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Abstract. We prove that a space X has a σ-locally finite Lindelöf sn-network
if and only if X is a compact-covering compact and mssc-image of a locally
separable metric space, if and only if X is a sequentially-quotient π and
mssc-image of a locally separable metric space, where “compact-covering” (or

“sequentially-quotient”) can not be replaced by “sequence-covering”. As an
application, we give a new characterization of spaces with locally countable
weak bases.

1. Introduction

In [17] Lin introduced the concept of mssc-maps to characterize spaces with
certain σ-locally finite networks by mssc-images of metric spaces. After that, some
characterizations for certain mssc-images of metric (or semi-metric) spaces are ob-
tained by many authors ([11, 12, 14], for example). Recently, Dung gave some
characterizations for certain mssc-images of locally separable metric spaces (see
in [3]).

We prove that a space X has a σ-locally finite Lindelöf sn-network if and only
if X is a compact-covering compact and mssc-image of a locally separable metric
space, if and only if X is a sequentially-quotient π and mssc-image of a locally
separable metric space, where “compact-covering” (or “sequentially-quotient”) can
not be replaced by “sequence-covering”. As an application, we give a new charac-
terization of spaces with locally countable weak bases.

Throughout this paper, all spaces are assumed to be T1 and regular, all maps
are continuous and onto, N denotes the set of all natural numbers. Let P and Q
be two families of subsets of X and x ∈ X , we denote (P)x = {P ∈ P : x ∈ P },
⋃

P =
⋃

{P : P ∈ P},
⋂

P =
⋂

{P : P ∈ P}, st(x, P) =
⋃

(P)x and P
∧

Q =
{P ∩ Q : P ∈ P , Q ∈ Q}. For a sequence {xn} converging to x and P ⊂ X , we say
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that {xn} is eventually in P if {x}
⋃

{xn : n > m} ⊂ P for some m ∈ N, and {xn}
is frequently in P if some subsequence of {xn} is eventually in P .

Definition 1.1. Let X be a space, P ⊂ X and let P be a cover of X .

(1) P is a sequential neighborhood of x in X [5], if each sequence S converging
to x is eventually in P .

(2) P is a sequentially open subset of X [5], if P is a sequential neighborhood
of x in X for every x ∈ P .

(3) P is an so-cover for X [19], if each element of P is sequentially open in
X .

(4) P is a cfp-cover for X [29], if whenever K is compact subset of X , there
exist a finite family {Ki : i 6 n} of closed subsets of K and {Pi : i 6 n} ⊂
P such that K =

⋃

{Ki : i 6 n} and each Ki ⊂ Pi.
(5) P is an cs∗-cover for X [28], if every convergent sequence is frequently in

some P ∈ P .

Definition 1.2. Let P be a family of subsets of a space X .

(1) For each x ∈ X , P is a network at x in X [18], if x ∈
⋂

P , and if x ∈ U
with U open in X , then there exists P ∈ P such that x ∈ P ∈ U .

(2) P is a cs-network for X [28], if each sequence S converging to a point
x ∈ U with U open in X , S is eventually in P ⊂ U for some P ∈ P .

(3) P is a cs∗-network for X [28], if for each sequence S converging to a point
x ∈ U with U open in X , S is frequently in P ⊂ U for some P ∈ P .

(4) P is Lindelöf, if each element of P is a Lindelöf subset of X .
(5) P is point-countable [4], if each point x ∈ X belongs to only countably

many members of P .
(6) P is locally countable [4], if for each x ∈ X , there exists a neighborhood

V of x such that V meets only countably many members of P .
(7) P is locally finite [4], if for each x ∈ X , there exists a neighborhood V of

x such that V meets only finite many members of P .
(8) P is star-countable [23], if each P ∈ P meets only countably many mem-

bers of P .

Definition 1.3. Let P =
⋃

{Px : x ∈ X} be a family of subsets of a space X
satisfying that, for every x ∈ X , Px is a network at x in X , and if U, V ∈ Px, then
W ⊂ U ∩ V for some W ∈ Px.

