4-DIMENSIONAL (PARA)-KÄHLER-WEYL STRUCTURES

Peter Gilkey and Stana Nikčević

Abstract

We give an elementary proof of the fact that any 4-dimensional para-Hermitian manifold admits a unique para-Kähler-Weyl structure. We then use analytic continuation to pass from the para-complex to the complex setting and thereby show that any 4-dimensional pseudo-Hermitian manifold also admits a unique Kähler-Weyl structure.

1. Introduction

1.1. Weyl manifolds. Let (M, g) be a pseudo-Riemannian manifold of dimension m. A triple (M, g, ∇) is said to be a Weyl manifold and ∇ is said to be a Weyl connection if ∇ is a torsion free connection with $\nabla g=-2 \phi \otimes g$ for some smooth 1 -form ϕ. This is a conformal theory; if $\tilde{g}=e^{2 f} g$ is a conformally equivalent metric, then (M, \tilde{g}, ∇) is a Weyl manifold with associated 1-form $\tilde{\phi}=\phi-d f$. If ∇^{g} is the Levi-Civita connection, we may then express $\nabla=\nabla^{\phi}$ in the form:

$$
\begin{equation*}
\nabla_{x}^{\phi} y=\nabla_{x}^{g} y+\phi(x) y+\phi(y) x-g(x, y) \phi^{\#} \tag{1.1}
\end{equation*}
$$

where $\phi^{\#}$ is the dual vector field. Thus ϕ determines ∇. Conversely, if ϕ is given and if we use Equation (1.1) to define ∇, then ∇ is a Weyl connection with associated 1-form ϕ. We refer to [5] for further details concerning Weyl geometry.
1.2. Para-Hermitian manifolds. Let $m=2 \bar{m}$. A triple (M, g, J_{+}) is said to be an almost para-Hermitian manifold with an almost para-complex structure J_{+} if g is a pseudo-Riemannian metric on M of neutral signature (\bar{m}, \bar{m}) and if J_{+}is an endomorphism of the tangent bundle $T M$ so that $J_{+}^{2}=\mathrm{Id}$ and so that $J_{+}^{*} g=-g$; $\left(M, g, J_{+}\right)$is said to be para-Hermitian with an integrable complex structure J_{+}if the para-Nijenhuis tensor

$$
N_{J_{+}}(x, y):=[x, y]-J_{+}\left[J_{+} x, y\right]-J_{+}\left[x, J_{+} y\right]+\left[J_{+} x, J_{+} y\right]
$$

[^0]vanishes or, equivalently, if there are local coordinates $\left(u^{1}, \ldots, u^{\bar{m}}, v^{1}, \ldots, v^{\bar{m}}\right)$ centered on an arbitrary point of M so that $J_{+} \partial_{u_{i}}=\partial_{v_{i}}$ and $J_{+} \partial_{v_{i}}=\partial_{u_{i}}$.
1.3. Pseudo-Hermitian manifolds. Let $m=2 \bar{m}$. A triple $\left(M, g, J_{-}\right)$is said to be an almost pseudo-Hermitian manifold with an almost complex structure J_{-}if (M, g) is a pseudo-Riemannian manifold, if J_{-}is an endomorphism of the tangent bundle so that $J_{-}^{2}=-\mathrm{id}$ and so that $J_{-}^{*} g=g ;\left(M, g, J_{-}\right)$is said to be a pseudo-Hermitian manifold with an integrable complex structure J_{-}if the Nijenhuis tensor
$$
N_{J_{-}}(x, y):=[x, y]+J_{-}\left[J_{-} x, y\right]+J_{-}\left[x, J_{-} y\right]-\left[J_{-} x, J_{-} y\right]
$$
vanishes or, equivalently, if there are local coordinates $\left(u^{1}, \ldots, u^{\bar{m}}, v^{1}, \ldots, v^{\bar{m}}\right)$ centered on an arbitrary point of M so that $J_{-} \partial_{u_{i}}=\partial_{v_{i}}$ and $J_{-} \partial_{v_{i}}=-\partial_{u_{i}}$.
1.4. Para-Kähler and Kähler manifolds. One says that a Weyl connection ∇ on a para-Hermitian manifold $\left(M, g, J_{+}\right)$is a para-Kähler-Weyl connection if $\nabla J_{+}=0$. Similarly, one says that a Weyl connection ∇ on a pseudo-Hermitian manifold $\left(M, g, J_{-}\right)$is a Kähler-Weyl connection if $\nabla J_{-}=0$. Since $\nabla J_{ \pm}=0$ implies $J_{ \pm}$to be integrable, we assume this condition henceforth. If $\nabla=\nabla^{g}$ is the Levi-Civita connection, then $\left(M, g, J_{ \pm}\right)$is said to be (para)-Kähler.

Let \star be the Hodge operator and let $\Omega_{ \pm}(x, y):=g\left(x, J_{ \pm} y\right)$ be the (para)-Kähler form. The co-derivative $\delta \Omega_{ \pm}$is given, see [2] for example, by $\delta \Omega_{ \pm}=-\star d \star \Omega_{ \pm}$.

