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C∞-STRUCTURE ON THE COHOMOLOGY

OF THE FREE 2-NILPOTENT LIE ALGEBRA

Michel Dubois-Violette and Todor Popov

Abstract. We consider the free 2-step nilpotent Lie algebra and its cohomol-
ogy ring. The homotopy transfer induces a homotopy commutative algebra
on its cohomology ring which we describe. We show that this cohomology is
generated in degree 1 as C∞-algebra only by the induced binary and ternary
operations.

1. Homotopy algebras

The homotopy associative algebras, or A∞-algebras were introduced by Jim
Stasheff in the 1960’s as a tool in algebraic topology for studying ‘group-like’ spaces.
Homotopy algebras received a new attention and further development in the 1990’s
after the discovery of their relevance into a multitude of topics in algebraic geome-
try, symplectic and contact geometry, knot theory, moduli spaces and deformation
theory.

Definition 1.1. (A∞-algebra) A homotopy associative algebra, or A∞-algebra,
over a field K is a Z-graded vector space A =

⊕

i∈Z
Ai endowed with a family of

graded mappings (operations) mn : A⊗n → A, deg(mn) = 2 − n, n > 1 satisfying
the Stasheff identities SI(n) for n > 1

SI(n) :
∑

r+s+t=n

(−1)r+stmr+1+t(Id
⊗r ⊗ms ⊗ Id⊗t) = 0 r > 0, t > 0, s > 1,

where the sum runs over all decompositions n = r + s + t. Throughout the text we
assume the Koszul sign convention (f ⊗ g)(x ⊗ y) = (−1)|g||x|f(x) ⊗ g(y).

A morphism of two A∞-algebras A and B is a family of graded maps fn :
A⊗n → B for n > 1 with deg fn = 1 − n such that the following conditions hold

∑

r+s+t=n

(−1)r+stfr+1+t(Id
⊗r ⊗ms ⊗ Id⊗t) =

∑

16r6n

(−1)Smr(fi1
⊗ fi2

⊗ · · · ⊗ fir
)
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where the sum is over all decompositions i1 + · · · + ir = n and the sign (−1)S on
the right-hand side is determined by

S = (r − 1)(i1 − 1) + (r − 2)(i2 − 1) + · · · + 2(ir−2 − 1) + (ir−1 − 1).

The morphism f is a quasi-isomorphism of A∞-algebras if f1 is a quasi-isomorphism.
It is strict if fi = 0 for all i 6= 1. The identity morphism of A is the strict morphism
f such that f1 is the identity of A.

We define the shuffle product Shp,q : A⊗p ⊗ A⊗q → A⊗p+q by

(a1 ⊗ · · · ⊗ ap)� (ap+1 ⊗ · · · ⊗ ap+q) =
∑

σ∈Shp,q

± sgn(σ) aσ−1(1) ⊗ · · · ⊗ aσ−1(p+q)

where the sum runs over all (p, q)-shuffles Shp,q, i.e., over all permutations σ ∈ Sp+q

such that σ(1) < σ(2) < · · · < σ(p) and σ(p + 1) < σ(p + 2) < · · · < σ(p + q) and
the signs ± on the right-hand side are fixed from the cohomological degrees âi of
the elements ai according to the place permutation action in the tensor powers of
graded spaces.

Definition 1.2. (C∞-algebra [10]) A homotopy commutative algebra, or C∞-
algebra, is an A∞-algebra {A, mn} such that each operation mn vanishes on non-
trivial shuffles mn((a1 ⊗ · · · ⊗ ap)� (ap+1 ⊗ · · · ⊗ an)) = 0, 1 6 p 6 n − 1.

In particular for m2 we have m2(a ⊗ b − (−1)âb̂b ⊗ a) = 0, so a C∞-algebra
such that mn = 0 for n > 3 is a (super-)commutative DGA.

A morphism of C∞-algebras is a morphism of A∞-algebras vanishing on non-
trivial shuffles fn((a1 ⊗ · · · ⊗ ap)� (ap+1 ⊗ · · · ⊗ an)) = 0, 1 6 p 6 n − 1.

2. Homotopy transfer theorem

Lemma 2.1. Every cochain complex (A, d) of vector spaces over a field K has
its cohomology H•(A) as a deformation retract.

