L-PONOMAREV SYSTEM AND IMAGES OF LOCALLY SEPARABLE METRIC SPACES

Tran Van An and Luong Quoc Tuyen

Communicated by Miloš Kurilić

ABSTRACT. We introduce the notion of an *L*-Ponomarev system $(f, M, X, \mathcal{P}_n^*)$, and give characterizations of certain msss-images (resp., mssc-images) of locally separable metric spaces. As an application, we get a new characterization of quotient msss-images (mssc-images) of locally separable metric spaces, which is helpful in solving Velichko's question (1987).

1. Introduction

Lin in [15] introduced the concept of msss-maps (resp., mssc-maps) to characterize spaces with certain σ -locally countable (resp., σ -locally finite) networks by msss-images (resp., mssc-images) of metric spaces. After that, some characterizations for certain msss-images (resp., mssc-images) of metric (or semi-metric) spaces are obtained by many authors ([10, 13, 14], for example).

Velichko [26] proved that a space X is a pseudo-open s-image of a locally separable metric space iff X is a locally separable space which is a pseudo-open simage of a metric space, and posed the following interesting question about quotient and s-images of metric spaces.

QUESTION 1.1. Find a Φ -property such that a space X is a quotient and simage of a metric and Φ -space iff X is a Φ -space which is a quotient and s-image of a metric space.

Recently, Dung gave some characterizations for certain msss-images (resp., mssc-images) of locally separable metric spaces in the class of regular and T_1 -spaces (see in [3, 4]). This leads us to consider the following question.

²⁰¹⁰ Mathematics Subject Classification: 54C10, 54D55, 54E40, 54E99.

Key words and phrases: so-network, sn-network, cs-network, cfp-network, cs*-network, 2-sequence-covering, 1-sequence-covering, sequence-covering, compact-covering, sequentially-quotient, msss-map, mssc-map.

¹³³

AN AND TUYEN

QUESTION 1.2. Find a Φ -property such that a space X is a quotient and msssimage (mssc-image) of a metric and Φ -space iff X is a Φ -space which is a quotient and msss-image (resp., mssc-image) of a metric space.

In this paper, we introduce the notion of a generalized Ponomarev system $(f, M, X, \mathcal{P}_n^*)$, calling it an *L*-Ponomarev system, and then prove some statements concerning the properties of such systems corresponding to σ -locally finite and σ -locally countable Lindelöf networks. As an application, we get a new characterization of quotient msss-images (mssc-images) of locally separable metric spaces, give an affirmative answer to Question 1.2, and we get an affirmative answer to Question 2.17 from [**3**].

Throughout this paper, all spaces are assumed to be Hausdorff, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers. Let $K \subset X$ and \mathcal{P} be a collection of subsets of X, we denote $(\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}, \mathcal{P}_K = \{P \in \mathcal{P} : P \cap K \neq \emptyset\}$. For a sequence $\{x_n\}$ converging to x and $P \subset X$, we say that $\{x_n\}$ is eventually in P if $\{x\} \cup \{x_n : n \ge m\} \subset P$ for some $m \in \mathbb{N}$, and $\{x_n\}$ is frequently in P if some subsequence of $\{x_n\}$ is eventually in P.

DEFINITION 1.1. [2, 17] Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X. Assume that \mathcal{P} satisfies the following (a) and (b) for every $x \in X$.

(a) \mathcal{P}_x is a network at x.

(b) If $P_1, P_2 \in \mathcal{P}_x$, then $P \subset P_1 \cap P_2$ for some $P \in \mathcal{P}_x$.

- (1) \mathcal{P} is a *weak base* for X, if for $G \subset X$, G is open in X iff for every $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$.
- (2) \mathcal{P} is an *sn-network* (resp., *so-network*) for X, if every element of \mathcal{P}_x is a sequential neighborhood of x (resp., sequentially open in X) for every $x \in X$.

DEFINITION 1.2. Let X be a space and \mathcal{P} be a cover of X.

- (1) \mathcal{P} is a *Lindelöf* (resp., *compact*) cover, if each element of \mathcal{P} is Lindelöf (resp., compact).
- (2) X is an \aleph_0 -space, if X is a regular space with a countable cs^{*}-network.
- (3) X is an H- \aleph_0 -space, if X has a countable cs^{*}-network.

DEFINITION 1.3. Let $f: X \to Y$ be a map.

- (1) f is weak-open [27], if there exists a weak base $\mathcal{B} = \bigcup \{ \mathcal{B}_y : y \in Y \}$ for Y, and for every $y \in Y$, there exists $x \in f^{-1}(y)$ such that for each open neighborhood U of $x, B \subset f(U)$ for some $B \in \mathcal{B}_y$.
- (2) f is 1-sequence-covering [17], if for each $y \in Y$, there is $x \in f^{-1}(y)$ such that each sequence converging to y is an image of some sequence converging to x.
- (3) f is 2-sequence-covering [17], if for every $y \in Y$, $x_y \in f^{-1}(y)$, and sequence $\{y_n\}$ converging to y in Y, there exists a sequence $\{x_n\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$.
- (4) f is an msss-map (resp., mssc-map) [15], if X is a subspace of the product space $\prod_{i \in \mathbb{N}} X_i$ of a family $\{X_i : i \in \mathbb{N}\}$ of metric spaces and for each $y \in Y$,

there is a sequence $\{V_i : i \in \mathbb{N}\}$ of open neighborhood's of y such that each $p_i f^{-1}(V_i)$ is separable in X_i (resp., each $\operatorname{cl}(p_i f^{-1}(V_i))$) is compact in X_i).