The following is well known - see, for example, the discussion in $\mathbf{9}$ of the Riemannian setting (which uses results of [10, 11]) and the generalization given in [3] to the more general context.

THEOREM 1.1. Let $m \geqslant 6$. If $\left(M, g, J_{ \pm}, \nabla\right)$ is a (para)-Kähler-Weyl structure, then the associated Weyl structure is trivial, i.e., there is always locally a conformally equivalent metric $\tilde{g}=e^{2 f} g$ so that $\left(M, \tilde{g}, J_{ \pm}\right)$is (para)-Kähler and so that $\nabla=\nabla{ }^{\tilde{g}}$.

By Theorem 1.1, only the 4-dimensional setting is relevant. The following is the main result of this short note; it plays a central role in the discussion of $\mathbf{1}$.

Theorem 1.2. (1) If $\mathcal{M}=\left(M, g, J_{+}\right)$is a para-Hermitian manifold of signature $(2,2)$, then there is a unique para-Kähler-Weyl structure on \mathcal{M} with $\phi=\frac{1}{2} J_{+} \delta \Omega_{+}$.
(2) If $\mathcal{M}=\left(M, g, J_{-}\right)$is a pseudo-Hermitian manifold of signature $(2,2)$, then there is a unique Kähler-Weyl structure on \mathcal{M} with $\phi=-\frac{1}{2} J_{-} \delta \Omega_{-}$.
(3) If $\mathcal{M}=\left(M, g, J_{-}\right)$is a Hermitian manifold of signature (0,4), then there is a unique Kähler-Weyl structure on \mathcal{M} with $\phi=-\frac{1}{2} J_{-} \delta \Omega_{-}$.

Assertion (3) of Theorem 1.2, which deals with the Hermitian setting, is well known - see, for example, the discussion in [8. Subsequently, Theorem 1.2 was established in full generality (see [3, 4]) by extending the Higa curvature decomposition [6, 7 , from the real to the Kähler-Weyl and to the para-Kähler Weyl contexts.

Here is a brief outline to this paper. In Section 2, we show that if a (para)-Kähler-Weyl structure exists, then it is unique. In Section 3, we give a direct
proof of Assertion (1) of Theorem 1.2 in the para-Hermitian setting. In Section 4 , we use analytic continuation to derive Assertions (2) and (3), which deal with the complex setting, from Assertion (1). This reverses the usual procedure of viewing para-complex geometry setting as an adjunct to complex geometry and is a novel feature of this paper.

2. Uniqueness of the (para)-Kähler-Weyl structure

This section is devoted to the proof of the following uniqueness result.
Lemma 2.1. (1) If $\nabla^{\phi_{1}}$ and $\nabla^{\phi_{2}}$ are two para-Kähler-Weyl connections on a 4-dimensional para-Hermitian manifold $\left(M, g, J_{+}\right)$, then $\phi_{1}=\phi_{2}$.
(2) If $\nabla^{\phi_{1}}$ and $\nabla^{\phi_{2}}$ are two Kähler-Weyl connections on a 4-dimensional pseudo-Hermitian manifold $\left(M, g, J_{-}\right)$, then $\phi_{1}=\phi_{2}$.

Proof. Let $\phi=\phi_{1}-\phi_{2}$ and let $\Theta_{X}(Y)=\phi(X) Y+\phi(Y) X-g(X, Y) \phi^{\#}$. By Equation (1.1), $\nabla_{X}^{\phi_{1}}-\nabla_{X}^{\phi_{2}}=\Theta_{X} \in \operatorname{End}(T M)$. Consequently, $\left\{\nabla^{\phi_{1}}-\nabla^{\phi_{2}}\right\} J_{ \pm}=0$ implies $\left[\Theta_{X}, J_{ \pm}\right]=0$ for all X.

We first deal with the para-Hermitian case. This is a purely algebraic computation. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be a local frame for $T M$ so that

$$
\begin{gather*}
J_{+} e_{1}=e_{1}, \quad J_{+} e_{2}=e_{2}, \quad J_{+} e_{3}=-e_{3}, \quad J_{+} e_{4}=-e_{4} \\
g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{4}\right)=1 \tag{2.1}
\end{gather*}
$$

We expand $\phi=a_{1} e^{1}+a_{2} e^{2}+a_{3} e^{3}+a_{4} e^{4}$ and compute:

