5.1) tend to ε when k → ∞.

Elements xm(k) and xn(k)−1 might not lie in adjacently labelled setsAi andAi+1.
However, for all k, there exists j(k) ∈ {1, . . . , p} such that n(k)−1−m(k)+ j(k) ≡
1[p]. Then xm(k)−j(k) (for k large enough,m(k) > j(k)) and xn(k)−1 lie in adjacently
labelled sets Ai and Ai+1 for certain i ∈ {1, . . . , p}. To simplify the procedure, we
will suppose that already (xm(k), xn(k)−1) ∈ Ai × Ai+1. Applying condition (5.2)
to elements x = xmk

and y = xnk−1 we get that

p(xmk+1, xnk
) = p(fxmk

, fxnk−1)

6 maxM4
f (xmk

, xnk−1) − ϕ(maxM4
f (xmk

, xnk−1)),

where

maxM4
f (xmk

, xnk−1) = max
{
p(xmk

, xnk−1), p(xmk
, xmk+1), p(xnk−1, xnk

),
1
2 (p(xmk

, xnk
) + p(xnk−1, xmk+1))

}

→ ε, as k → ∞.

It follows that ε 6 ε − lim infk→∞ ϕ(maxM4
f (xmk

, xnk−1)). Using the properties
of function ϕ we conclude that ε = 0, which is a contradiction.

Thus {xn} is a 0-Cauchy sequence. Since (X, p) is 0-complete and Y is closed,
it follows that the sequence {xn} converges to some z ∈ Y . Moreover, p(z, z) = 0
and z ∈

⋂m

i=1 Ai. We will prove that z is a fixed point of f .
Using condition (5.2) with x = z and y = xn+1 (which is possible since z

belongs to each Ai) we obtain that

p(z, fz) 6 p(z, xn+2) + p(xn+2, fz) = p(z, xn+2) + p(fz, fxn+1)

6 p(z, xn+2) + maxM4
f (z, xn+1) − ϕ(maxM4

f (z, xn+1)),

where

maxM4
f (z, xn+1) = max

{
p(z, xn+1), p(z, fz), p(xn+1, xn+2),

1
2 (p(z, xn+2) + p(xn+1, fz))

}
.

The first three terms of the previous set tend, respectively, to: p(z, z) = 0, p(z, fz),
0, while the fourth is less than 1

2 (p(z, xn+2) + p(xn+1, z) + p(z, fz)) which tends to
1
2p(z, fz). Thus, passing to the (upper) limit, we get that

p(z, fz) 6 p(z, fz) − ϕ(p(z, fz)),

which implies (using the properties of function ϕ) that p(z, fz) = 0 and fz = z.
The final assertion can be proved in the same way as in some previous theorems.

�
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We will show in the next example that Theorem 5.1 is more general than some
other known fixed point results.

Example 5.1. Let X = R+ be equipped with the usual partial metric p(x, y) =
max{x, y}. Suppose A1 = [0, 1], A2 = [0, 1

4 ], A3 = [0, 1
28 ], A4 = [0, 1

868 ] and

Y =
⋃4
i=1 Ai. Consider the mapping f : Y → Y defined by fx = x2

1+3x . It is

clear that
⋃4
i=1 Ai is a cyclic representation of Y with respect to f . Further, con-

sider the function ϕ : [0,+∞) → [0,+∞) given by ϕ(t) = t
1+2t . Take arbitrary

elements, say y 6 x, from Y . Then

p(fx, fy) = max
{ x2

1 + 3x
,

y2

1 + 3y

}

=
x2

1 + 3x
.

On the other hand,

maxM4
f (x, y) = max

{
p(x, y), p

(
x, x2

1+3x

)
, p

(
y, y2

1+3y

)
, 1

2

(
p
(
x, y2

1+3y

)
+ p(y, x2

1+3x )
)}

= max
{
x, x, y, 1

2 (x+ y)
}

= x,

and

maxM4
f (x, y) − ϕ(maxM4

f (x, y)) = x−
x

1 + 2x
=

2x2

1 + 2x
> p(fx, fy)

holds true. Hence in this case relation (5.2) is satisfied, as well as the other as-
sumptions of Theorem 5.1 (with m = 4). We deduce that f has a unique fixed
point z ∈ A1 ∩A2 ∩A3 ∩A4 = {0}.

