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Abstract. Following Jiang Guanghao and Xu Luoshan’s concept of conjuga-
tive, dually conjugative, normal and dually normal relations on sets, the con-
cept of quasi-regular relations is introduced. Characterizations of quasi-regular
relations are obtained and it is shown when an anti-order relation is quasi-
regular. Some nontrivial examples of quasi-regular relations are given. At the
end we introduce dually quasi-regular relations and give a connection between
these two types of relations.

1. Introduction and Preliminaries

The regularity of binary relations was first characterized by Zareckǐı [9]. Fur-
ther criteria for regularity were given by Hardy and Petrich [3], Markowsky [7],
Schein [8] and Xu Xiao-quan and Liu Yingming [11] (see also [1] and [2]). The
concepts of conjugative relations, dually conjugative relations and dually normal
relations were introduced by Guanghao Jiang and Luoshan Xu [4], [5], and a char-
acterization of normal relations was introduced and analyzed by Jiang Guanghao,
Xu Luoshan, Cai Jin and Han Guiwen [6]. In this paper, we introduce and analyze
the so-called quasi-regular relations on sets.

Notions and notations which are not explicitly exposed but are used in this
article, readers can find e.g., in [3] and [11].

For a set X , we call ρ a binary relation on X , if ρ ⊆ X × X . Let B(X) denote
the set of all binary relations on X . For α, β ∈ B(X), define

β ◦ α = {(x, z) ∈ X × X : (∃y ∈ X)((x, y) ∈ α ∧ (y, z) ∈ β)}.

The relation β ◦ α is called the composition of α and β. It is well known that
(B(X), ◦) is a semigroup. For a binary relation α on a set X , define α−1 = {(x, y) ∈
X × X : (y, x) ∈ α} and αC = (X × X) r α.
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Let A and B be subsets of X . For α ∈ B(X), set

Aα = {y ∈ X : (∃a ∈ A)((a, y) ∈ α)}, αB = {x ∈ X : (∃b ∈ B)((x, b) ∈ α)}.

Specially, we put aα instead of {a}α and αb instead of α{b}.

2. Quasi-regular relations

The following classes of elements in the semigroup B(X) are known.

Definition 2.1. For a relation α ∈ B(X) we say that it is:
(1) regular if and only if there exists a relation β ∈ B(X) such that

α = α ◦ β ◦ α.

(2) [6] normal if and only if there exists a relation β ∈ B(X) such that

α = α ◦ β ◦ (αC)−1.

(3) [5] dually normal if and only if there exists a relation β ∈ B(X) such that

α = (αC)−1 ◦ β ◦ α.

(4) [4] conjugative if and only if there exists a relation β ∈ B(X) such that

α = α−1 ◦ β ◦ α.

(5) [4] dually conjugative if and only if there exists a relation β ∈ B(X) such that

α = α ◦ β ◦ α−1.

Diverse descriptions of regular elements of B(X) can be found in [7], [8], [9],
and [10]. For any α ∈ B(X), Zaretskĭı [10, Section 3.2] (See also [3]) introduced
the following relation in his study of regular elements of B(X),

α+ = {(x, y) ∈ X × X : α ◦ {(x, y)} ◦ α ⊆ α}.

Schein in [8, Theorem 1] proved that α+ = (α−1 ◦ αC ◦ α−1)C is the maximal
element in the family of all elements β ∈ B(X) such that α ◦ β ◦ α ⊆ α.

In the following definition we introduce a new class of elements in B(X).

Definition 2.2. For relation α ∈ B(X) we say that it is a quasi-regular relation
on X if and only if there exists a relation β ∈ B(X) such that α = αC ◦ β ◦ α.

The family of quasi-regular relations is not empty. Let α ∈ B(X) be a relation
such that αC ◦ (αC)−1 = IdX . Then, we have α = IdX ◦α = αC ◦ (αC)−1 ◦ α. So,
such relation α is a quasi-regular relation on X . Analogously, for relation α ∈ B(X)
such that α ◦ α−1 = IdX , we have

αC = IdX ◦αC = α ◦ α−1 ◦ αC = (αC)C ◦ α−1 ◦ αC .

Therefore, the relation αC is a quasi-regular relation.