$$
\begin{array}{lll}
\Theta_{e_{1}} e_{4}=a_{1} e_{4}+a_{4} e_{1}, & J_{+} \Theta_{e_{1}} e_{4}=-a_{1} e_{4}+a_{4} e_{1}, & \Theta_{e_{1}} J_{+} e_{4}=-a_{1} e_{4}-a_{4} e_{1}, \\
\Theta_{e_{2}} e_{3}=a_{2} e_{3}+a_{3} e_{2}, & J_{+} \Theta_{e_{2}} e_{3}=-a_{2} e_{3}+a_{3} e_{2}, & \Theta_{e_{2}} J_{+} e_{3}=-a_{2} e_{3}-a_{3} e_{2}, \\
\Theta_{e_{4}} e_{1}=a_{4} e_{1}+a_{1} e_{4}, & J_{+} \Theta_{e_{4}} e_{1}=a_{4} e_{1}-a_{1} e_{4}, & \Theta_{e_{4}} J_{+} e_{1}=a_{4} e_{1}+a_{1} e_{4}, \\
\Theta_{e_{3}} e_{2}=a_{3} e_{2}+a_{2} e_{3}, & J_{+} \Theta_{e_{3}} e_{2}=a_{3} e_{2}-a_{2} e_{3}, & \Theta_{e_{3}} J_{+} e_{2}=a_{3} e_{2}+a_{2} e_{3} .
\end{array}
$$

Equating $\Theta_{e_{i}} J_{+} e_{j}$ with $J_{+} \Theta_{e_{i}} e_{j}$ then implies $a_{1}=a_{2}=a_{3}=a_{4}=0$ so $\phi=0$ and $\phi_{1}=\phi_{2}$. This establishes Assertion (1).

Next assume we are in the pseudo-Hermitian setting. Complexify and extend g to be complex bilinear. Choose a local frame $\left\{Z_{1}, Z_{2}, \bar{Z}_{1}, \bar{Z}_{2}\right\}$ for $T M \otimes_{\mathbb{R}} \mathbb{C}$ so

$$
\begin{array}{ll}
J_{-} Z_{1}=\sqrt{-1} Z_{1}, & J_{-} Z_{2}=\sqrt{-1} Z_{2}, \\
J_{-} \bar{Z}_{1}=-\sqrt{-1} \bar{Z}_{1}, & J_{-} \bar{Z}_{2}=-\sqrt{-1} \bar{Z}_{2}, \\
g\left(Z_{1}, \bar{Z}_{1}\right)=1, & g\left(Z_{2}, \bar{Z}_{2}\right)=\varepsilon_{2}
\end{array}
$$

where we take $\varepsilon_{2}=+1$ in signature $(0,4)$ and $\varepsilon_{2}=-1$ in signature $(2,2)$. We set $J_{+}:=-\sqrt{-1} J_{-}, e_{1}:=Z_{1}, e_{2}:=Z_{2}, e_{3}:=\bar{Z}_{1}$, and $e_{4}:=\varepsilon_{2} \bar{Z}_{2}$ and apply the argument given to prove Assertion (1) (where the coefficients a_{i} are now complex) to derive Assertion (2).

3. Para-Hermitian geometry

3.1. The algebraic context. Let $\left(V,\langle\cdot, \cdot\rangle, J_{+}\right)$be a para-Hermitian vector space of dimension 4 . Here $\langle\cdot, \cdot\rangle$ is an inner product on V of signature $(2,2)$ and J_{+} is an endomorphism of V satisfying $J_{+}^{2}=\mathrm{Id}$ and $J_{+}^{*}\langle\cdot, \cdot \cdot\rangle=-\langle\cdot, \cdot\rangle$. We may then choose a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ for $V=\mathbb{R}^{4}$ so that the relations of Equation (2.1) are satisfied. The Kähler form and orientation μ are then given by

$$
\Omega_{+}=-e^{1} \wedge e^{3}-e^{2} \wedge e^{4} \quad \text { and } \quad \mu=\frac{1}{2} \Omega_{+} \wedge \Omega_{+}=e^{1} \wedge e^{3} \wedge e^{2} \wedge e^{4}
$$

Let \star be the Hodge operator, characterized by

$$
\omega_{1} \wedge \star \omega_{2}=\left\langle\omega_{1}, \omega_{2}\right\rangle e^{1} \wedge e^{3} \wedge e^{2} \wedge e^{4} \text { for all } \omega_{i}
$$

Consequently:

$$
\begin{array}{ll}
\star e^{1} \wedge e^{3}=-e^{2} \wedge e^{4}, & \star e^{2} \wedge e^{4}=-e^{1} \wedge e^{3} \\
\star e^{1} \wedge e^{2} \wedge e^{3}=-e^{2}, & \star e^{1} \wedge e^{2} \wedge e^{4}=e^{1} \tag{3.1}\\
\star e^{1} \wedge e^{3} \wedge e^{4}=-e^{4}, & \star e^{2} \wedge e^{3} \wedge e^{4}=e^{3}
\end{array}
$$

3.2. Example. We begin the proof of Theorem 1.2 by considering a very specific example. Let $\left(x^{1}, x^{2}, x^{3}, x^{4}\right\}$ be the usual coordinates on \mathbb{R}^{4}, let $\partial_{i}:=\partial_{x_{i}}$, and let J_{+}be the standard para-complex structure:

$$
J_{+} \partial_{1}=\partial_{1}, \quad J_{+} \partial_{2}=\partial_{2}, \quad J_{+} \partial_{3}=-\partial_{3}, \quad J_{+} \partial_{4}=-\partial_{4}
$$