On the other hand, consider the same problem in the standard metric d(x, y) =
ps(x, y) and take x = 1 and y = 1

3 . Then d(fx, fy) =
∣
∣ 1

4 − 1
18

∣
∣ = 7

36 and
maxM4

f (x, y) = max{ 2
3 ,

3
4 ,

5
18 ,

1
2 (17

18 + 1
12 )} = 2

3 and so

maxM4
f (x, y) − ϕ(maxM4

f (x, y)) = 1
2 − ϕ

(
1
2

)
= 4

15 .

Hence, d(fx, fy) 6 maxM4
f (x, y) − ϕ(maxM4

f (x, y)) does not hold and the exis-
tence of a fixed point of f cannot be derived from [45, Theorem 2.1].

6. Cyclic generalized fψ-contractions in partial metric spaces

We will denote by Ψ the set of functions ψ : [0,∞) → [0,∞) satisfying the
following conditions: (Ψ1) ψ is continuous; (Ψ2) ψ(t) < t for all t > 0.

Obviously, if ψ ∈ Ψ, then ψ(0) = 0 and ψ(t) 6 t for all t > 0.
We introduce the notion of cyclic generalized fψ-contraction as follows.

Definition 6.1. Let (X, p) be a partial metric space. Let m be a positive
integer, A1, A2, . . . , Am be nonempty subsets of X and Y =

⋃m

i=1 Ai. An operator
f : Y → Y is a cyclic generalized fψ-contraction for some ψ ∈ Ψ, if:

(I) Y =
⋃m
i=1 Ai is a cyclic representation of Y with respect to f ;

(II) there exist α, β ∈ [0, 1) with α+β < 1, such that for all (x, y) ∈ Ai×Ai+1,
i = 1, 2, . . . ,m (with Am+1 = A1),

p(fx, fy) 6 αm(x, y) + βM(x, y),
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where m(x, y) = ψ

(

p(y, fy)
1 + p(x, fx)
1 + p(x, y)

)

, and

M(x, y) = max
{
ψ(p(x, y)), ψ(p(x, fx)), ψ(p(y, fy)), ψ

(
1
2

(
p(x, fy) + p(y, fx)

))}
.

The main result of this section is the following.

Theorem 6.1. Let (X, p) be a 0-complete partial metric space, m ∈ N, A1,
A2, . . . , Am nonempty closed subsets of X and Y =

⋃m

i=1 Ai. Suppose f : Y → Y is
a cyclic generalized fψ-contraction mapping, for some ψ ∈ Ψ. Then f has a unique
fixed point. Moreover, the fixed point of f belongs to

⋂m
i=1 Ai.

Proof. Let x0 ∈ A1 (such a point exists since A1 6= ∅). Define the sequence
{xn} in X by xn+1 = fxn, n = 0, 1, 2, . . . We shall prove that

(6.1) lim
n→∞

p(xn, xn+1) = 0.

If for some k, we have p(xk+1, xk) = 0, then (6.1) follows immediately. So, we can
suppose that p(xn, xn+1) > 0 for all n. From condition (I), we observe that for
all n, there exists i = i(n) ∈ {1, 2, . . . ,m} such that (xn, xn+1) ∈ Ai ×Ai+1. Then,
from condition (II), we have

(6.2) p(xn, xn+1) 6 αm(xn−1, xn) + βM(xn−1, xn), n = 1, 2, . . .

On the other hand, we have

m(xn−1, xn) = ψ

(

p(xn, xn+1)
1 + p(xn−1, xn)
1 + p(xn−1, xn)

)

= ψ(p(xn, xn+1)),

and

M(xn−1, xn) = max
{
ψ(p(xn−1, xn)), ψ(p(xn, xn+1)),

ψ
(

1
2

(
p(xn−1, xn+1) + p(xn, xn)

))}
.

⋆ If M(xn−1, xn) = ψ(p(xn, xn+1)), we obtain from (6.2) and the properties
of ψ that

p(xn, xn+1) 6 (α+ β)ψ(p(xn, xn+1)) < p(xn, xn+1), since α+ β < 1

which implies that such case is impossible.
⋆ If M(xn−1, xn) = ψ

(
1
2

(
p(xn−1, xn+1) + p(xn, xn)

))
, we obtain from (6.2) and

the properties of ψ that

p(xn, xn+1) 6 αψ(p(xn, xn+1)) + β ψ
(

1
2

(
p(xn−1, xn+1) + p(xn, xn)

))
(6.3)

< αp(xn, xn+1) + β 1
2

(
p(xn−1, xn+1) + p(xn, xn)

)
.