One can always choose a vector space decomposition of the cochain complex
(A, d) such that An ∼= Bn ⊕ Hn ⊕ Bn+1 where Hn is the cohomology and Bn is the
space of coboundaries, Bn = dAn−1. We choose a homotopy h : An → An−1 which
identifies Bn with its copy in An−1 and is 0 on Hn ⊕Bn+1. The projection p to the

cohomology and the cocycle-choosing inclusion i given by An
p

// Hn

i
oo are chain

homomorphisms, satisfying the additional side conditions: hh = 0, hi = 0, ph = 0.
With these choices done the complex (H•(A), 0) is a deformation retract of (A, d)

h
!!(A, d)

p
// (H•(A), 0)

i
oo , pi = IdH•(A), ip − IdA = dh + hd.

Let now (A, d, µ) be a DGA, i.e., A is endowed with an associative product
µ compatible with d. The cochain complexes (A, d) and its contraction H•(A)
are homotopy equivalent, but the associative structure is not stable under homo-
topy equivalence. However the associative structure on A can be transferred to an
A∞-structure on a homotopy equivalent complex, a particular interesting complex
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being the deformation retract H•(A). For a friendly introduction to homotopy
transfer theorems in much broader context we refer the reader to the textbook [14,
Chapter 9].

Theorem 2.1 (Kadeishvili [10]). Let (A, d, µ) be a (commutative) DGA over
a field K. There exists an A∞-algebra (C∞-algebra) structure on the cohomology
H•(A) and an A∞(C∞)-quasi-isomorphism

fk : (⊗kH•(A), {mj}) → (A, {d, µ, 0, 0, . . . })

such that the inclusion f1 = i : H•(A) → A is a cocycle-choosing homomorphism
of cochain complexes. The differential m1 on H•(A) is zero (m1 = 0) and m2 is
the strictly associative operation induced by the multiplication on A. The resulting
structure is unique up to quasi-isomorphism.

Kontsevich and Soibelman [12] gave explicit expressions for the higher oper-
ations of the induced A∞-structure as sums over decorated planar binary trees
with one root where all leaves are decorated by the inclusion i, the root by the
projection p, the vertices by the product µ of the (commutative) DGA (A, d, µ)
and the internal edges by the homotopy h. The C∞-structure implies additional
symmetries on trees.

For instance the operation m2 of the induced A∞-structure on H•(A) looks
like

i
��
==

==
==

==

i
����
��
��
��

m2(x, y) := pµ(i(x), i(y)) or m2 = µ

p

��

and the ternary one m3(x, y, z) = pµ
(

i(x), hµ(i(y), i(z))
)

− pµ
(

hµ(i(x), i(y)), i(z)
)

is the sum of two planar binary trees with three leaves

i

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

i
  B

BB
BB

BB
B

i
����
��
��
��

µ

h
����
��
��
��

m3 = µ

p

��

−

i
��
??

??
??

??

i
~~||
||
||
||

i

����
��
��
��
��
��
��
��
�

µ

h

��
??

??
??

??

µ

p

��

3. Homology and cohomology of a Lie algebra g

A non-minimal projective (in fact free) resolution of the trivial Ug-module K,

C(g)
ǫ

→ K is given by the standard Chevalley–Eilenberg chain complex C•(g) =
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(Ug ⊗K ∧pg, dp) with differential maps

dp(u ⊗ x1 ∧ · · · ∧ xp) =
∑

i

(−1)i+1uxi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xp

+
∑

i<j

(−1)i+ju ⊗ [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xp

The homologies Hn(g,K) of the Lie algebra g with trivial coefficients are given by
the homologies of the derived complex K ⊗Ug C•(g)

TorUg
n (K,K) ∼= Hn(K ⊗Ug C•(g)) = Hn(g,K).