DEFINITION 1.4. For a cover \mathcal{P} of a space X, let (P) be a (certain) coveringproperty of \mathcal{P} . Let us say that \mathcal{P} has property σ -(P), if \mathcal{P} can be expressed as $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, where each \mathcal{P}_n having the property (P) and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$.

For some undefined or related concepts, we refer the reader to [18].

2. Main results

From now on, let us restrict the properties (P) and $\alpha(P)$ to the following.

- (1) (P) are locally finite, locally countable.
- (2) $\alpha(P)$ is mssc if (P) is locally finite, and $\alpha(P)$ is msss if (P) is locally countable.

NOTATION 2.1. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a Lindelöf network having property σ -(P) for a space X. For each $n \in \mathbb{N}$, we put $\mathcal{P}_n^* = \{X\} \cup \mathcal{P}_n = \{P_\alpha : \alpha \in \Lambda_n\}$ and endow Λ_n with the discrete topology. Assume that for each $x \in X$, there exists a network $\{P_{\alpha_n} : n \in \mathbb{N}\}$ at x with $\alpha_n \in \Lambda_n$. Then,

$$M = \left\{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{P_{\alpha_n}\} \text{ forms a network at some point } x_\alpha \in X \right\}$$

is a metric space and the point x_{α} is unique in X for every $\alpha \in M$. Define $f: M \to X$ by $f(\alpha) = x_{\alpha}$. Let us call $(f, M, X, \mathcal{P}_n^*)$ an L-Ponomarev system.

REMARK 2.1. (1) Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a Lindelöf network of X, where each \mathcal{P}_n having property (P). Then, \mathcal{P} is a Lindelöf network has property σ -(P).

(2) If $(f, M, X, \mathcal{P}_n^*)$ an L-Ponomarev system, then f is an s-map.

LEMMA 2.1. If \mathcal{P} is a cs-network having property σ -(P), then \mathcal{P} is a cfpnetwork.

PROOF. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a cs-network having property σ -(P) for X, and $K \subset V$ with K is compact and V is open in X. Since \mathcal{P} is a cs-network having property σ -(P), K has a countable cs-network. Thus, K is metrizable. By [19, Lemma 1.2], for each $x \in K$, there exists $P_x \in \mathcal{P}$ such that $x \in \operatorname{int}_K(P_x \cap K) \subset P_x \subset V$. By the regularity of K, for each $x \in K$, there exists an open neighborhood V_x in K such that $x \in V_x \subset \operatorname{cl}_K(V_x) \subset \operatorname{int}_K(P_x \cap K)$. Since K is compact, there exists a finite subset F of K such that $K \subset \bigcup_{x \in F} V_x$. Thus, $\{P_x : x \in F\}$ is a cfp-cover of K and $\bigcup_{x \in F} P_x \subset U$. Therefore, \mathcal{P} is a cfp-network.

LEMMA 2.2. If X has a Lindelöf cs^{*}-network with property σ -(P), then X has a Lindelöf cs-network with property σ -(P).

PROOF. Let $\mathcal{P} = \bigcup \{\mathcal{P}_i : i \in \mathbb{N}\}$ be a Lindelöf cs^{*}-network having property σ -(P) for X. Since each element of \mathcal{P}_i is Lindelöf, each \mathcal{P}_i is star-countable. It follows from [22, Lemma 2.1] that for each $i \in \mathbb{N}$, $\mathcal{P}_i = \bigcup \{\mathcal{Q}_{\alpha}^{(i)} : \alpha \in \Lambda_i\}$, where

 $\mathcal{Q}_{\alpha}^{(i)}$ is a countable subfamily of \mathcal{P}_i for all $\alpha \in \Lambda_i$ and $\left(\bigcup \mathcal{Q}_{\alpha}^{(i)}\right) \cap \left(\bigcup \mathcal{Q}_{\beta}^{(i)}\right) = \emptyset$ for all $\alpha \neq \beta$. For each $i \in \mathbb{N}$ and $\alpha \in \Lambda_i$, we put

$$\mathcal{R}_{\alpha}^{(i)} = \left\{ \bigcup \mathcal{F} : \mathcal{F} \text{ is a finite subfamily of } \mathcal{Q}_{\alpha}^{(i)} \right\}.$$

Since each $\mathcal{R}_{\alpha}^{(i)}$ is countable, we can write $\mathcal{R}_{\alpha}^{(i)} = \{R_{\alpha,j}^{(i)} : j \in \mathbb{N}\}$. Now, for each $i, j \in \mathbb{N}$, put $\mathcal{F}_{j}^{(i)} = \{R_{\alpha,j}^{(i)} : \alpha \in \Lambda_i\}$, and denote $\mathcal{G} = \bigcup\{\mathcal{F}_{j}^{(i)} : i, j \in \mathbb{N}\}$. Then, each $R_{\alpha,j}^{(i)}$ is Lindelöf and each family $\mathcal{F}_{j}^{(i)}$ has property (P). Now, we shall show that \mathcal{G} is a cs-network. In fact, let $\{x_n\}$ be a sequence converging to $x \in U$ with U is open in X. Since \mathcal{P} is a point-countable cs*-network, it follows from [25, Lemma 3] that there exists a finite family $\mathcal{A} \subset (\mathcal{P})_x$ such that $\{x_n\}$ is eventually in $\bigcup \mathcal{A} \subset U$. Furthermore, since \mathcal{A} is finite and $\mathcal{P}_i \subset \mathcal{P}_{i+1}$ for all $i \in \mathbb{N}$, there exists $i \in \mathbb{N}$ such that $\mathcal{A} \subset \mathcal{Q}_{\alpha}^{(i)}$, and $\bigcup \mathcal{A} \in \mathcal{R}_{\alpha}^{(i)}$. Thus, $\bigcup \mathcal{A} = R_{\alpha,j}^{(i)}$ for some $j \in \mathbb{N}$. Hence, $\bigcup \mathcal{A} \in \mathcal{G}$, and \mathcal{G} is a cs-network. It follows from Remark 2.1(1) \mathcal{G} is a Lindelöf cs-network having property σ -(P).