By (p4), we have p(xn−1, xn+1) + p(xn, xn) 6 p(xn−1, xn) + p(xn, xn+1). Therefore
we have

(6.4) 1
2 [p(xn−1, xn+1) + p(xn, xn)] 6 1

2p(xn−1, xn) + 1
2p(xn, xn+1).

Combining (6.3) with (6.4), we obtain p(xn, xn+1) 6 β
2−2α−β

p(xn−1, xn).
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⋆ If M(xn−1, xn) = ψ(p(xn−1, xn)), we obtain from (6.2) and the properties
of ψ that

p(xn, xn+1) 6 αψ(p(xn, xn+1))+β ψ(p(xn−1, xn)) < αp(xn, xn+1)+β p(xn−1, xn),

that is, p(xn, xn+1) 6
β

1−α
p(xn−1, xn). Define λ := max{ β

1−α
, β

2−2α−β
} < 1. Con-

sequently, it can be concluded that

p(xn, xn+1) 6 λp(xn−1, xn) 6 λ2p(xn−2, xn−1) 6 · · · 6 λnp(x0, x1).

Therefore, since 0 6 λ < 1, taking the limit as n → ∞, we have
limn→∞ p(xn, xn+1) = 0, which is (6.1). Therefore, conditions (3.3) are satisfied
and {xn} is a 0-Cauchy sequence in (X, p). As in the proof of Theorem 3.1 it follows
that there exists z ∈ Y such that p(z, z) = limn→∞ p(z, xn) = 0 and that

(6.5) z ∈
m⋂

i=1

Ai.

Now, we shall prove that z is a fixed point of f . Indeed, from (6.5), since for
all n, there exists i(n) ∈ {1, 2, . . . ,m} such that xn ∈ Ai(n), applying (II) with
x = z and y = xn, we obtain

(6.6) p(xn+1, fz) = p(fxn, fz) 6 αm(xn, z) + βm(xn, z),

for all n. On the other hand, we have

m(xn, z) = ψ

(

p(z, fz)
1 + p(xn, xn+1)

1 + p(xn, z)

)

,

and

m(xn, z) = max
{
ψ(p(z, xn)), ψ(p(z, fz)), ψ(p(xn, xn+1)),

ψ
(

1
2

(
p(z, xn+1) + p(xn, fz)

))}
.

Using (6.5) and the continuity of ψ, we obtain that

(6.7) lim
n→∞

m(xn, z) = max
{
ψ(p(z, fz)), ψ(p(z, fz)/2)

}
.

Passing to the limit as n → ∞ in (6.6), using (6.7) and (6.5), we get

p(z, fz) 6 αψ(p(z, fz)) + βmax
{
ψ(p(z, fz)), ψ(p(z, fz)/2)

}
.

Suppose that p(z, fz) > 0. In this case, using condition (Ψ2), we have

ψ(p(z, fz)) < p(z, fz) and max
{
ψ(p(z, fz)), ψ(p(z, fz)/2)

}
< p(z, fz),

which implies that p(z, fz) < (α + β)p(z, fz), a contradiction, since α + β < 1.
Then we have p(z, fz) = 0, that is, z is a fixed point of f .

Finally, we prove that z is the unique fixed point of f . Assume that u is another
fixed point of f , that is, fu = u. From condition (I), this implies that u ∈

⋂m

i=1 Ai.
Then we can apply (II) for x = z and y = u. We obtain

p(z, u) = p(fz, fu) 6 αm(z, u) + βm(z, u).
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Since z and u are fixed points of f , we can show easily that m(z, u) = 0 and
m(z, u) = ψ(p(z, u)). If p(z, u) > 0, we get

p(z, u) = p(fz, fu) 6 βm(z, u) = βψ(p(z, u)) < β p(z, u) < p(z, u),

a contradiction. Then we have p(z, u) = 0, that is, z = u. Thus we have proved
the uniqueness of the fixed point. �

Next, we derive some fixed point results from our main Theorem 6.1.
If we take m = 1 and A1 = X in Theorem 6.1, then we get immediately the

following fixed point result.

Corollary 6.1. Let (X, d) be a 0-complete partial metric space and f : X→X
satisfies the following condition: there exists ψ ∈ Ψ such that

p(fx, fy) 6 αψ

(

p(y, fy)
1 + p(x, fx)
1 + p(x, y)

)

+ β max
{
ψ(p(x, y)), ψ(p(x, fx)), ψ(p(y, fy)), ψ

(
1
2

(
p(x, fy) + p(y, fx)

))}
,

for all x, y ∈ X. Then f has a unique fixed point.