The complex K⊗UgC•(g) is the chain complex with degrees
∧•

g = K⊗UgUg⊗
∧•

g

and differentials ∂p := id ⊗Ug dp :
∧p

g →
∧p−1

g induced by the extension as

coderivation of the Lie bracket ∂2 := −[ · , · ] :
∧2

g → g.
The dual cochain complex HomUg(C(g),K) = (

∧•
g∗, δ) has coboundary map

δp :
∧p

g∗ →
∧p+1

g∗ (being transposed to the differential ∂p+1) which is the
extension as derivation of the dualization of the Lie bracket δ1 := [ · , · ]∗ : g∗ →
∧2

g∗. One calculates the cohomologies1 of the Lie algebra g as

Extn
Ug(K,K) ∼= Hn(HomUg(C(g),K)) = Hn(g,K).

Hence the algebra (
∧•

g∗, δ) equipped with δ is a (super)commutative DGA and the
Yoneda algebra Ext•

Ug(K,K) =
⊕

n Extn
Ug(K,K) has the structure of commutative

associative algebra. Moreover due to the Kadeishvili theorem the Yoneda algebra
Ext•

Ug(K,K) = H•(g,K) is a C∞-algebra which stems from the homotopy transfer

of the wedge product ∧ on cohomology classes Hi(g,K) ∧ Hj(g,K) → Hi+j(g,K).

4. Abelian Lie algebra h = V

Let us take as a basic example the abelian Lie algebra h, that is, the free
nilpotent Lie algebra of rank 1 generated by a finite dimensional vector space V .
The Lie bracket of h is trivial [V, V ] = 0. The universal enveloping algebra of the
abelian Lie algebra h = V is the symmetric algebra U(h) ∼= S(V ). The Chevalley–
Eilenberg complex C•(h) = S(V ) ⊗K Λ•V yields the resolution of the trivial U(h)-
module K

(4.1) 0 → S(V ) ⊗ Λdim V V → S(V ) ⊗ Λdim V −1V → . . .

· · · → S(V ) ⊗ Λ2V → S(V ) ⊗ V → S(V ) → K → 0.

The derived complex K⊗Uh C(h) has zero differential and the Chevalley–Eilenberg
resolution turns out to be minimal (which is not the case in general)

Hn(h,K) ∼= Hn(K ⊗Uh C(h)) ∼= ΛnV.

The Chevalley–Eilenberg resolution coincides with the Koszul complex K(A) =
A ⊗ (A!)∗ of the symmetric algebra A = S(V ). The Koszul dual algebra of the
symmetric algebra is the exterior algebra S(V )! = ΛV ∗. A quadratic algebra is

1In the presence of any metric on a nilpotent Lie algebra g one has δ := ∂∗(see below).
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said to be a Koszul algebra when its Koszul complex K•(A) = A ⊗ (A!
•)∗ is acyclic

everywhere except in degree 0 (where its homology is K). Then the Koszul complex
yields a minimal projective (in fact free) resolution by (left) A-modules of the trivial
A-module K

K(A)
ǫ

→ K → 0.

In particular the resolution (4.1) is the same as the the resolution by the Koszul
complex Kn(S(V )) = S(V )⊗ΛnV ∗ thus the algebra S(V ) is a Koszul algebra. One
has an equivalent definition of Koszul algebra based on the following proposition.

Proposition 4.1. A finitely generated quadratic algebra A is Koszul iff its
Yoneda algebra ExtA(K,K) is generated in degree 1. One has then ExtA(K,K) ∼= A!.

Indeed the Yoneda algebra ExtS(V )(K,K) of the symmetric algebra S(V ) is
just the exterior algebra

Extn
S(V )(K,K) = (TorS(V )

n (K,K))∗ = ΛnV ∗

which is obviously generated by V ∗, i.e., in degree 1, by the wedge product.
Through the homotopy transfer the Yoneda algebra ExtS(V )(K,K) inherits a C∞-
structure but it is easy to show (by a degree preserving argument) that the latter
C∞-algebra is formal, i.e., all higher multiplications are trivial, mn = 0 for n 6= 2.

5. Homology of the free 2-nilpotent algebra g = V ⊕ Λ2V

Let g be the free 2-step nilpotent Lie algebra generated by a vector space V in
degree 1, g = V ⊕ [V, V ]. In other words the Lie bracket of the graded Lie algebra
g = V ⊕ Λ2V is given by

[u, v] =

{

u ∧ v u, v ∈ V

0 otherwise
.