(1) P is a weak base for X [1], if G ⊂ X such that for every x ∈ G, there
exists P ∈ Px satisfying P ⊂ G, then G is open in X . Here, Px is a weak

base at x in X .
(2) P is an sn-network for X [16], if each member of Px is a sequential

neighborhood of x for all x ∈ X . Here, Px is an sn-network at x in X .

Definition 1.4. Let X be a space.

(1) X is an sn-first countable space [8], if there is a countable sn-network at
x in X for all x ∈ X .

(2) X is an sn-metrizable space [7] (resp., a g-metrizable space [25]), if X has
a σ-locally ŕfinite sn-network (resp., weak base).
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(3) X is a cosmic space [21], if X has a countable network.
(4) X is an ℵ0-space [21], if X has a countable cs-network.
(5) X is an ℵ-space [22], if X has a σ-locally finite cs-network.
(6) X is a sequential space [5], if each sequentially open subset of X is open.
(7) X is a Fréchet space [4], if for each x ∈ A, there exists a sequence in A

converging to x.

Definition 1.5. Let f : X → Y be a map.

(1) f is sequence-covering [24], if for each convergent sequence S of Y , there
exists a convergent sequence L of X such that f(L) = S. Note that a
sequence-covering map is a strong sequence-covering map in the sense of
[14].

(2) f is compact-covering [21], if for each compact subset K of Y , there exists
a compact subset L of X such that f(L) = K.

(3) f is pseudo-sequence-covering [13], if for each convergent sequence S of Y ,
there exists a compact subset K of X such that f(K) = S.

(4) f is sequentially-quotient [2], if for each convergent sequence S of Y , there
exists a convergent sequence L of X such that f(L) is a subsequence of S.

(5) f is a quotient map [4], if whenever U ⊂ Y , U open in Y if and only if
f−1(U) open in X .

(6) f is an mssc-map [17], if X is a subspace of the product space
∏

i∈N
Xi

of a family {Xi : i ∈ N} of metric spaces and for each y ∈ Y , there is a

sequence {Vi : i ∈ N} of open neighborhoods of y such that each pif−1(Vi)
is compact in Xi.

(7) f is compact [4], if each f−1(y) is compact in X .
(8) f is a π-map [13], if for each y ∈ Y and for each neighborhood U of y in Y ,

d
(

f−1(y), X − f−1(U)
)

> 0, where X is a metric space with a metric d.

Definition 1.6. [18] Let {Pi} be a cover sequence of a space X . {Pi} is called
a point-star network, if {st(x, Pi) : i ∈ N} is a network of x for each x ∈ X .

For some undefined or related concepts, we refer the reader to [4, 13, 18].

2. Main Results

Lemma 2.1. Let f : M → X be a sequentially-quotient mssc-map, and M be a

locally separable metric space. Then, X has a σ-locally finite Lindelöf cs-network.

Proof. By using the proof of (3) ⇒ (1) in [14, Theorem 4], there exists a
base B of M such that f(B) is a σ-locally finite network for X . Since M is locally
separable, for each a ∈ M , there exists a separable open neighborhood Ua. Denote

C = {B ∈ B : B ⊂ Ua for some a ∈ M}.

Then, C ⊂ B and C is a separable base for M . If put P = f(C), then P ⊂ f(B),
and P is a σ-locally finite Lindelöf network. Since f is sequentially-quotient and
C is a base for M , P is a cs∗-network. Therefore, P is a σ-locally finite Lindelöf
cs∗-network.
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Let P =
⋃

{Pi : i ∈ N}, we can assume that Pn ⊂ Pn+1 for all n ∈ N.
Since each element of Pi is Lindelöf, each Pi is star-countable. It follows from [23,
Lemma 2.1] that for each i ∈ N, Pi =

⋃

{Qi,α : α ∈ Λi}, where Qi,α is a countable
subfamily of Pi for all α ∈ Λi and

(
⋃

Qi,α

)

∩
(

⋃

Qi,β

)

= ∅ for all α 6= β. For

each i ∈ N and α ∈ Λi, we put Ri,α =
{

⋃

F : F is a finite subfamily of Qi,α

}

.
Since each Ri,α is countable, we can write Ri,α = {Ri,α,j : j ∈ N}. Now, for each
i, j ∈ N, put Fi,j = {Ri,α,j : α ∈ Λi}, and denote G =