Remark 6.1. Corollary 6.1 extends and generalizes many existing fixed point
theorems in the literature [8,22].

Corollary 6.2. Let (X, p) be a 0-complete partial metric space, m ∈ N, A1,
A2, . . . , Am nonempty closed subsets of X, Y =

⋃m

i=1 Ai and f : Y → Y . Suppose
that there exists a nondecreasing function ψ ∈ Ψ such that:

(a) Y =
⋃m

i=1 Ai is a cyclic representation of Y with respect to f ;
(b) for all (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . ,m (with Am+1 = A1),

p(fx, fy) 6 αψ

(

p(y, fy)
1 + p(x, fx)
1 + p(x, y)

)

(6.8)

+ β ψ
(

max
{
p(x, y), p(x, fx), p(y, fy), 1

2 (p(x, fy) + p(y, fx))
})
.

Then f has a unique fixed point. Moreover, the fixed point of f belongs to
⋂m

i=1 Ai.

Proof. It follows from Theorem 6.1 by observing that if ψ is nondecreasing,
we have

m(x, y) = ψ
(

max
{
p(x, y), p(x, fx), p(y, fy), 1

2 (p(x, fy) + p(y, fx))
})
. �

Remark 6.2. It is clear that the conclusions of the previous corollary remain
valid if in condition (6.8) the second term of the right-hand side is substituted by
any of the following terms:

β ψ(p(x, y)), β ψ
(

1
2 (p(x, fy) + p(y, fx))

)
, βmax{ψ(p(x, fx)), ψ(p(y, fy))},

or βmax{ψ(p(x, y)), ψ(p(x, fx)), ψ(p(y, fy))}.

Corollary 6.3. Let (X, p) be a 0-complete partial metric space, m ∈ N, A1,
A2, . . . , Am nonempty closed subsets of X, Y =

⋃m
i=1 Ai and f : Y → Y . Suppose

that there exist five positive constants aj with
∑5
j=1 aj < 1 such that

(a) Y =
⋃m

i=1 Ai is a cyclic representation of Y with respect to f ;
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(b) for all (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . ,m (with Am+1 = A1),

p(fx, fy) 6 a1

(

p(y, fy)
1 + p(x, fx)
1 + p(x, y)

)

+ a2p(x, y) + a3p(x, fx) + a4p(y, fy)

+ a5
(

1
2 (p(x, fy) + p(y, fx))

)
.

Then f has a unique fixed point. Moreover, the fixed point of f belongs to
⋂m

i=1 Ai.

Proof. It follows from Theorem 6.1 when ψ(t) = (a1 +a2 +a3 +a4 +a5)t. �

We illustrate Theorem 6.1 by an example which is obtained by modifying the
one from [30].

Example 6.1. Let X = R+ be equipped by the usual partial metric p(x, y) =
max{x, y}. Suppose A1 = [0, 1], A2 = [0, 1

2 ] and Y =
⋃2
i=1 Ai.

Consider the mapping f : Y → Y defined by fx = x2

2(1+x) . It is clear that
⋃2
i=1 Ai is a cyclic representation of Y with respect to f .

Let us take ψ : [0,+∞) → [0,+∞) such that ψ(t) = t2

1+t , t ∈ [0, 1]. Then ψ
has the properties mentioned in Theorem 6.1. Moreover, the mapping f is a cyclic
contraction of type (4.1). Indeed, take arbitrary elements, say y 6 x, from Y . Then

p(fx, fy) = max
{

x2

2(1 + x)
,

y2

2(1 + y)

}

=
x2

2(1 + x)
.

On the other hand,

M(x, y) = max
{

ψ(p(x, y)), ψ
(
p
(
x, x2

2(1+x)

))
, ψ

(
p
(
y, y2

2(1+y)

))
,

ψ
(

1
2

[
p
(
x, y2

2(1+y)

)
+ p

(
y, x2

2(1+x)

)])}

= max
{

ψ(x), ψ(x), ψ(y), ψ
(

1
2

[
x+ max{y, x2

2(1+x)}
])}

= ψ(x).
(
It was used that the function ψ is increasing and, since x > y and x > x2

2(1+x) ,

that 1
2

(
x+ max

{
y, x2

2(1+x)

})
6 x.

)

Hence in this case p(fx, fy) 6 1
2 M(x, y) is satisfied for α = 0. Then relation

(II) holds for α = 0 and β = 1
2 .

Therefore, all conditions of Theorem 6.1 are satisfied (with m = 2), and so f
has a fixed point (which is z = 0 ∈

⋂2
i=1 Ai) such that p(z, z) = 0.