LEMMA 2.3. Let $f: M \to X$ be a $\alpha(P)$ -map, and M be a locally separable metric space. Then,

- (1) X has a Lindelöf cs^{*}-network with property σ -(P), if f is sequentiallyquotient.
- (2) X has a Lindelöf sn-network with property σ -(P), if f is 1-sequencecovering.
- (3) X has a Lindelöf so-network with property σ -(P), if f is 2-sequence-covering.

PROOF. By [15, Lemma 1.2] and by the proof of $(3) \Rightarrow (1)$ in [12, Theorem 4], there exists a base \mathcal{B} of M such that $\mathcal{F} = f(\mathcal{B})$ is a network for X, and \mathcal{F} can be expressed as $\bigcup \{\mathcal{F}_n : n \in \mathbb{N}\}$, where each \mathcal{F}_n has property (P). Since M is locally separable, for each $a \in M$, there exists a separable open neighborhood U_a . Denote

$$\mathcal{C} = \{ B \in \mathcal{B} : B \subset U_a, a \in M \}.$$

Then, $\mathcal{C} \subset \mathcal{B}$ and \mathcal{C} is a separable base for M. If put $\mathcal{P} = f(\mathcal{C})$, then $\mathcal{P} \subset \mathcal{F}$, and it follows from Remark 2.1(1) that \mathcal{P} is a Lindelöf network having property σ -(P). Thus, \mathcal{P} can be expressed as $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, where each \mathcal{P}_n having the property (P) and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$. Furthermore, we have

(1) If f is sequentially-quotient, then since C is a base for M, \mathcal{P} is a cs^{*}-network. Therefore, X has a Lindelöf cs^{*}-network with property σ -(P).

(2) If f is 1-sequence-covering, then for each $x \in X$, there exists $a_x \in f^{-1}(x)$ such that each sequence converging to x is an image of a sequence converging to a_x . Now, for each $x \in X$, we put $\mathcal{G}_x = \{f(B) : a_x \in B \in \mathcal{C}\}, \mathcal{G} = \bigcup \{\mathcal{G}_x : x \in X\}$. Then, $\mathcal{G} \subset \mathcal{P}$ and \mathcal{G} is an sn-network. For each $n \in \mathbb{N}$, we put $\mathcal{G}_n = \mathcal{G} \cap \mathcal{P}_n$. Then, $\bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$ is a Lindelöf sn-network having property σ -(P) for X.

(3) If f is 2-sequence-covering, then for each $x \in X$, we put

$$\mathcal{C}_x = \left\{ B \in \mathcal{C} : B \cap f^{-1}(x) \neq \emptyset \right\},\$$

and let \mathcal{G}_x be the family of all finite intersections of members of $f(\mathcal{C}_x)$, and $\mathcal{G} = \bigcup \{ \mathcal{G}_x : x \in X \}$. Then, $\mathcal{G} \subset \mathcal{P}$ and \mathcal{G} is an so-network. For each $n \in \mathbb{N}$, we put $\mathcal{G}_n = \mathcal{G} \cap \mathcal{P}_n$. Then, $\bigcup \{ \mathcal{G}_n : n \in \mathbb{N} \}$ is a Lindelöf so-network having property σ -(P) for X.

LEMMA 2.4. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a Lindelöf network having property σ -(P) and $(f, M, X, \mathcal{P}_n^*)$ be an L-Ponomarev system. Then, the following statements hold.

- (1) f is a $\alpha(P)$ -map.
- (2) M is locally separable.
- (3) f is sequence-covering compact-covering, if \mathcal{P} is a cs-network.
- (4) f is 1-sequence-covering compact-covering, if \mathcal{P} is an sn-network.
- (5) f is 2-sequence-covering compact-covering, if \mathcal{P} is an so-network.

PROOF. (1) Similar to the proof of [12, Theorem 4] and [14, Theorem 2.1].

(2) Let $a = (\alpha_i) \in M$. Then, $\{P_{\alpha_i}\}$ is a network at some point $x_a \in X$. Thus, there exists $i_0 \in \mathbb{N}$ such that $P_{\alpha_{i_0}}$ is Lindelöf. Put

$$U_a = M \cap \Big\{ (\beta_i) \in \prod_{i \in \mathbb{N}} \Lambda_i : \beta_i = \alpha_i, i \leq i_0 \Big\}.$$

Then, U_a is an open neighborhood of a in M. Now, for each $i \leq i_0$, put $\Delta_i = \{\alpha_i\}$, and for each $i > i_0$, we put $\Delta_i = \{\alpha \in \Lambda_i : P_\alpha \cap P_{\alpha_{i_0}} \neq \emptyset\}$. Then, $U_a \subset \prod_{i \in \mathbb{N}} \Delta_i$. Furthermore, since each \mathcal{P}_i having property (P) and $P_{\alpha_{i_0}}$ is Lindelöf, Δ_i is countable for every $i > i_0$. Thus, U_a is separable, and M is locally separable.