⋃

{Fi,j : i, j ∈ N}. Then,
each Ri,α,j is Lindelöf and each family Fi,j is locally finite. Now, we shall show
that G is a cs-network. In fact, let {xn} be a sequence converging to x ∈ U with U
open in X . Since P is a point-countable cs∗-network, it follows from [27, Lemma 3]
that there exists a finite family A ⊂ (P)x such that {xn} is eventually in

⋃

A ⊂ U .
Furthermore, since A is finite and Pi ⊂ Pi+1 for all i ∈ N, there exists i ∈ N such
that A ⊂ Pi. So, there exists unique α ∈ Λi such that A ⊂ Qi,α, and

⋃

A ∈ Ri,α.
Thus,

⋃

A = Ri,α,j for some j ∈ N. Hence,
⋃

A ∈ G, and G is a cs-network.
Therefore, G is a σ-locally finite Lindelöf cs-network. �

Theorem 2.1. The following are equivalent for a space X.

(1) X is an sn-metrizable space and has an so-cover consisting of ℵ0-subspaces;

(2) X has a σ-locally finite Lindelöf sn-network;

(3) X is a compact-covering compact and mssc-image of a locally separable

metric space;

(4) X is a pseudo-sequence-covering compact and mssc-image of a locally sep-

arable metric space;

(5) X is a subsequence-covering compact and mssc-image of a locally separable

metric space;

(6) X is a sequentially-quotient π and mssc-image of a locally separable metric

space.

Proof. (1) → (2). Let P =
⋃

{Px : x ∈ X} be a σ-locally finite sn-network
and O be an so-cover consisting of ℵ0-subspaces for X . For each x ∈ X , pick Ox ∈ O
such that x ∈ Ox and put Gx = {P ∈ Px : P ⊂ Ox} and G =

⋃

{Gx : x ∈ X}.
Then, G is a σ-locally finite Lindelöf sn-network for X .

(2) → (3). Let P =
⋃

{Px : x ∈ X} = {Pn : n ∈ N} be a σ-locally finite
Lindelöf sn-network for X , where each Pn is locally finite and each Px is an sn-
network at x. Since X is a regular space, we can assume that each element of
P is closed. On the other hand, since each element of Pi is Lindelöf, each Pi

is star-countable. It follows from [23, Lemma 2.1] that for each i ∈ N, Pi =
⋃

{Qi,α : α ∈ Φi}, where Qi,α is a countable subfamily of Pi for all α ∈ Φi and
(

⋃

Qi,α

)

∩
(

⋃

Qi,β

)

= ∅ for all α 6= β. Since each Qi,α is countable, we can write
Qi,α = {Pi,α,j : j ∈ N}. Now, for each i, j ∈ N, put Fi,j = {Pi,α,j : α ∈ Φi}, and
Ai,j = {x ∈ X : Px ∩ Fi,j = ∅} and Hi,j = Fi,j ∪ {Ai,j}. Then, P =

⋃

{Fi,j : i, j ∈
N}, and

(a) Each Hi,j is locally finite. It is obvious.
(b) Each Hi,j is a cfp-cover. Let K be a non-empty compact subset of X . We

shall show that there exists a finite subset of Hi,j which forms a cfp-cover of K.
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In fact, since X has a σ-locally finite sn-network, K is metrizable. On the other
hand, since Pi is locally finite, K meets only finitely many members of Pi. Thus,
K meets only finitely many members of Hi,j . Let

Γi,j =
{

α ∈ Φi : Pi,α,j ∈ Hi,j , Pi,α,j ∩ K 6= ∅
}

.

For each α ∈ Γi,j , put Ki,α,j = Pi,α,j ∩ K, Fi,j = K −
⋃

α∈Γi,j
Ki,α,j . It is obvious

that all Ki,α,j and Fi,j are closed subset of K, and K = Fi,j ∪
(

⋃

α∈Γi,j
Ki,α,j

)

.