Let $f(0)=0$. We take the metric to have non-zero components determined by $g\left(\partial_{1}, \partial_{3}\right)=1$ and $g\left(\partial_{2}, \partial_{4}\right)=e^{2 f}$. Let $f_{i}:=\left\{\partial_{i} f\right\}(0)$. The (possibly) non-zero Christoffel symbols of ∇^{g} at the origin are given by:

$$
\begin{gathered}
g\left(\nabla_{\partial_{1}}^{g} \partial_{2}, \partial_{4}\right)=g\left(\nabla_{\partial_{2}}^{g} \partial_{1}, \partial_{4}\right)=g\left(\nabla_{\partial_{1}}^{g} \partial_{4}, \partial_{2}\right)=g\left(\nabla_{\partial_{4}}^{g} \partial_{1}, \partial_{2}\right)=f_{1}, \\
g\left(\nabla_{\partial_{3}}^{g} \partial_{2}, \partial_{4}\right)=g\left(\nabla_{\partial_{2}}^{g} \partial_{3}, \partial_{4}\right)=g\left(\nabla_{\partial_{3}}^{g} \partial_{4}, \partial_{2}\right)=g\left(\nabla_{\partial_{4}}^{g} \partial_{3}, \partial_{2}\right)=f_{3}, \\
g\left(\nabla_{\partial_{4}}^{g} \partial_{4}, \partial_{2}\right)=2 f_{4}, \quad g\left(\nabla_{\partial_{2}}^{g} \partial_{2}, \partial_{4}\right)=2 f_{2}, \\
g\left(\nabla_{\partial_{2}}^{g} \partial_{4}, \partial_{1}\right)=g\left(\nabla_{\partial_{4}}^{g} \partial_{2}, \partial_{1}\right)=-f_{1}, \quad g\left(\nabla_{\partial_{2}}^{g} \partial_{4}, \partial_{3}\right)=g\left(\nabla_{\partial_{4}}^{g} \partial_{2}, \partial_{3}\right)=-f_{3} .
\end{gathered}
$$

Consequently the (possibly) non-zero covariant derivatives at the origin are:

$$
\begin{gathered}
\nabla_{\partial_{1}}^{g} \partial_{2}=\nabla_{\partial_{2}}^{g} \partial_{1}=f_{1} \partial_{2}, \quad \nabla_{\partial_{1}}^{g} \partial_{4}=\nabla_{\partial_{4}}^{g} \partial_{1}=f_{1} \partial_{4}, \\
\nabla_{\partial_{3}}^{g} \partial_{2}=\nabla_{\partial_{2}}^{g} \partial_{3}=f_{3} \partial_{2}, \quad \nabla_{\partial_{3}}^{g} \partial_{4}=\nabla_{\partial_{4}}^{g} \partial_{3}=f_{3} \partial_{4}, \\
\nabla_{\partial_{4} \partial_{4}}=2 f_{4} \partial_{4}, \quad \nabla_{\partial_{2}}^{g} \partial_{2}=2 f_{2} \partial_{2}, \\
\nabla_{\partial_{2}}^{g} \partial_{4}=\nabla_{\partial_{4}}^{g} \partial_{2}=-f_{1} \partial_{3}-f_{3} \partial_{1} .
\end{gathered}
$$

Since $\nabla_{\partial_{1}}^{g}$ and $\nabla_{\partial_{3}}^{g}$ are diagonal, they commute with J_{+}so $\nabla_{\partial_{1}}^{g}\left(J_{+}\right)=\nabla_{\partial_{3}}^{g}\left(J_{+}\right)=0$. We compute

$$
\begin{aligned}
& \left(\nabla_{\partial_{2}}^{g} J_{+}\right) \partial_{1}=\left(1-J_{+}\right) \nabla_{\partial_{2}}^{g} \partial_{1}=\left(1-J_{+}\right) f_{1} \partial_{2}=0 \\
& \left(\nabla_{\partial_{2}}^{g} J_{+}\right) \partial_{2}=\left(1-J_{+}\right) \nabla_{\partial_{2}}^{g} \partial_{2}=\left(1-J_{+}\right) 2 f_{2} \partial_{2}=0 \\
& \left(\nabla_{\partial_{2}}^{g} J_{+}\right) \partial_{3}=\left(-1-J_{+}\right) \nabla_{\partial_{2}}^{g} \partial_{3}=\left(-1-J_{+}\right) f_{3} \partial_{2}=-2 f_{3} \partial_{2}, \\
& \left(\nabla_{\partial_{2}}^{g} J_{+}\right) \partial_{4}=\left(-1-J_{+}\right) \nabla_{\partial_{2}}^{g} \partial_{4}=\left(-1-J_{+}\right)\left(-f_{1} \partial_{3}-f_{3} \partial_{1}\right)=2 f_{3} \partial_{1},
\end{aligned}
$$