(3) Let \mathcal{P} be a cs-network. Then,

(3.1) f is sequence-covering. Let $S = \{x_n : n \in \mathbb{N}\}$ be a sequence converging to x in X. Since \mathcal{P} is a point-countable cs-network, we can write

$$\{P \in \mathcal{P} : S \text{ is eventually in } P\} = \{P_i : i \in \mathbb{N}\}.$$

On the other hand, since $\mathcal{P}_i \subset \mathcal{P}_{i+1}$ for all $i \in \mathbb{N}$, we can choose sequence $\{i_n\} \subset \mathbb{N}$ such that $i_n < i_{n+1}$, and $P_n \in \mathcal{P}_{i_n}$ for every $n \in \mathbb{N}$. Now, for each $j \in \mathbb{N}$, we take

$$F_{\alpha_j} = \begin{cases} P_n, & \text{if } j = i_n, \\ X, & \text{if } j \neq i_n, \end{cases}$$

and $a = (\alpha_i) \in \prod_{i \in \mathbb{N}} \Lambda_i$. Then f(a) = x and S is eventually in each F_{α_i} . Now, for each $n \in \mathbb{N}$, put $B_n = \{(\gamma_i) \in M : \gamma_i = \alpha_i \text{ for each } i \leq n\}$. It is easy to check that $\{B_n\}$ is a decreasing neighborhood base at a in M and $f(B_n) = \bigcap_{i \leq n} P_{\alpha_i}$ for all $n \in \mathbb{N}$. Because S is eventually in each $f(B_n)$, it follows from [8, Lemma 6] that for each $n \in \mathbb{N}$, there exists $a_n \in f^{-1}(x_n)$ such that the sequence $\{a_n\}$ converging to a in M. Therefore, f is sequence-covering.

(3.2) f is compact-covering. Let K be a compact subset of X. Since \mathcal{P} is a Lindelöf cs-network having property σ -(P), it follows from Lemma 2.1 that \mathcal{P} is a cfp-network for X. Furthermore, since \mathcal{P}_K is countable, we can put

 $\{\mathcal{Q} \subset \mathcal{P}_K : \mathcal{Q} \text{ is a finite cfp-cover of } K\} = \{\mathcal{Q}_i : i \in \mathbb{N}\}.$

Since $\mathcal{Q}_n \subset \mathcal{P}$ and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for all $n \in \mathbb{N}$, then we can choose a sequence $\{i_n\} \subset \mathbb{N}$ such that $i_n < i_{n+1}$, and $\mathcal{Q}_n \subset \mathcal{P}_{i_n}$ for every $n \in \mathbb{N}$. Now, we choose a sequence $\{\mathcal{A}_i\}$ as follows

$$\mathcal{A}_j = \begin{cases} \mathcal{Q}_n, & \text{if } j = i_n, \\ \{X\}, & \text{if } j \neq i_n. \end{cases}$$

Since each \mathcal{A}_i is a cfp-cover for K, there exists a finite subfamily $\mathcal{H}_i = \{P_\alpha\}_{\alpha \in \Gamma_i}$ of \mathcal{A}_i and a cover $\{F_\alpha\}_{\alpha \in \Gamma_i}$ of K consisting of closed subset of K satisfying that each $F_\alpha \subset P_\alpha$. Put $L = \{a = (\alpha_i) \in \prod_{i \in \mathbb{N}} \Gamma_i : \bigcap_{i \in \mathbb{N}} F_{\alpha_i} \neq \emptyset\}$. Then, we have

(3.2.1) $L \subset M$, and $f(L) \subset K$. Suppose $a = (\alpha_i) \in L$, then $\bigcap_{i \in \mathbb{N}} F_{\alpha_i} \neq \emptyset$. Pick $x_a \in \bigcap_{i \in \mathbb{N}} F_{\alpha_i}$. Now we will show that $\{P_{\alpha_i}\}$ is a network at x_a in X. Then, $a \in M$ and $f(a) = x_a \in K$, so $L \subset M$ and $f(L) \subset K$. Indeed, let V be a neighborhood of x_a in X. Since K is a regular subspace of X, there exists an open neighborhood W of x_a in K such that $\operatorname{cl}_K(W) \subset V$. Since $\operatorname{cl}_K(W)$ is a compact subset of K, there exists a finite collection \mathcal{Q}' of \mathcal{P}_K such that \mathcal{Q}' is a cfp-cover of $\operatorname{cl}_K(W)$ and $\bigcup \mathcal{Q}' \subset V$. On the other hand, since K - W is a compact subset of K satisfying $K - W \subset X - \{x_a\}$, there exists a finite collection $\mathcal{Q}'' \subset X - \{x_a\}$. Put $\mathcal{Q} = \mathcal{Q}' \cup \mathcal{Q}''$. Then, \mathcal{Q} is a cfp-cover for K, and so $\mathcal{Q} = \mathcal{Q}_k$ for some $k \in \mathbb{N}$. But $x_a \in F_{\alpha_k} \subset P_{\alpha_k} \in \mathcal{Q}_k$, thus $P_{\alpha_k} \in \mathcal{Q}'$ and $P_{\alpha_k} \subset V$. Hence, $\{P_{\alpha_i}\}$ is a network at x_a in X.