Our first lemma is an adaptation of Schein’s concept exposed in [8, Theorem 1],
(See also [2, Lemma 1]) for our needs.
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Lemma 2.1. For a binary relation α ∈ B(X), relation

α∗ = ((αC)−1 ◦ αC ◦ α−1)C

is the maximal element in the family of all relations β ∈ B(X) such that

αC ◦ β ◦ α ⊆ α.

Proof. First, remember ourselves that

max{β ∈ B(X) : αC ◦ β ◦ α ⊆ α} =
⋃

{β ∈ B(X) : αC ◦ β ◦ α ⊆ α}.

Let β ∈ B(X) be an arbitrary relation such that αC ◦ β ◦ α ⊆ α. We will prove
that β ⊆ α∗. If not, there is (x, y) ∈ β such that ¬((x, y) ∈ α∗). The last gives:

(x, y) ∈ (αC)−1 ◦ αC ◦ α−1

⇔ (∃u, v ∈ X)((x, u) ∈ α−1 ∧ (u, v) ∈ αC ∧ (v, y) ∈ (αC)−1)

⇔ (∃u, v ∈ X)((u, x) ∈ α ∧ (u, v) ∈ αC ∧ (y, v) ∈ αC)

⇒ (∃u, v ∈ X)((u, x) ∈ α ∧ (x, y) ∈ β ∧ (y, v) ∈ αC ∧ (u, v) ∈ αC)

⇒ (∃u, v ∈ X)((u, v) ∈ αC ◦ β ◦ α ⊆ α ∧ (u, v) ∈ αC)

We got a contradiction. So, must be β ⊆ α∗.
On the other hand, we should prove that αC ◦α∗◦α ⊆ α. Let (x, y) ∈ αC ◦α∗◦α

be an arbitrary element. Then, there are elements u, v ∈ X such that (x, u) ∈ α,
(u, v) ∈ α∗ and (v, y) ∈ αC . So, from (x, u) ∈ α, ¬((u, v) ∈ (αC)−1 ◦ αC ◦ α−1),
(v, y) ∈ αC , we have ¬((x, y) ∈ αC). Suppose that (x, y) ∈ αC . Then, we have
(u, v) ∈ (αC)−1 ◦ αC ◦ α−1, which is impossible. Hence, we have (x, y) ∈ α and,
therefore, αC ◦ α∗ ◦ α ⊆ α.

Finally, we conclude that α∗ is the maximal element of the family of all relations
β ∈ B(X) such that αC ◦ β ◦ α ⊆ α. �

It is easy to see that α∗ = {(x, y) ∈ X ×X : αC ◦{(x, y)}◦α ⊆ α}. In addition,
we have the following property of α∗:

α∗ = {(x, y) ∈ X × X : αx × yαC ⊆ α}

The formula αC ◦ {(x, y)} ◦ α = αx × yαC follows directly from our adaptation of
the concept exposed in [3, Lemma 3.1(ii)].

In the following proposition we give an essential characterization of quasi-
regular relations. It is our adaptation of concept exposed in [3, Theorem 7.2].
(Also, we can look at this theorem as our adaptation of concepts exposed in the
following theorems: Theorem 2.3 in [6], Theorem 2.4 in [5] and Theorem 2.3 in
[4]).

Theorem 2.1. For a binary relation α on a set X, the following conditions

are equivalent:

(1) α is a quasi-regular relation.

(2) For all x, z ∈ X, if (x, y) ∈ α, there exists u, v ∈ X such that:

(a) (u, x) ∈ α−1 ∧ (v, y) ∈ αC



130 ROMANO

(b) (∀s, t ∈ X)((u, s) ∈ α−1 ∧ (v, t) ∈ αC ⇒ (s, t) ∈ α).
(3) α ⊆ αC ◦ α∗ ◦ α.

Proof. (1) ⇒ (2). Let α be a quasi-regular relation, i.e., let there exists a
relation β such that α = αC ◦ β ◦ α. Let (x, y) ∈ α. Then there exist elements
u, v ∈ X such that (x, u) ∈ α, (u, v) ∈ β, (v, y) ∈ αC . It follows that there exist
elements u, v ∈ X such that (u, x) ∈ α−1 and (v, y) ∈ αC . This proves condition
(a).