$$
\begin{aligned}
& \left(\nabla_{\partial_{4}}^{g} J_{+}\right) \partial_{1}=\left(1-J_{+}\right) \nabla_{\partial_{4}}^{g} \partial_{1}=\left(1-J_{+}\right) f_{1} \partial_{4}=2 f_{1} \partial_{4}, \\
& \left(\nabla_{\partial_{4}}^{g} J_{+}\right) \partial_{2}=\left(1-J_{+}\right) \nabla_{\partial_{4}}^{g_{2}} \partial_{2}=\left(1-J_{+}\right)\left(-f_{1} \partial_{3}-f_{3} \partial_{1}\right)=-2 f_{1} \partial_{3}, \\
& \left(\nabla_{\partial_{4}}^{g} J_{+}\right) \partial_{3}=\left(-1-J_{+}\right) \nabla_{\partial_{4}}^{g} \partial_{3}=\left(-1-J_{+}\right) f_{3} \partial_{4}=0, \\
& \left(\nabla_{\partial_{4}}^{g} J_{+}\right) \partial_{4}=\left(-1-J_{+}\right) \nabla_{\partial_{4}}^{g} \partial_{4}=\left(-1-J_{+}\right) 2 f_{4} \partial_{4}=0 .
\end{aligned}
$$

We apply Equation (3.1). We have $\star \Omega_{+}=-\Omega_{+}$. Setting $e^{1}=d x^{1}, e^{2}=e^{f} d x^{2}$, $e^{3}=d x^{3}$, and $e^{4}=e^{f} d x^{4}$ and recalling $f(0)=0$ yields

$$
\begin{gathered}
\star \Omega_{+}=-\Omega_{+}=d x^{1} \wedge d x^{3}+e^{2 f} d x^{2} \wedge d x^{4}, \\
d \star \Omega_{+}=2 f_{1} d x^{1} \wedge d x^{2} \wedge d x^{4}-2 f_{3} d x^{2} \wedge d x^{3} \wedge d x^{4}, \\
\delta_{g} \Omega_{+}(0)=-\star d \star \Omega_{+}(0)=-2 f_{1} d x^{1}+2 f_{3} d x^{3}, \\
\phi(0)=\frac{1}{2} J \delta_{g} \Omega_{+}=-f_{1} d x^{1}-f_{3} d x^{3}, \text { and } \phi^{\#}=-f_{1} \partial_{3}-f_{3} \partial_{1} .
\end{gathered}
$$

Let $\Theta_{i j}:=\phi\left(\partial_{i}\right) \partial_{j}+\phi\left(\partial_{j}\right) \partial_{i}-g\left(\partial_{i}, \partial_{j}\right) \phi^{\#}=\left(\nabla^{\phi}-\nabla^{g}\right)_{\partial_{i}} \partial_{j}$ at 0 . Then:

$$
\begin{gathered}
\Theta_{11}=-2 f_{1} \partial_{1}, \quad \Theta_{12}=-f_{1} \partial_{2}, \quad \Theta_{13}=\left(-f_{1} \partial_{3}-f_{3} \partial_{1}\right)+\left(f_{1} \partial_{3}+f_{3} \partial_{1}\right)=0, \\
\Theta_{14}=-f_{1} \partial_{4}, \quad \Theta_{22}=0, \quad \Theta_{23}=-f_{3} \partial_{2}, \quad \Theta_{24}=\left(f_{1} \partial_{3}+f_{3} \partial_{1}\right), \\
\Theta_{33}=-2 f_{3} \partial_{3}, \quad \Theta_{34}=-f_{3} \partial_{4}, \quad \Theta_{44}=0 .
\end{gathered}
$$

Since $\Theta\left(\partial_{1}\right)$ and $\Theta\left(\partial_{3}\right)$ are diagonal, $\left[\Theta\left(\partial_{1}\right), J_{+}\right]=\left[\Theta\left(\partial_{3}\right), J_{+}\right]=0$. We compute:

$$
\begin{aligned}
& {\left[\Theta\left(\partial_{2}\right), J_{+}\right] \partial_{1}=\left(1-J_{+}\right) \Theta_{12}=0,} \\
& {\left[\Theta\left(\partial_{2}\right), J_{+}\right] \partial_{2}=\left(1-J_{+}\right) \Theta_{22}=0,} \\
& {\left[\Theta\left(\partial_{2}\right), J_{+}\right] \partial_{3}=\left(-1-J_{+}\right) \Theta_{23}=2 f_{3} \partial_{2},} \\
& {\left[\Theta\left(\partial_{2}\right), J_{+}\right] \partial_{4}=\left(-1-J_{+}\right) \Theta_{24}=-2 f_{3} \partial_{1},} \\
& {\left[\Theta\left(\partial_{4}\right), J_{+}\right] \partial_{1}=\left(1-J_{+}\right) \Theta_{14}=-2 f_{1} \partial_{4},} \\
& {\left[\Theta\left(\partial_{4}\right), J_{+}\right] \partial_{2}=\left(1-J_{+}\right) \Theta_{24}=2 f_{1} \partial_{3},} \\
& {\left[\Theta\left(\partial_{4}\right), J_{+}\right] \partial_{3}=\left(-1-J_{+}\right) \Theta_{34}=0,} \\
& {\left[\Theta\left(\partial_{4}\right), J_{+}\right] \partial_{4}=(-1-J) \Theta_{44}=0 .}
\end{aligned}
$$

We now observe that $\left[\nabla^{g}, J_{+}\right]+\left[\Theta, J_{+}\right]=0$. Consequently $\nabla^{\phi} J_{+}=0$ for this metric and Assertion (1) of Theorem 1.2 holds in this special case.