(3.2.2) $K \subset f(L)$. Assume that $x \in K$. For each $i \in \mathbb{N}$, pick $\alpha_i \in \Gamma_i$ such that $x \in F_{\alpha_i}$. Put $a = (\alpha_i)$, it follows that $a \in L$. By the proof of (3.2.1), f(a) = x. So, $K \subset f(L)$.

(3.2.3) L is compact. Because each Γ_i is finite, $\prod_{i \in \mathbb{N}} \Gamma_i$ is compact. Note that $L \subset \prod_{i \in \mathbb{N}} \Gamma_i$, we only need to prove that L is closed in $\prod_{i \in \mathbb{N}} \Gamma_i$. In fact, let $a = (\alpha_i) \in \prod_{i \in \mathbb{N}} \Gamma_i - L$. Then, $\bigcap_{i \in \mathbb{N}} F_{\alpha_i} = \emptyset$. From the compactness of K, there exists $i_0 \in \mathbb{N}$ such that $\bigcap_{i \leq i_0} F_{\alpha_i} = \emptyset$. Put $W = \{(\beta_i) \in \prod_{i \in \mathbb{N}} \Gamma_i : \beta_i = \alpha_i \text{ for each } i \leq i_0\}$. Then, W is an open subset of $\prod_{i \in \mathbb{N}} \Gamma_i$ satisfying $a \in W$ and $W \cap L = \emptyset$. This implies that L is a closed subset of $\prod_{i \in \mathbb{N}} \Gamma_i$. Therefore, L is a compact subset of M.

(4) Let \mathcal{P} be an sn-network. Then, X is sn-first countable. Since every snnetwork is cs-network, it follows from (3) that f is a sequence-covering, compactcovering map. By Remark 2.1(2) and [1, Proposition 2.2(1)], f is 1-sequencecovering.

(5) Let \mathcal{P} be an so-network. Since each so-network is a cs-network, by (3), it suffices to prove that f is 2-sequence-covering.

Let $x \in X$ and $a = (\alpha_i) \in f^{-1}(x)$. It is obvious that each P_{α_i} is a sequential neighborhood of x in X. For each $n \in \mathbb{N}$, put $B_n = \{(\gamma_i) \in M : \gamma_i = \alpha_i \text{ for each } i \leq n\}$. Then, $\{B_n\}$ is a decreasing neighborhood base of a in M, and $f(B_n) = \bigcap_{i \leq n} P_{\alpha_i}$ for all $n \in \mathbb{N}$. Now, let $\{x_n\}$ be a sequence converging to x in X. Since each $f(B_n)$ is a sequential neighborhood at x in X, it follows from [10, Lemma 3.2] that for each $n \in \mathbb{N}$, there exists $a_n \in f^{-1}(x_n)$ such that the sequence $\{a_n\}$ converging to a in M. Therefore, f is 2-sequence-covering. THEOREM 2.1. The following are equivalent for a space X.

- (1) X has a Lindelöf cs^* -network with property σ -(P);
- (2) X has a Lindelöf cfp-network with property σ -(P);
- (3) X has a Lindelöf cs-network with property σ -(P);
- (4) X is a sequence-covering, compact-covering $\alpha(P)$ -image of a locally separable metric space;
- (5) X is a sequentially-quotient $\alpha(P)$ -image of a locally separable metric space;
- (6) X is a sequentially-quotient $\alpha(P)$ -image of a metric space, and has an so-cover consisting of H- \aleph_0 -subspaces.

PROOF. (1) \Leftrightarrow (2) \Leftrightarrow (3). By Lemma 2.1 and Lemma 2.2.

- $(3) \Rightarrow (4)$. By Lemma 2.4.
- $(4) \Rightarrow (5)$. It is obvious.

 $(5) \Rightarrow (6)$. Assume that (5) holds. It suffices to prove that X has an so-cover consisting of H- \aleph_0 -subspaces. In fact, by Lemma 2.3(1) and Lemma 2.2, X has a Lindelöf cs-network \mathcal{P} having property σ -(P). Then, each element of \mathcal{P} is an H- \aleph_0 -subspace. By the proof of $(2) \Rightarrow (3)$ in [**20**, Theorem 3.4], X has an so-cover consisting of H- \aleph_0 -subspaces.