Now, we only need to show Fi,j ⊂ Ai,j . Let x ∈ Fi,j ; then there exists a sequence
{xn} of K −

⋃

α∈Γi,j
Ki,α,j converging to x. If P ∈ Px ∩Hi,j , then P is a sequential

neighborhood of x and P = Pi,α,j for some α ∈ Γi,j . Thus, xn ∈ P whenever
n > m for some m ∈ N. Hence, xn ∈ Ki,α,j for some α ∈ Γi,j , a contradiction. So,
Px ∩ Hi,j = ∅, and x ∈ Ai,j . This implies that Fi,j ⊂ Ai,j and {Ai,j} ∪ {Pi,α,j :
α ∈ Γi,j} is a cfp-cover of K.

(c) {Hi,j : i, j ∈ N} is a point-star network for X . Let x ∈ U with U open in X .
Then, x ∈ P ⊂ U for some P ∈ Px. Thus, there exists i ∈ N such that P ∈ Pi.
Hence, there exists a unique α ∈ Φi such that P ∈ Qi,α. So, P = Pi,α,j ∈ Hi,j for
some j ∈ N. Since P ∈ Px ∩ Hi,j , x /∈ Ai,j . Noting that P ∩ Pi,α,j = ∅ for all j 6= i.
Therefore, st

(

x, Hi,j

)

= P ⊂ U .
Next, we write {Hm,n : m, n ∈ N} = {Gi : i ∈ N}. For each n ∈ N, put

Gn = {Pα : α ∈ Λn} and endow Λn with the discrete topology. Then,

M =
{

α = (αn) ∈
∏

n∈N
Λn : {Pαn

} forms a network at some point xα ∈ X
}

is a metric space and the point xα is unique in X for every α ∈ M . Define
f : M → X by f(α) = xα. It follows [20, Lemma 13] that f is a compact-covering
and compact map. On the other hand, we have

Claim 1. M is locally separable.
Let a = (αi) ∈ M . Then, {Pαi

} is a network at some point xa ∈ X , and
xa ∈ P for some P ∈ Pxa

. Thus, there exists m ∈ N such that P ∈ Pm. Hence,
there exists a unique α ∈ Φm such that P ∈ Qm,α. Therefore, P = Pm,α,n ∈ Hm,n

for some n ∈ N. Since P ∈ Pxa
∩ Hm,n, xa /∈ Am,n. Noting that P ∩ Pm,α,n = ∅ for

all n 6= m. This implies that st(x, Hm,n) = P . Then, Hm,n = Gi0
for some i0 ∈ N

and P = Pαi0
. Thus, Pαi0

is Lindelöf. Put

Ua = M ∩
{

(βi) ∈
∏

i∈N
Λi : βi = αi, i 6 i0

}

.

Then, Ua is an open neighborhood of a in M . Now, for each i 6 i0, put ∆i = {αi},
and for each i > i0 we put ∆i = {α ∈ Λi : Pα ∩ Pαi0

6= ∅}. Then, Ua ⊂
∏

i∈N
∆i.

Furthermore, since each Pi is locally finite and Pαi0
is Lindelöf, ∆i is countable for

every i > i0. Thus, Ua is separable, and M is locally separable.

Claim 2. f is an mssc-map.
Let x ∈ X . For each n ∈ N, since Gn is locally finite, there is an open neigh-

borhood Vn of x such that Vn intersects at most finite members of Gn. Put

Θn = {α ∈ Λn : Pα ∩ Vn 6= ∅}.
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Then, Θn is finite and pnf−1(Vn) ⊂ Θn. Hence, pnf−1(Vn) is a compact subset of
Λn, so f is an mssc-map.

(3) ⇒ (4) ⇒ (5) ⇒ (6). It is obvious.
(6) ⇒ (1). Let f : M → X be a sequentially-quotient π and mssc-map, where

M be a locally separable metric space. By [9, Corollary 2.9], X has a point-star
network {Un}, where each Un is a cs∗-cover. For each n ∈ N, put Gn =

∧

i6n Ui.