Proof of Theorem 1.2(1). Let $V=\mathbb{R}^{4}$, let S_{-}^{2} be the vector space of symmetric 2 -cotensors ω so that $J_{+}^{*} \omega=-\omega$, and let $\varepsilon \in C^{\infty}\left(S^{2}\right)$ satisfy $\varepsilon(0)=0$. We use ε to define a perturbation of the flat metric by setting:

$$
g=d x^{1} \circ d x^{3}+d x^{2} \circ d x^{4}+\varepsilon .
$$

This is non-degenerate near the origin. Since only the 1 -jets of ε are relevant in examining $\nabla^{\phi}\left(J_{+}\right)(0)$, this is a linear problem and we may take $\varepsilon \in S_{-}^{2} \otimes V^{\star}$ so:

$$
g=g_{0}+\sum_{i} x^{i} \varepsilon\left(e_{i}\right) .
$$

Then $\varepsilon \rightarrow\left(\nabla^{\phi} J_{+}\right)(0)$ defines a linear map

$$
\begin{aligned}
& \mathcal{E}: S_{-}(V) \otimes V^{*} \rightarrow \operatorname{End}(V) \otimes V^{*} \text { or equivalently } \\
& \mathcal{E}: S_{-}(V) \rightarrow \operatorname{Hom}\left(V^{*}, \operatorname{End}(V) \otimes V^{*}\right)
\end{aligned}
$$

The analysis of Section 3.2 shows that $\mathcal{E}\left(d x^{2} \circ d x^{4}\right)=0$. Permuting the indices $1 \leftrightarrow 2$ and $3 \leftrightarrow 4$ then yields $\mathcal{E}\left(d x^{1} \circ d x^{3}\right)=0$. The question is invariant under the action of the para-unitary group; we must preserve J_{+}and we must preserve the inner product at the origin. Define a unitary transformation T by setting:

$$
T\left(e^{1}\right)=e^{1}+a e^{2}, \quad T\left(e^{2}\right)=e^{2}, \quad T\left(e^{3}\right)=e^{3}, \quad T\left(e^{4}\right)=e^{4}-a e^{3}
$$

Then

$$
T\left(e^{1} \circ e^{3}\right)=e^{1} \circ e^{3}+a e^{2} \circ e^{3} .
$$

Consequently, $\mathcal{E}\left(e^{2} \circ e^{3}\right)=0$. Permuting the indices $1 \leftrightarrow 2$ and $3 \leftrightarrow 4$ then yields $\mathcal{E}\left(e^{1} \circ e^{4}\right)=0$. Since $S_{-}=\operatorname{Span}\left\{e^{1} \circ e^{3}, e^{1} \circ e^{4}, e^{2} \circ e^{3}, e^{2} \circ e^{4}\right\}$, we see that $\mathcal{E}=0$ in general; this completes the proof of Assertion (1) of Theorem 1.2

4. Hermitian and pseudo-Hermitian manifolds

In this section, we will use analytic continuation to derive Theorem 1.2 in the complex setting from Theorem 1.2 in the para-complex setting. Let $V=\mathbb{R}^{4}$ with the usual basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and coordinates $\left\{x^{1}, x^{2}, x^{3}, x^{4}\right\}$, where we expand $v=x^{1} e_{1}+x^{2} e_{2}+x^{3} e_{3}+x^{4} e_{4}$. Let S^{2} denote the space of symmetric 2-tensors. We complexify and consider

$$
\mathcal{S}:=\left\{S^{2} \otimes_{\mathbb{R}} \mathbb{C}\right\} \oplus\left\{\left(V^{*} \otimes_{\mathbb{R}} S^{2}\right) \otimes_{\mathbb{R}} \mathbb{C}\right\}
$$

Let $J_{+} \in M_{2}(\mathbb{C})$ be a complex 2×2 matrix with $J_{+}^{2}=\mathrm{Id}$ and $\operatorname{Tr}\left(J_{+}\right)=0$. Let

$$
\begin{equation*}
\mathcal{S}\left(J_{+}\right):=\left\{\left(g_{0}, g_{1}\right) \in \mathcal{S}: \operatorname{det}\left(g_{0}-J_{+}^{*} g_{0}\right) \neq 0\right\} \tag{4.1}
\end{equation*}
$$

For $\left(g_{0}, g_{1}\right) \in \mathcal{S}\left(J_{+}\right)$, define:

$$
\begin{aligned}
g(x)(X, Y):= & \frac{1}{2}\left\{g_{0}(X, Y)-g_{0}\left(J_{+} X, J_{+} Y\right)\right\} \\
& +\sum_{i=1}^{4} x^{i} \cdot \frac{1}{2}\left\{g_{1}\left(e_{i}, X, Y\right)-g_{1}\left(e_{i}, J_{+} X, J_{+} Y\right)\right\}
\end{aligned}
$$