(6) \Rightarrow (1). Let \mathcal{O} be an so-cover consisting of H- \aleph_0 -subspaces of X and $f: M \to X$ be a sequentially-quotient $\alpha(P)$ -map, where M is a metric space. Similar to the proof of Lemma 2.3, there exists a base \mathcal{B} of M such that $\mathcal{P} = f(\mathcal{B})$ having property σ -(P). Since f is sequentially-quotient, \mathcal{P} is a cs^{*}-network for X. We can assume that \mathcal{P} is closed under finite intersections. Let $\mathcal{G} = \{P \in \mathcal{P} : P \subset O, \}$ $O \in \mathcal{O}$. Then, each element of \mathcal{G} is an H- \aleph_0 -subspace. Hence, each element of \mathcal{G} is Lindelöf. Now, we proved that \mathcal{G} is a cs^{*}-network. In fact, let L be a sequence converging to $x \in U$ with U open in X. Since \mathcal{O} is an so-cover for X, there exists $O \in \mathcal{O}$ such that $x \in O$. On the other hand, since \mathcal{P} is a point-countable cs^{*}-network, it follows from [25, Lemma 3] that there exists a finite subfamily $\mathcal{H} \subset (\mathcal{P})_x$ such that L is eventually in $\bigcup \mathcal{H} \subset U$. So, the family $\{\mathcal{H} \subset (\mathcal{P})_x : \mathcal{H} \text{ is finite and } L \text{ is}\}$ eventually in $\bigcup \mathcal{H} \subset U$ is non-empty. Furthermore, since $(\mathcal{P})_x$ is countable, we can write $\{\mathcal{H} \subset (\mathcal{P})_x : \mathcal{H} \text{ is finite and } L \text{ is eventually in } \bigcup \mathcal{H} \subset U\} = \{\mathcal{H}_n : n \in \mathbb{N}\}.$ For each $n \in \mathbb{N}$, let $H_n = \bigcap_{i \leq n} (\bigcup \mathcal{H}_i)$. It is obvious that L is eventually in each H_n . Now, we shall show that $H_n \subset O$ for some $n \in \mathbb{N}$. If not, for each $n \in \mathbb{N}$, there exists $x_n \in H_n - O$. Then, $\{x_i\}$ converges to x. Indeed, let $x \in W$ with W is open in X. Then, $U \cap W$ is an open neighborhood of x. By [25, Lemma 3], there exists a finite subfamily $\mathcal{Q} \subset (\mathcal{P})_x$ such that L is eventually in $\bigcup \mathcal{Q}$ and $\bigcup \mathcal{Q} \subset U \cap W$. Since \mathcal{Q} is a finite subfamily of $(\mathcal{P})_x$ and L is eventually in $\bigcup \mathcal{Q} \subset U, \mathcal{Q} = \mathcal{H}_n$ for some $n \in \mathbb{N}$. Furthermore, since $x_i \in H_i$ for all $i \in \mathbb{N}$ and

$$H_i = \bigcap_{j \leqslant i} \left(\bigcup \mathcal{H}_j \right) \subset \bigcap_{j \leqslant n} \left(\bigcup \mathcal{H}_j \right) \subset \bigcup \mathcal{H}_n \subset W,$$

for all $i \ge n$, we get $x_i \in W$ for all $i \ge n$. Therefore, $\{x_i\}$ converges to x. Since O is a sequential neighborhood of x, this implies that there exists $n \in \mathbb{N}$ such that $x_i \in O$ for all $i \ge n$. This is a contradiction to $x_i \notin O$ for all $i \in \mathbb{N}$. Thus, $H_n \subset O$ for some $n \in \mathbb{N}$.

On the other hand, since $H_n = \bigcap_{i \leq n} (\bigcup \mathcal{H}_i) = \bigcup \{\bigcap_{i \leq n} F_i : F_i \in \mathcal{H}_i\}$, and L is eventually in H_n , it implies that for each $i \leq n$, there exists $F_i \in \mathcal{H}_i$ such that L is frequently in $F = \bigcap_{i \leq n} F_i$. Since \mathcal{P} is closed under finite intersections, $F \in \mathcal{P}$. Then, L is frequently in $F, F \subset U$ and $F \in \mathcal{G}$. Thus, \mathcal{G} is a cs^{*}-network for X. By Remark 2.1(1), \mathcal{G} is a Lindelöf cs^{*}-network having property σ -(P).

REMARK 2.2. By Theorem 2.1, in case that the property (P) is locally countable, we get an affirmative answer to Question 2.17 of [3].

By Theorem 2.1, the following corollary holds.

COROLLARY 2.1. The following are equivalent for a space X.

- (1) X is a k-space with a Lindelöf cs^{*}-network having property σ -(P);
- (2) X is a k-space with a Lindelöf cfp-network having property σ -(P);
- (3) X is a k-space with a Lindelöf cs-network having property σ -(P);
- (4) X is a sequence-covering, compact-covering, quotient $\alpha(P)$ -image of a locally separable metric space;
- (5) X is a quotient $\alpha(P)$ -image of a locally separable metric space;
- (6) X is a local H- \aleph_0 -space and a quotient $\alpha(P)$ -image of a metric space.

REMARK 2.3. By Corollary 2.1, we get an affirmative answer to the Question 1.2.

REMARK 2.4. Let \mathcal{P} be a network having property σ -(P) for a regular space X. Then,

- (1) If \mathcal{P} is a cs^{*}-network (cfp-network; cs-network), then \mathcal{P} is Lindelöf iff each element of \mathcal{P} is a cosmic subspace, iff each element of \mathcal{P} is a \aleph_0 -subspace.
- (2) If \mathcal{P} is an sn-network, then \mathcal{P} is Lindelöf iff each element of \mathcal{P} is a cosmic subspace, iff each element of \mathcal{P} is an sn-second countable subspace.
- (3) If \mathcal{P} is an so-network, then \mathcal{P} is Lindelöf iff each element of \mathcal{P} is a cosmic subspace, iff each element of \mathcal{P} is an so-second countable subspace.

By Theorem 2.1 and Remark 2.4, we obtain the following results for Nguyen Van Dung in case X is a regular space.

COROLLARY 2.2. [3, Theorem 2.8], The following are equivalent for a regular space X.

- (1) X has a σ -locally countable cs-network consisting of \aleph_0 -subspaces;
- (2) X has a σ -locally countable cs-network consisting of cosmic subspaces;
- (3) X is a sequence-covering msss-image of a locally separable metric space.

COROLLARY 2.3. [4, Theorem 2.1], The following are equivalent for a regular space X.