Now, for each x ∈ X , let Gx = {st(x, Gn) : n ∈ N}. Since each Un is a cs∗-cover,
it implies that

⋃

{Gx : x ∈ X} is an sn-network for X . Hence, X is an sn-first
countable space. On the other hand, since f is a sequentially-quotient mssc-map,
it follows from Lemma 2.1 that X has a σ-locally finite Lindelöf cs-network P . We
can assume that each P is closed under finite intersections. Then, each element
of P is a cosmic subspace. By [19, Theorem 3.4], X has an so-cover consisting of
ℵ0-subspaces. Now, we only need to prove that X is an sn-metrizable space. In
fact, since X is sn-first countable, X has an sn-network Q =

⋃

{Qx : x ∈ X} with
each Qx = {Qn(x) : n ∈ N} is a countable sn-network at x. For each x ∈ X , put
Px =

{

P ∈ P : Qn(x) ⊂ P for some n ∈ N
}

. By using proof of [26, Lemma 7], we
obtain Px is an sn-network at x. Then, G =

⋃

{Px : x ∈ X} is an sn-network for X .
Since G ⊂ P , it implies that G is σ-locally finite. Thus, X is an sn-metrizable
space. �

By Theorem 2.1 and [28, Lemma 2.7(2)], we have

Corollary 2.1. The following are equivalent for a space X.

(1) X has a locally countable weak base;

(2) X is a local ℵ0-subspace and g-metrizable space;

(3) X has a σ-locally finite Lindelöf weak base;

(4) X is a compact-covering quotient compact and mssc-image of a locally

separable metric space;

(5) X is a pseudo-sequence-covering quotient compact and mssc-image of a

locally separable metric space;

(6) X is a subsequence-covering quotient compact and mssc-image of a locally

separable metric space;

(7) X is a quotient π and mssc-image of a locally separable metric space.

Example 2.1. Let Cn be a convergent sequence containing its limit point pn

for each n ∈ N, where Cm ∩ Cn = ∅ if m 6= n. Let Q = {qn : n ∈ N} be the set of
all rational numbers of the real line R. Put M =

(
⊕

{Cn : n ∈ N}
)

⊕ R and let X
be the quotient space obtained from M by identifying each pn in Cn with qn in R.
Then, by the proof of [12, Example 3.1], X has a countable weak base and X is
not a sequence-covering quotient π-image of a metric space. Hence,

(1) A space with a σ-locally finite Lindelöf sn-network ; a sequence-covering
π and mssc-image of a locally separable metric space.

(2) A space with a σ-locally finite Lindelöf weak base ; a sequence-covering
quotient π and mssc-image of a locally separable metric space.

Example 2.2. Using [10, Example 3.1], it is easy to see that X is Haus-
dorff, non-regular and X has a countable base, but it is not a sequentially-quotient
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π-image of a metric space. This shows that regular properties of X can not be
omitted in Theorem 2.1 and Corollary 2.1.

Example 2.3. Sω is a Fréchet and ℵ0-space, but it is not first countable. Thus,
Sω has a σ-locally finite Lindelöf cs-network. It follows from [3, Theorem 2.1] that
X is a sequence-covering mssc-image of a locally separable metric space. Further-
more, since Sω is not first countable, it doesn’t have a point-countable sn-network.
Hence,

(1) A space with a σ-locally finite Lindelöf cs-network ; a sequentially-
quotient π and mssc-image of a locally separable metric space.

(2) A sequence-covering quotient mssc-image of a locally separable metric
space ; X has a σ-locally finite Lindelöf sn-network.

Example 2.4. Using [15, Example 2.7], it is easy to see that X is a compact-
covering quotient and compact image of a locally compact metric space, but it
does not have a point-countable cs-network. Thus, a compact-covering quotient
and compact image of a locally separable metric space ; X has a σ-locally finite
Lindelöf sn-network.

Example 2.5. There exists a space X having a locally countable sn-network,
which is not an ℵ-space (see [6, Example 2.19]). Then, X has a σ-locally countable
Lindelöf sn-network. Therefore,

(1) A space with a locally countable sn-network ; X has a σ-locally finite
Lindelöf sn-network.

(2) A space with a σ-locally countable Lindelöf sn-network ; X has a
σ-locally finite Lindelöf sn-network.
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