Remark 6.3. Our results extend and generalize many existing fixed point
theorems in the literature [8,21,22].

7. Application to well posedness and limit shadowing

of fixed point problem

The notion of well-posedness of a fixed point problem has evoked much inter-
est to several mathematicians, for example, De Blasi and Myjak [9], Lahiri and
Das [24], Popa [36,37] and others.
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Definition 7.1. [9] Let (X, d) be a metric space and f : X → X be a
mapping. The fixed point problem of f is said to be well posed if:

(i) f has a unique fixed point x in X ;
(ii) for any sequence {xn} of points in X such that limn→∞ d(fxn, xn) = 0, we

have limn→∞ d(xn, x) = 0.

The limit shadowing property of fixed point problems has been discussed in
the papers [32,35,39] and others.

Definition 7.2. [35] Let (X, d) be a metric space and f : X → X be a
mapping. The fixed point problem of f is said to have limit shadowing property in
X if assuming that {xn} in X satisfies d(xn, fxn) → 0 as n → ∞, it follows that
there exists x ∈ X such that d(xn, fnx) → 0 as n → ∞.

We can give similar definitions in partial metric spaces.
Concerning the well-posedness and limit shadowing of the fixed point problem

for a mapping in a partial metric space satisfying the conditions of Theorem 3.1–
Theorem 6.1, we have the following results.

Theorem 7.1. Let f : Y → Y be a self-mapping as in Theorem 3.1. Then the
fixed point problem for f is well posed.

Proof. Owing to Theorem 3.1, we know that f has a unique fixed point z =
fz ∈ Y , such that p(z, fz) = 0. Let {xn} ⊂ Y be such that limn→∞ p(xn, fxn) = 0.
Then

p(xn, z) 6 p(xn, fxn) + p(fxn, fz)

6 p(xn, fxn) +Ap(xn, z) +Bp(xn, fxn) + Cp(z, fz)

+Dp(xn, fz) + Ep(z, fxn) + F
p(xn, fxn) · p(z, fz)

1 + p(xn, z)
6 (1 +B + E)p(xn, fxn) + (A+D + E)p(xn, z).

Passing to the limit as n → ∞ in the above inequality, and using that A+D+E < 1,
we get that p(xn, z) → 0 as n → ∞ which is equivalent to saying that xn → z as
n → ∞. �

Theorem 7.2. Let f : Y → Y be a self-mapping as in Theorem 3.1. Then f
has the limit shadowing property.

Proof. Owing to Theorem 3.1, we know that f has a unique fixed point z =
fz ∈ Y , such that p(z, fz) = 0. Let {xn} ⊂ Y be such that limn→∞ p(xn, fxn) = 0.
Then, as in the previous proof,

p(xn, z) 6 (1 +B + E)p(xn, fxn) + (A+D + E)p(xn, z).

Passing to the limit as n → ∞ in the above inequality, and using that A+D+E < 1,
it follows that p(xn, fnz) = p(xn, z) → 0 as n → ∞. �

Theorem 7.3. Let X be a nonempty set, (X, p) and (X, ρ) be two partial metric
spaces, m ∈ N, A1, A2, . . . , Am nonempty closed subsets of X and Y =

⋃m
i=1 Ai.

Suppose that:
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(1) Y =
⋃m

i=1 Ai is a cyclic representation of Y with respect to f ;
(2) p(x, y) 6 ρ(x, y) for all x, y ∈ Y ;
(3) (Y, p) is a 0-complete partial metric space;
(4) f : (Y, p) → (Y, p) is continuous;
(5) f : (Y, ρ) → (Y, ρ) is Hardy–Rogers rational type cyclic contractive.

Then, {fnx0} converges to z in (Y, p) for any x0 ∈ Y and z is the unique fixed
point of f .

Proof. Let x0 ∈ Y . As in Theorem 3.1, assumption (5) implies that {fnx0}
is a 0-Cauchy sequence in (Y, ρ). Taking (2) into account, {fnx0} is a 0-Cauchy
sequence in (Y, p) and due to (3) it converges to z in (Y, ρ) for any x0 ∈ Y . Condition
(4) implies the uniqueness of z. �

Remark 7.1. Similar consequences of Theorems 3.2–5.1 can be obtained.

Remark 7.2. The results of this paper are obtained under the assumption that
the given partial metric space is 0-complete. Taking into account Lemma 2.1.(b)
and Example 2.2, it follows that they also hold if the space is complete, but that
our assumption is weaker.
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