By Equation (4.1), this is non-degenerate at 0 and defines a complex metric on some neighborhood of 0 so $J_{+}^{*} g=-g$. Let ∇^{g} be the complex Levi-Civita connection:

$$
\nabla_{\partial_{i}}^{g} \partial_{j}=\frac{1}{2} g^{k l}\left\{\partial_{i} g_{j l}+\partial_{j} g_{i l}-\partial_{x_{l}} g_{i j}\right\} \partial_{k}
$$

Then ∇^{g} is a torsion free connection on $T_{\mathbb{C}} M:=T_{M} \otimes_{\mathbb{R}} \mathbb{C}$. The para-Kähler form is defined by setting $\Omega_{+}(x, y)=g\left(x, J_{+} y\right)$ and we have

$$
\delta \Omega_{+}=\star d \Omega_{+} \text {and } \phi:=\frac{1}{2} J_{+} \delta_{g} \Omega
$$

We then use ϕ to define a complex Weyl connection ∇^{ϕ} on $T_{\mathbb{C}} M$ and define a holomorphic map from $\mathcal{S}\left(J_{+}\right)$to $\mathfrak{V}:=V^{*} \otimes M_{4}(\mathbb{C})$ by setting

$$
\mathcal{E}\left(g_{0}, g_{1} ; J_{+}\right):=\left.\nabla^{\phi}\left(J_{+}\right)\right|_{x=0}
$$

Lemma 4.1. Let $J_{+} \in M_{4}(\mathbb{C})$ with $J_{+}^{2}=$ id and $\operatorname{Tr}\left(J_{+}\right)=0$. Suppose that $\left(g_{0}, g_{1}\right) \in \mathcal{S}\left(J_{+}\right)$.
(1) If J_{+}is real and if $\left(g_{0}, g_{1}\right)$ is real, then $\mathcal{E}\left(g_{0}, g_{1} ; J_{+}\right)=0$.
(2) If J_{+}is real and if $\left(g_{0}, g_{1}\right)$ is complex, then $\mathcal{E}\left(g_{0}, g_{1} ; J_{+}\right)=0$.
(3) If J_{+}is complex and if $\left(g_{0}, g_{1}\right)$ is complex, then $\mathcal{E}\left(g_{0}, g_{1} ; J_{+}\right)=0$.

Proof. Assertion (1) follows from Theorem 1.2 (1). We argue as follows to prove Assertion (2). $\mathcal{S}\left(J_{+}\right)$is an open dense subset of \mathcal{S} and inherits a natural holomorphic structure thereby. Assume that J_{+}is real. The map \mathcal{E} is a holomorphic map from $\mathcal{S}\left(J_{+}\right)$to \mathfrak{V}. By Assertion (1), $\mathcal{E}\left(g_{0}, g_{1} ; J_{+}\right)$vanishes if $\left(g_{0}, g_{1}\right)$ is real. Thus, by the identity theorem, $\mathcal{E}\left(g_{0}, g_{1} ; J_{+}\right)$vanishes for all $\left(g_{0}, g_{1}\right) \in \mathcal{S}_{J_{+}}$. This establishes Assertion (2) by removing the assumption that $\left(g_{0}, g_{1}\right)$ is real.

We complete the proof by removing the assumption that J_{+}is real. The general linear group $\mathrm{GL}_{4}(\mathbb{C})$ acts on the structures involved by change of basis (i.e., conjugation). Let $\left(g_{0}, g_{1}\right) \in \mathcal{S}\left(J_{+}\right)$where J_{+}is real and $\operatorname{Tr}\left(J_{+}\right)=0$. We consider the real and complex orbits

$$
\begin{aligned}
& \mathcal{O}_{\mathbb{R}}\left(g_{0}, g_{1} ; J_{+}\right):=\mathrm{GL}_{4}(\mathbb{R}) \cdot\left(g_{0}, g_{1} ; J_{+}\right) \\
& \mathcal{O}_{\mathbb{C}}\left(g_{0}, g_{1} ; J_{+}\right):=\mathrm{GL}_{4}(\mathbb{C}) \cdot\left(g_{0}, g_{1} ; J_{+}\right)
\end{aligned}
$$

Let $\mathcal{F}(A):=\mathcal{E}\left(A \cdot\left(g_{0}, g_{1} ; J_{+}\right)\right)$define a holomorphic map from $\mathrm{GL}_{4}(\mathbb{C})$ to \mathfrak{V}. By Assertion $(2), \mathcal{F}$ vanishes on $\mathrm{GL}_{4}(\mathbb{R})$. Thus by the identity theorem, \mathcal{F} vanishes on $\mathrm{GL}_{4}(\mathbb{C})$ or, equivalently, \mathcal{E} vanishes on the orbit space $\mathcal{O}_{\mathbb{C}}\left(g_{0}, g_{1} ; J_{+}\right)$. Given any $J_{+} \in M_{4}(\mathbb{C})$ with $J_{+}^{2}=\mathrm{Id}$ and $\operatorname{Tr}\left(J_{+}\right)=0$, we can choose $A \in \mathrm{GL}_{4}(\mathbb{C})$ so that $A \cdot J_{+}$is real. The general case now follows from Assertion (2).