- (1) X has a σ -locally finite cs-network consisting of \aleph_0 -subspaces;
- (2) X has a σ -locally finite cs-network consisting of cosmic subspaces;
- (3) X is a sequence-covering mssc-image of a locally separable metric space.

The following results hold by means of the above results.

THEOREM 2.2. The following are equivalent for a space X.

- (1) X has a Lindelöf sn-network with property σ -(P);
- (2) X is a 1-sequence-covering, compact-covering $\alpha(P)$ -image of a locally separable metric space;
- (3) X is a 1-sequence-covering $\alpha(P)$ -image of a locally separable metric space;
- (4) X is a 1-sequence-covering α(P)-image of a metric, and has an so-cover consisting of H-ℵ₀-subspaces.

COROLLARY 2.4. The following are equivalent for a space X.

- (1) X has a Lindelöf weak base with property σ -(P);
- (2) X is a weak-open, compact-covering $\alpha(P)$ -image of a locally separable metric space;
- (3) X is a weak-open $\alpha(P)$ -image of a locally separable metric space;
- (4) X is a local $H-\aleph_0$ -space and a weak-open $\alpha(P)$ -image of a metric.

By Theorem 2.2 and Remark 2.4, we obtain the following results for Nguyen Van Dung in case X is a regular space.

COROLLARY 2.5. [3, Theorem 2.11] The following are equivalent for a regular space X.

- (1) X has a σ -locally countable sn-network consisting of sn-second countable subspaces;
- (2) X has a σ -locally countable sn-network consisting of cosmic subspaces;
- (3) X is a 1-sequence-covering msss-image of a locally separable metric space.

COROLLARY 2.6. [4, Theorem 2.2] The following are equivalent for a regular space X.

- (1) X has a σ -locally finite sn-network consisting of sn-second countable subspaces;
- (2) X has a σ -locally finite sn-network consisting of cosmic subspaces;
- (3) X is a 1-sequence-covering mssc-image of a locally separable metric space.

REMARK 2.5. By Theorem 2.2, it is possible to add the prefix "compactcovering" before "1-sequence-covering" in Corollary 2.5(3) and Corollary 2.6(3).

THEOREM 2.3. The following are equivalent for a space X.

- (1) X has a Lindelöf so-network with property σ -(P);
- (2) X is a 2-sequence-covering, compact-covering $\alpha(P)$ -image of a locally separable metric space;
- (3) X is a 2-sequence-covering $\alpha(P)$ -image of a locally separable metric space;
- (4) X is a 2-sequence-covering α(P)-image of a metric, and has an so-cover consisting of H-ℵ₀-subspaces.

COROLLARY 2.7. The following are equivalent for a space X.

- (1) X has a Lindelöf base with property σ -(P);
- (2) X is an open, compact-covering $\alpha(P)$ -image of a locally separable metric space;

- (3) X is an open $\alpha(P)$ -image of a locally separable metric space;
- (4) X is a local H- \aleph_0 -space and an open $\alpha(P)$ -image of a metric.

By Theorem 2.3 and Remark 2.4, we obtain the following results for Nguyen Van Dung in case X is a regular space.

COROLLARY 2.8. [3, Theorem 2.14] The following are equivalent for a regular space X.

- (1) X has a σ -locally countable so-network consisting of so-second countable subspaces;
- (2) X has a σ -locally countable so-network consisting of cosmic subspaces;
- (3) X is a 2-sequence-covering msss-image of a locally separable metric space.

COROLLARY 2.9. [4, Theorem 2.3], The following are equivalent for a regular space X.

- X has a σ-locally finite so-network consisting of so-second countable subspaces;
- (2) X has a σ -locally finite so-network consisting of cosmic subspaces;
- (3) X is a 2-sequence-covering mssc-image of a locally separable metric space.

REMARK 2.6. By Theorem 2.3, it is possible to add the prefix "compactcovering" before "2-sequence-covering" in Corollary 2.8(3) and Corollary 2.9(3).

3. Examples

EXAMPLE 3.1. A quotient s-image of a locally separable metric space need not be locally separable (see [11, Example 9.8] or [16, Example 2.9.27]). Then, Question 1.1 is not true in the case Φ -property is an \aleph_0 -space (or locally separable).

EXAMPLE 3.2. There exists a space X with a σ -locally finite compact k-network (hence, X has a σ -locally finite Lindelöf cs-network by Theorem 2.1), but X is not locally Lindelöf (hence, X has no locally countable network) (see [24, Example 4.1(2)]). Then,

- (1) A space X has a Lindelöf cs-network with property σ -(P) need not have a locally countable cs-network.
- (2) In Theorem 2.1(6), X need not be local \aleph_0 -space.

EXAMPLE 3.3. S_{ω} is a Fréchet and \aleph_0 -space, but it is not first countable. Then, it has a σ -locally finite Lindelöf cs-network. Since S_{ω} is not first countable, it doesn't have a σ -locally countable sn-network (or weak base).

- (1) A space with a σ -locally finite (hence, σ -locally countable) Lindelöf csnetwork need not have a σ -locally finite (or σ -locally countable) Lindelöf sn-network.
- (2) A k-space with a σ -locally finite (hence, σ -locally countable) Lindelöf csnetwork need not have a σ -locally finite (or σ -locally countable) Lindelöf weak base.