We denote the Universal Enveloping Algebra (UEA) Ug by P S and refer to it
as parastatistics algebra.2 Throughout this note we will consider the generators
space V to be an ordinary vector space V which corresponds to a parafermionic
algebra P S(V ) = Ug. The case of a Z2-space of generators V = V0 ⊕ V1, that
is, P S(V ) is the Universal Enveloping Algebra of a Lie super-algebra g = g0̄ ⊕ g1̄
(which would include the parabosonic algebras) will be treated elsewhere. More on
parastatistics algebras and their application to combinatorics could be found in the
articles [5, 13].

The parastatistics algebra P S(V ) generated by a finite dimensional vector space
V is the positively graded algebra with degree induced by the tensor degree

P S(V ) := Ug = U

(

V ⊕
2

∧

V

)

= T (V )/([[V, V ], V ]).

We shall write simply P S when the space of generators V is clear from the context.

2Such cubic algebras arise through the exchange relations between the operators in a quan-
tization procedure introduced by Green [8] for particles obeying more general statistics than
Bose–Einstein or Fermi–Dirac, coined parabosons and parafermions.
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The homologies Hn(g,K) of the free 2-nilpotent Lie algebra g are the homologies
of the chain complex

n
∧

g =

n
∧

(

V ⊕

2
∧

V

)

=
⊕

s+r=n

s
∧

( 2
∧

V

)

⊗

r
∧

(V )

with differentials ∂n :
∧s (

∧2
V

)

⊗
∧r

(V ) →
∧s+1 (

∧2
V

)

⊗
∧r−2

(V ) given by

∂n : ei1j1
∧ · · · ∧ eisjs

⊗ el1
∧ · · · ∧ elr

7→
∑

i<j

(−1)i+jelilj
∧ ei1j1

∧ · · · ∧ eisjs
⊗ el1

∧ · · · ∧ êli
∧ · · · ∧ êlj

∧ · · · ∧ elr
.

The differential ∂ identifies a pair of degree 1 generators ei, ej ∈ V with one degree
2 generator eij := (ei ∧ ej) = [ei, ej] ∈ Λ2V .

The cohomologies Hn(g,K) arise from the dualized complex with coboundary

map δn :
∧n

g∗ →
∧n+1

g∗ which is transposed to the differential ∂n+1

δn : e∗
i1j1

∧ · · · ∧ e∗
isjs

⊗ e∗
l1

∧ · · · ∧ e∗
lr

7→
s

∑

k=1

∑

ik<jk

(−1)i+je∗
i1j1

∧ · · · ∧ ê∗
ikjk

∧ · · · ∧ e∗
isjs

⊗ e∗
ik

∧ e∗
jk

∧ e∗
l1

∧ · · · ∧ · · · ∧ e∗
lr

.

In the presence of a metric g one has identifications V
g
∼= V ∗ and

∧•
g

g
∼=

∧•
g∗.

The adjoint operator ∂∗
n :

∧n
g →

∧n+1
g is defined by g(∂∗

nv, w) = g(v, ∂n+1w).
One can show that independently of the metric g chosen the action of ∂∗

n takes the
form

∂∗
n : ei1j1

∧ · · · ∧ eisjs
⊗ el1

∧ · · · ∧ elr
7→

s
∑

k=1

∑

ik<jk

(−1)i+jei1j1
∧ · · · ∧ êikjk

∧ · · · ∧ eisjs
⊗ eik

∧ ejk
∧ el1

∧ · · · ∧ · · · ∧ elr
.

We will see in the following that after the identification
∧•

g
g
∼=

∧•
g∗ the map

∂∗ g
= δ will play the role of homotopy for the chain complex (

∧•
g, ∂•), and vice

versa: the boundary map ∂
g
= δ∗ is a homotopy for the cochain complex (

∧•
g∗, δ•).

The complexes (
∧n

g, ∂n) and (
∧n

g∗, δn) are bigraded by two different degrees;
the homological degree n := r + s counting the number of Lie algebra generators
and the tensor degree t := 2s+r also called weight. The cohomologies Hn(g,K) can
have components of different weight t, Hn(g,K) =

⊕

t Hn(g,K)t and the weight
t is in fact the Adams grading on the Yoneda algebra Extn

Ug(K,K)t [15]. The
differential and the homotopy, δ = ∂∗ and ∂ = δ∗ do not alter the weight t, but
raise and lower the homological degree n.