Now, we check condition (b). Let s, t ∈ X be arbitrary elements such that
(u, s) ∈ α−1 and (v, t) ∈ αC . Now, from (s, u) ∈ α, (u, v) ∈ β and (v, t) ∈ αC it
follows (s, t) ∈ αC ◦ β ◦ α = α.

(2) ⇒ (1). Define a binary relation

α′ = {(u, v) ∈ X × X : (∀s, t ∈ X)((u, s) ∈ α−1 ∧ ((v, t) ∈ αC ⇒ (s, t) ∈ α)}

and show that αC ◦ α′ ◦ α = α is valid. Let (x, y) ∈ α. Then there exist elements
u, v ∈ X such that conditions (a) and (b) hold. We have (u, v) ∈ α′ by definition
of the relation α′.

Further, from (x, u) ∈ α, (u, v) ∈ α′ and (v, y) ∈ αC it follows (x, y) ∈ αC◦α′◦α.
Hence, we have α ⊆ αC ◦α′◦. Contrary, let (x, y) ∈ αC ◦α′ ◦α be an arbitrary pair.
There exist elements u, v ∈ X such that (x, u) ∈ α, (u, v) ∈ α′ and (v, y) ∈ αC ,
i.e., such that (u, x) ∈ α−1 and (v, y) ∈ αC . Hence, by definition of the relation
α′, it follows (x, y) ∈ α′ since (u, v) ∈ α′. Therefore, αC ◦ α′ ◦ α ⊆ α. So, the
relation α is a quasi-regular relation on X since there exists a relation α′ such that
αC ◦ α′ ◦ α = α.

(1) ⇔ (3). Let α be a quasi-regular relation. Then there exists a relation β
such that α = αC ◦ β ◦ α. Since α∗ = max{β ∈ B(X) : αC ◦ β ◦ α ⊆ α}, we have
β ⊆ α∗ and α = αC ◦ β ◦ α ⊆ αC ◦ α∗ ◦ α. Contrary, let hold α ⊆ αC ◦ α∗ ◦ α, for a
relation α. Then, we have α ⊆ αC ◦α∗ ◦α ⊆ α. So, the relation α is a quasi-regular
relation on set X . �

Corollary 2.1. Let (X,6) be a poset. The relation 6C is a quasi-regular

relation on X if and only if for all x, y ∈ X such that x 6C y there exist u, v ∈ X
such that: (a′) x 6C u ∧ v 6 y, and (b′) (∀z ∈ X)(z 6 u ∨ v 6C z).

Proof. Let 6C be a quasi-regular relation on set X , and let x, y ∈ X be
elements such that x 6C y. Then, by the previous theorem, there exist u, v ∈ X
such that: (a) x 6C u ∧ v 6 y; (b) (∀s, t ∈ X)((s 6C u ∧ v 6 t) ⇒ s 6C t). Let
z be an arbitrary element and if we put z = s = t in formula (b), then we have

(z 6
C u ∧ v 6 z) ⇒ z 6

C z.

This is a contradiction. Hence, ¬(z 6C u ∧ v 6 z). It follows z 6 u ∨ v 6C z.
Contrary, let x, y ∈ X be arbitrary elements such that x 6C y. There exist

elements u, v ∈ X such that (a′) x 6C u∧v 6 y and (b′) (∀z ∈ X)(z 6 u∨v 6C z).
Let s, t ∈ X be arbitrary elements such that s 6C u and v 6 t. From s 6C u it
follows s 6C t or t 6C u. For z = t, we have t 6C u ∧ (t 6 ∨v 6C t) by condition
(b′). Hence (t 6C u ∧ t 6 u) or (t 6C u ∧ v 6C t). The first case is a contradiction,
and the second case is impossible because v 6 t. Therefore, there is only possibility
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s 6C t. This means that u and v satisfy condition (b) of Theorem 2.1. So, the
relation 6C is a quasi-regular relation on X . �

3. Examples

Example 3.1. Let α be a quasi-regular relation on set X . Then there exists
a relation β on X such that α = αC ◦ β ◦ α. If θ is an equivalence relation on X ,
we define relation α/θ by α/θ = {(aθ, bθ) ∈ X/θ × X/θ : (a, b) ∈ α} and β/θ by
analogy. We have α/θ = (α/θ)C ◦ β/θ ◦ α/θ. Indeed:

(aθ, bθ) ∈ α/θ ⇔ (a, b) ∈ α = αC ◦ β ◦ α

⇔ (∃ u, v ∈ X)((a, u) ∈ α ∧ (u, v) ∈ β ∧ (v, b) ∈ αC)

⇔ (∃ u, v ∈ X)((a, u) ∈ α ∧ (u, v) ∈ β ∧ ¬((v, b) ∈ α))

⇔ (∃ uθ, vθ ∈ X/θ)((aθ, uθ) ∈ α/θ ∧ (uθ, vθ) ∈ β/θ ∧ ¬((vθ, bθ) ∈ α/θ))

⇔ (∃ uθ, vθ ∈ X/θ)((aθ, uθ) ∈ α/θ ∧ (uθ, vθ) ∈ β/θ ∧ (vθ, bθ) ∈ (α/θ)C)

⇔ (aθ, bθ) ∈ (α/θ)C ◦ β/θ ◦ α/θ.

So, the relation α/θ is a quasi-regular relation on X/θ.

Example 3.2. Let α be a quasi-regular element in B(X ′). Then there exists
a relation β ∈ B(X ′) such that α = αC ◦ β ◦ α. For a mapping f : X → X ′ and a
relation γ ∈ B(X ′) we define f−1(γ) by (x, y) ∈ f−1(γ) ⇔ (f(x), f(y)) ∈ γ. If f is
a surjective mapping, we have:

(x, y) ∈ f−1(α) ⇔ (f(x), f(y)) ∈ α = αC ◦ β ◦ α

⇔ (∃u′, v′ ∈ X ′)((f(x), u′) ∈ α ∧ (u′, v′) ∈ β ∧ (v′, f(y)) ∈ αC)

⇔ (∃u, v ∈ X)((f(x), f(u)) ∈ α ∧ (f(u), f(v)) ∈ β ∧ ¬((f(v), f(y)) ∈ α))

⇔ (∃u, v ∈ X)((x, u) ∈ f−1(α) ∧ (u, v) ∈ f−1(β) ∧ ¬((v, y) ∈ f−1(α)))

⇔ (x, y) ∈ (f−1(α))C ◦ f−1(β) ◦ f−1(α).

So, the relation f−1(α) is a quasi-regular relation in X .

Example 3.3. The relation ▽X on X , defined by (x, y) ∈ ▽X ⇔ x 6= y, satisfies
▽X = IdX ◦ IdX ◦▽X = ▽C

X
◦ IdX ◦▽X since ▽C

X
= IdX . So, ▽X is a quasi-regular

relation on X .
Besides, let θ be an equivalence relation on X . There is natural surjective

mapping π : X −→ X/θ. Then, ▽X/θ, by Example 2.1, is a quasi-regular relation
on X/θ. Thus, by Example 2.2, π−1(▽X/θ) is a quasi-regular relation on X .

4. Dually quasi-regular relations

There is a possibility to introduce the notion of dually quasi-regular relation on
sets, for example, in the following way: For a relation α ∈ B(X) we say that it is
a dually quasi-regular relation on X if and only if there exists a relation β ∈ B(X)
such that α = α ◦ β ◦ αC . For these relations we can state dual statements of
Lemma 2.1, Theorem 2.1 and Corollary 2.1.
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It is easy to see that the family of these relations is not empty. Relation
α ∈ B(X) satisfying (αC)−1 ◦ αC = IdX , is a dually quasi-regular relation. Indeed,
we have α = α ◦ IdX = α ◦ (αC)−1 ◦ αC .

In the end we give a connection between the quasi-regular and dually quasi-
regular elements of B(X).

Theorem 4.1. Relation α is a quasi-regular relation on X if and only if the

relation α−1 is a dually quasi-regular relation on X.

Proof. Indeed, if α is a quasi-regular relation, then there exists a relation β
such that α = αC ◦ β ◦ α. Hence

α−1 = (αC ◦ β ◦ α)−1 = α−1 ◦ β−1 ◦ (αC)−1 = α−1 ◦ β−1 ◦ (α−1)C .

So, the relation α−1 is a dually quasi-regular relation on X . �
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