EXAMPLE 3.4. There exists a g-second countable space X, but it is not Fréchet (see, [23, Example 2.1]). Then, X has a σ -locally finite Lindelöf weak base. Since X is sequential and it is not Fréchet, X does not have a σ -locally countable so-network (or weak base). Therefore,

- (1) A space with a σ -locally finite (hence, σ -locally countable) Lindelöf snnetwork need not have a σ -locally finite (or σ -locally countable) so-network.
- (2) A space with a σ -locally finite (hence, σ -locally countable) Lindelöf weak base need not have a σ -locally finite (or σ -locally countable) base.

EXAMPLE 3.5. There exists a space X having a locally countable sn-network, which is not an \aleph -space (see [5, Example 2.19]). Then, X has a σ -locally countable Lindelöf sn-network. Therefore,

- (1) A space with a locally countable sn-network need not have a σ -locally finite Lindelöf cs-network.
- (2) A space with a σ -locally countable Lindelöf sn-network need not have a σ -locally finite Lindelöf sn-network (or cs-network).
- (3) A space with a σ -locally countable Lindelöf cs-network need not have a σ -locally finite Lindelöf cs-network.

EXAMPLE 3.6. Using [7, Example 3.1], it is easy to see that X is Hausdorff, non-regular and X has a countable base, but it is not a sequentially-quotient π image of a metric space. Then, X is not an \aleph_0 -space. By Theorem 2.3, X is a 2-sequence-covering (and open) mssc-image of a locally separable metric space.

- (1) There exists an H- \aleph_0 -space, but it is not an \aleph_0 -space.
- (2) A space with a σ -locally finite Lindelöf cs-network (or an sn-network, or an so-network) need not be a sequentially-quotient π , mssc-image (or msss-image) of a metric space.

Acknowledgements. The authors would like to thank the referee for his/her valuable comments and suggestions.

References

- T. V. An, L.Q. Tuyen, Further properties of 1-sequence-covering maps, Comment. Math. Univ. Carolin. 49(3) (2008), 477–484.
- 2. A.V. Arhangel'skiĭ, Mappings and spaces, Russian Math. Surveys 21(4) (1966), 115-162.
- N. V. Dung, On sequence-covering msss-images of locally separable metric spaces, Lobachevskii J. Math. 30(1) (2009), 67–75.
- N. V. Dung, On sequence-covering mssc-images of locally separable metric spaces, Publ. Inst. Math., Nouv. Sér. 87(101) (2010), 143–153.
- 5. X. Ge, Spaces with a locally countable sn-network, Lobachevskii J. Math. 26 (2007), 33-49
- 6. Y. Ge, On sn-metrizable spaces, Acta Math. Sinica 45 (2002), 355–360 (in Chinese).
- 7. Y. Ge, J.S. Gu, On π -images of separable metric spaces, Math. Sci. 10 (2004), 65–71.
- Y. Ge, Remarks on sequence-covering images of metric spaces, Appl. Math. E-Notes 7 (2007), 60–64.
- Y. Ge, Weak forms of open mappings and strong forms of sequence-covering mappings, Mat. Vesnik 59 (2007), 1–8.
- Y. Ge, S. Lin, g-metrizable spaces and the images of semi-metric spaces, Czech. Math. J. 57(132) (2007), 1141–1149.

AN AND TUYEN

- G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303–332.
- 12. Z. Li, A note on ℵ-spaces and g-metrizable spaces, Czech. Math. J. 55(130) (2005), 803–808.
- 13. Z. Li, Space with σ -locally countable weak-bases, Archivum Math. 42 (2006), 135–140. (Brno)
- 14. Z. Li, Q. Li, X. Zhou, On sequence-covering msss-maps, Mat. Vesnik 59 (2007), 15–21.
- S. Lin, Locally countable collections, locally finite collections and Alexandroff's problems, Acta Math. Sinica 37 (1994), 491–496 (in Chinese).
- 16. S. Lin, Generalized Metric Spaces and Mappings, Chinese Science Press, Beijing, 1995.
- 17. S. Lin, On sequence-covering s-mappings, Adv. Math. (China) 25(6) (1996), 548-551.
- S. Lin, Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing (2002).
- 19. S. Lin, C. Liu, On spaces with point-countable cs-networks, Topology Appl. 74 (1996), 51-60.
- 20. S. Lin, P. Yan, Sequence-covering maps of metric spaces, Topology Appl. 109 (2001) 301–314.
- 21. S. Lin, P. Yan, Notes on cfp-covers, Comment. Math. Univ. Carolin. 44 (2003), 295–306.
- 22. M. Sakai, On spaces with a star-countable k-networks, Houston J. Math. 23(1) (1997), 45-56.
- 23. F. Siwiec, On defining a space by a weak base, Pacific J. Math. 52(1) (1974), 233-245.
- Y. Ykeda, Y. Tanaka, Space having star-countable k-networks, Topology Proc. 18 (1993), 107–132.
- Y. Tanaka, Z. Li, Certain covering-maps, k-networks, and related matters, Topology Proc. 27(1) (2003), 317–334.
- N. V. Velichko, Quotient spaces of metrizable spaces, Sibirsk. Mat. Zh. 28(4) (1987), 73–81, 225 (in Russian).
- 27. S. Xia, Characterizations of certain g-first countable spaces, Adv. Math. 29 (2000), 61-64.

Department of Mathematics Vinh University Vinh City Vietnam andhv@yahoo.com

Department of Mathematics Da Nang University Danang City Vietnam

luongtuyench12@yahoo.com

(Received 12 04 2011) (Revised 17 07 2012)

144