The operations mk in the homotopy algebra are bigraded by homological and
Adams gradings of bidegree (k, t) = (2−k, 0). The bi-grading imposes the vanishing
of many higher products.
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5.1. Homology of g as a GL(V )-module. A Schur module Vλ is an irre-
ducible polynomial GL(V )-module labelled by a Young diagram λ. The basis of a
Schur module Vλ is in bijection with semistandard Young tableaux with entries in
the set {1, . . . , dim V }. The action of the linear group GL(V ) on the space V of the
generators of the Lie algebra g induces a GL(V )-action on the universal enveloping

algebra P S = Ug ∼= S(V ⊕ Λ2V ) and on the space
∧•

g ∼=
∧•(V ⊕

∧2 V ).
The maps ∂ and ∂∗ both commute with the GL(V )-action. It follows that the

homology and cohomology carry structure of GL(V )-modules and hence can be
decomposed into irreducibles.

The Laplacian ∆ = ⊕n>0∆n is defined to be the self-adjoint operator

∆n = ∂n+1∂∗
n+1 + ∂∗

n∂n ∈ End
(

n
∧

g
)

.

Its kernel is a complete set of representatives for the homology classes in Hn(g,K)

ker ∆n
∼= Hn(g,K).

The decomposition of the GL(V )-module Hn(g,K) into irreducible polynomial rep-
resentations Vλ is given by the following theorem.

Theorem 5.1 (Józefiak and Weyman [9], Sigg [16]). The homology H•(g,K) of

the free 2-nilpotent Lie algebra g = V ⊕
∧2

V decomposes into a sum of irreducible
GL(V )-modules

Hn(g,K) ∼= TorP S
n (K,K)(V ) ∼=

⊕

λ:λ=λ′

Vλ such that n =
1

2
(|λ| + r(λ)),

where the sum is over the self-conjugate Young diagrams λ, |λ| stands for the num-
ber of boxes in λ and r(λ) for the rank of λ (the number of diagonal boxes in λ).

Remark 5.1. The free 2-step nilpotent Lie algebra g is the nilradical of a
parabolic subalgebra of a simple Lie algebra of type C and its cohomology can be
described by a general result of Bertram Kostant [11, Theorem 5.14]. A derivation
of the cohomology H•(g,K) in these lines has been worked out by Grassberger, King
and Tirao [7] thus providing one more proof of Theorem 5.1 via the isomorphism

Hn(g,K) ∼= TorP S
n (K,K)(V ) ∼= Extn

P S(K,K)∗ ∼= Hn(g,K)∗.

5.2. Homological interpretation of the Littlewood formula. We recall
the beautiful result of Józefiak and Weyman [9] giving a representation-theoretic
interpretation of the Littlewood formula

∏

i

(1 − xi)
∏

i<j

(1 − xixj) =
∑

λ:λ=λ′

(−1)
1

2
(|λ|+r(λ))sλ(x).

Here the sum is over all self-conjugate Young diagrams λ and sλ(x) stands for the
Schur function with diagram λ.
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One knows that for the graded algebra P S there exists a minimal resolution3

by projective modules in the graded category

(5.1) P• : 0 → Pd → · · · → Pn → · · · → P2 → P1 → P0
ǫ

→ K → 0.

Here the length d of the resolution is the projective dimension of the algebra P S
which is d = 1

2 dim V (dim V +1). Since P S is positively graded and, in the category
of positively graded modules over connected locally finite graded algebras, projec-
tive module is the same as free module [4], we have Pn

∼= P S ⊗ En, where En are
finite dimensional vector spaces. Thus we deal with a minimal resolution of K by
free P S-modules and the minimality implies that the derived complex K⊗P S P• has
vanishing differentials, i.e., TorP S

• (K,K) = H•(K ⊗P S P•) = K ⊗P S P•. Then the

multiplicity spaces En = TorP S
n (K,K) are fixed by Theorem 5.1 and thus the data

Hn(g,K) = TorP S
n (K,K) encodes the minimal free resolution P• (cf. 5.1) which is

unique (up to isomorphism).
The Euler characteristics of P• implies an identity about the GL(V )-characters

ch P S(V ).ch

(

⊕

λ:λ=λ′

(−1)
1

2
(|λ|+r(λ))Vλ

)

= 1.