Proof of Theorem $\mathbf{1 . 2}(2,3)$. Let $\left(M, g, J_{-}\right)$be a 4-dimensional pseudo-Hermitian manifold of dimension 4. Fix a point P of M. Since J_{-}is integrable, we may choose local coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$ so the matrix of J_{-}relative to the coordinate frame $\left\{\partial_{i}\right\}$ is constant. Define a Weyl connection with associated 1form given by $\phi=-\frac{1}{2} J_{-} \delta \Omega_{-}$. Only the 0 and the 1 -jets of the metric play a role in the computation of $\left(\nabla^{\phi} J_{-}\right)(P)$. So we may assume $g=g\left(g_{0}, g_{1}\right)$. We set $J_{+}=\sqrt{-1} J_{-}$. We have that

$$
\begin{gathered}
J_{+}^{2}=\sqrt{-1} J_{-} \sqrt{-1} J_{-}=-J_{-}^{2}=\mathrm{id}, \quad \operatorname{Tr}\left(J_{+}\right)=\sqrt{-1} \operatorname{Tr}\left(J_{-}\right)=0, \\
J_{+}^{\star}(g)(X, Y)=g\left(\sqrt{-1} J_{-} X, \sqrt{-1} J_{-} Y\right)=-g\left(J_{-} X, J_{-} Y\right)=-g(X, Y)
\end{gathered}
$$

so $J_{+}^{\star}(g)=-g$ and $\left(g_{0}, g_{1}\right) \in \mathcal{S}_{J_{+}}$. Finally, since $J_{-}=-\sqrt{-1} J_{+}$, we have

$$
\begin{gathered}
\Omega_{-}=-\sqrt{-1} \Omega_{+} \\
\phi_{J_{-}}=-\frac{1}{2} J_{-} \delta_{g} \Omega_{-}=-\frac{1}{2}\left(-\sqrt{-1} J_{+}\right) \delta_{g}\left(-\sqrt{-1} \Omega_{+}\right)=\frac{1}{2} J_{+} \delta_{g} \Omega_{+}=\phi_{J_{+}}
\end{gathered}
$$

We apply Lemma 4.1 to complete the proof.

References

1. M. Brozos-Vázquez, E. García-Río, P. Gilkey, R. Vázquez-Lorenzo, Homogeneous 4-dimensional Kähler-Weyl Structures, Results Math. (to appear); DOI: 10.1007/s00025-013-0319-5
2. P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, CRC Press, 1994.
3. P. Gilkey, S. Nikčević, Kähler-Weyl manifolds of dimension 4, Rendiconti del Seminario Matematico (to appear) (see arXiv:1109.4532).
4. \qquad , (para)-Kähler Weyl structures; in: M. Sanchez, M. Ortega, A. Romero (eds.), Recent Trends in Lorentzian Geometry, Springer-Verlag, 2013, 335-353.
5. P. Gilkey, S. Nikčević, U. Simon, Geometric realizations, curvature decompositions, and Weyl manifolds, J. Geom. Phys. 61 (2011), 270-275.
6. T. Higa, Weyl manifolds and Einstein-Weyl manifolds, Comm. Math. Univ. St. Pauli 42 (1993), 143-160.
7. \qquad , Curvature tensors and curvature conditions in Weyl geometry, Comm. Math. Univ. St. Pauli 43 (1994), 139-153.
8. G. Kokarev, D. Kotschick, Fibrations and fundamental groups of Kähler-Weyl manifolds, Proc. Am. Math. Soc. 138 (2010), 997-1010.
9. H. Pedersen, Y. Poon, A. Swann, The Einstein-Weyl equations in complex and quaternionic geometry, Diff. Geom. Appl. 3 (1993), 309-321.
10. I. Vaisman, Generalized Hopf manifolds, Geom. Dedicata 13 (1982), 231-255.
11. \qquad , A survey of generalized Hopf manifolds in:Differential Geometry on Homogeneous Spaces, Proc. Conf. Torino Italy (1983), Rend. Semin. Mat. Torino, Fasc. Spec. 205-221.

Mathematics Department
University of Oregon
Eugene OR 97403
USA
gilkey@uoregon.edu
Mathematical Institute SANU
Beograd
Serbia
stanan@mi.sanu.ac.rs

[^0]: 2010 Mathematics Subject Classification: Primary 53B05; Secondary 15A72, 53A15, 53C07.
 Key words and phrases: Weyl geometry, Hermitian manifold, para-Hermitian manifold, pseudo-Hermitian manifold, Kähler manifold, para-Kähler manifold, 4-dimensional geometry.

 Research of the authors partially supported by project MTM2009-07756 (Spain), and by project 174012 (Serbia).