The character of a Schur module Vλ is the Schur function, chVλ = sλ(x). Due to

the Poincaré–Birkhoff–Witt theorem P S(V ) ∼= S(V ⊕
∧2 V ) thus the identity reads

∏

i

1

(1 − xi)

∏

i<j

1

(1 − xixj)

∑

λ:λ=λ′

(−1)
1

2
(|λ|+r(λ))sλ(x) = 1.

But the latter identity is nothing but a rewriting of the Littlewood identity (5.1).
The moral is that the Littlewood identity reflects a homological property of the
algebra P S, namely the above particular structure of the minimal projective (free)
resolution of K by P S-modules.

5.3. Ext•
P S(K,K) as a C∞-algebra.

Theorem 5.2. The cohomology H•(g,K) ∼= Ext•
P S(K,K) of the free 2-nilpotent

Lie algebra g = V ⊕
∧2

V is a homotopy commutative algebra which is generated
in degree 1 (i.e., in H1(g,K)) by the operations m2 and m3.

Proof. We start by choosing a metric g on the vector space V and an or-

thonormal basis g(ei, ej) = δij . The choice induces a metric on
∧•

g
g
∼=

∧•
g∗.

The isomorphisms V ∼= V ∗ and TorP S
n (K,K) ∼= Extn

P S(K,K) and the Theorem
5.1 imply the decomposition of H•(g,K) into irreducible GL(V )-modules

Hn(g,K) ∼= Hn(
∧

g∗, δ) ∼= Extn
P S(K,K) ∼=

⊕

λ:λ=λ′

Vλ,

where the sum is over all self-conjugate diagrams λ such that n = 1
2 (|λ| + r(λ)).

3The Chevalley–Eilenberg complex does not provide a minimal resolution of the module K,
in general.
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The adjoint of the boundary map ∂, δ
g

:= ∂∗ is the differential in the DGA
(

∧

g∗, δ
)

while δ∗ g
:= ∂ plays the role of a homotopy. In view of Lemma 2.1 we have

the cohomology H•(
∧•

g∗, δ•) as deformation retract of the complex
(

∧•
g∗, δ•

)

,

pi = Id
H•(

∧

•

g∗), ip − Id∧

•

g∗ = δδ∗ + δ∗δ, δ∗ g
= ∂.

Here the projection p identifies the subspace ker δ ∩ ker δ∗ with H•(
∧•

g∗), which
is the orthogonal complement of the space of the coboundaries imδ. The cocycle-
choosing homomorphism i is Id on H•(

∧•
g∗) and zero on coboundaries.

We apply the Kadeishvili homotopy transfer theorem 2.1 for the commutative
DGA (

∧•
g∗, µ, δ•) and its deformation retract H•(

∧•
g∗) ∼= H•(g,K) and conclude

that the cohomology H•(g,K) is a C∞-algebra.
The Kontsevich and Soibelman tree representations of the operations mn pro-

vide explicit expressions. Let us take µ to be the super-commutative product ∧
on the DGA (

∧•
g∗, δ•). The projection p maps onto the Schur modules Vλ with

self-conjugated Young diagram λ = λ′.
The binary operation on the generators ei ∈ H1(g,K) is trivial, one gets

m2(ei, ej) = p(ei ∧ ej) = 0 p(V(12)) = 0.

Hence H•(g,K) could not be generated in H1(g,K) as an algebra with the binary
product m2.

The ternary operation m3 restricted to H1(g,K) is nontrivial, indeed taking
into account the Koszul sign rule we get the following representative cocycles

m3(ei, ej , ek) = p {−ei ∧ ∂(ej ∧ ek) − ∂(ei ∧ ej) ∧ ek}

= p {eij ∧ ek + ei ∧ ejk} = eij ∧ ek − ejk ∧ ei ∈ H2(g,K).

The complete antisymmetrization of the monomial eik ∧ej spans the Schur module
V(13) and thus it is projected out, p(eij ∧ ek + ejk ∧ ei + eki ∧ ej) = 0. Therefore

the monomials eij ∧ ek modulo V(13) span a Schur module V(2,1)
∼= H2(g,K) having

the representative cocycles in bijection with the semistandard Young tableaux with
diagram (2, 1),

eij ∧ ek − ejk ∧ ei ↔
i k

j
for i < j, i 6 k,

ejk ∧ ei − eki ∧ ej ↔
i j

k
for pi < k, i 6 j.

We check the symmetry condition on the ternary operation m3 in the C∞-
algebra; indeed m3 vanishes on the (signed) shuffles Sh1,2

m3(ei � ej ⊗ ek) = m3(ei, ej, ek) − m3(ej , ei, ek) + m3(ej , ek, ei) = 0.

Similarly one gets m3(ei ⊗ ej � ek) = 0 on shuffles Sh2,1.
On the level of Schur modules the ternary operation glues three fundamental

GL(V )-modules V� into a Schur module V(2,1). By iteration of the process of gluing
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boxes we generate all elementary hooks Vk := V(k+1,1k),

m3(V�, V�, V�) = V��
�

m3

(

V�, V��
�

, V�

)

= V���
�
�

· · ·

m3(V0, Vk, V0) = Vk+1.

In our context the more convenient notation for Young diagrams is due to Frobenius:
λ := (a1, . . . , ar|b1, . . . br) stands for a diagram λ with ai boxes in the i-th row on
the right of the diagonal, and with bi boxes in the i-th column below the diagonal
and the rank r = r(λ) is the number of boxes on the diagonal.

For self-dual diagrams λ = λ′, i.e., ai = bi we set Va1,...,ar
:= V(a1,...,ar|a1,...ar)

when a1 > a2 > · · · > ar > 0 (and set the convention Va1,...,ar
:= 0 otherwise). Any

two elementary hooks Va1
and Va2

can be glued together by the binary operation
m2, the decomposition of m2(Va1

, Va2
) ∼= m2(Va2

, Va1
) is given by

m2(Va1
, Va2

) = Va1,a2
⊕

( a2
⊕

i=1

Va1+i,a2−i

)

, a1 > a2

where the “leading” term Va1,a2
has the diagram with minimal height. Hence any

m2-bracketing of the hooks Va1
, Va2

, . . . , Var
yields4 a sum of GL(V )-modules

m2(. . . m2(m2(Va1
, Va2

), Va3
), . . . , Var

) = Va1,...,ar
⊕ · · ·

whose module with minimal height is precisely Va1,...,ar
. We conclude that all

elements in the C∞-algebra H•(g,K) can be generated in H1(g,K) by m2 and m3.
�

One could draw a parallel between the theorem for the cubic algebra P S
and the Proposition 4.1 for the Koszul algebra; in both cases the Yoneda alge-
bra Ext•

P S(K,K) is generated only in Ext1
P S(K,K). Although we have the notion

of N -Koszul algebras for the N -homogeneous algebras [2, 3], it turns out that the
cubic algebra P S is not 3-Koszul, beside the exceptional case when dim V = 2.
Instead the algebra P S = Ug falls in the class of Artin–Schelter-regular algebras
[1], being an UEA of positively graded Lie algebra (for a proof see [6]). The par-
allel between the quadratic Koszul algebra S(V ) and the cubic AS-regular regular
algebra P S(V ) suggests that the C∞-algebra Ext•

P S(K,K) is a generalization of a
Koszul dual algebra of P S in the realm of the homotopy algebras, an idea that has
been put forward in [15].

The analogy would be complete if we had the following conjectural proposition.

Proposition 5.1. The cohomology H•(g,K) ∼= Ext•
P S(K,K) of the free 2-

nilpotent Lie algebra g = V ⊕
∧2 V can be endowed with a structure of C∞-algebra

having trivial higher multiplications mk = 0, k > 4.

4The operation m2 is associative thus the result does not depend on the choice of the
bracketing.
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So far we have been able to prove this conjecture only in dimensions dim V 6 3.
Our proof rests entirely on the bigrading (2 − k, 0) of the multiplication mk by
homological and tensor degree in the C∞-algebra Ext•

P S(K,K). The bigrading
arguments work only for dim V = 2 and dim V = 3 thus for a complete proof the
conjecture would need more refined methods.
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