# ON RICCI TYPE IDENTITIES IN MANIFOLDS WITH NON-SYMMETRIC AFFINE CONNECTION 

Svetislav M. Minčić


#### Abstract

In $\mathbf{1 8}$, using polylinear mappings, we obtained several curvature tensors in the space $L_{N}$ with non-symmetric affine connection $\nabla$. By the same method, we here examine Ricci type identities.


## 1. Introduction

Consider $N$-dimensional differentiable manifold $\mathcal{M}_{N}$ on which a non-symmetric affine connection $\stackrel{1}{\nabla}$ is defined. If $\mathfrak{X}\left(\mathcal{M}_{N}\right)$ is a Lie algebra of smooth vector fields and $X, Y \in \mathfrak{X}\left(\mathcal{M}_{N}\right)$, then the mapping $\stackrel{2}{\nabla}_{\nabla} \mathfrak{X}\left(\mathcal{M}_{N}\right) \times \mathfrak{X}\left(\mathcal{M}_{N}\right) \rightarrow \mathfrak{X}\left(\mathcal{M}_{N}\right)$ given by

$$
\begin{equation*}
\stackrel{2}{\nabla}_{X} Y=\stackrel{1}{\nabla}_{Y} X+[X, Y] \tag{1.1}
\end{equation*}
$$

defines an other non-symmetric connection $\stackrel{2}{\nabla}$ on $\mathcal{M}_{N}$ [14]. That means that we have

$$
\begin{aligned}
\stackrel{\theta}{\nabla}_{Y_{1}+Y_{2}} X & =\stackrel{\theta}{\nabla}_{Y_{1}} X+\stackrel{\theta}{\nabla}_{Y_{2}} X, & \stackrel{\theta}{\nabla}_{f Y} X=f \stackrel{\theta}{\nabla}_{Y} X, \\
\stackrel{\theta}{\nabla}_{Y}\left(X_{1}+X_{2}\right) & =\stackrel{\theta}{\nabla}_{Y} X_{1}+\stackrel{\theta}{\nabla}_{Y} X_{2}, & \stackrel{\theta}{\nabla}_{Y}(f X)=Y f \cdot X+f \stackrel{\theta}{\nabla}_{Y} X,
\end{aligned}
$$

for $\theta=1,2$ and $X, Y, X_{1}, X_{2}, Y_{1}, Y_{2} \in \mathfrak{X}\left(\mathcal{M}_{N}\right), f \in \mathcal{F}\left(\mathcal{M}_{N}\right)$, where $\mathcal{F}\left(\mathcal{M}_{N}\right)$ is an algebra of smooth real functions on $\mathcal{M}_{N}$. In that case we write $L_{N}=\left(\mathcal{M}_{N}, \stackrel{1}{\nabla}, \stackrel{2}{\nabla}\right)$ and $L_{N}$ call a space on non-symmetric connections $\stackrel{1}{\nabla}, \stackrel{2}{\nabla}$.

If we introduce local coordinates $x^{1}, \ldots, x^{N}$ and put $\partial / \partial x^{i}=\partial_{i}$, in view of (1.1) it will be

$$
\begin{equation*}
\stackrel{2}{\nabla}_{\partial_{j}} \partial_{k}=\stackrel{1}{\nabla}_{\partial_{k}} \partial_{j} . \tag{1.2}
\end{equation*}
$$

[^0]Denoting coefficients of the connection $\stackrel{1}{\nabla}$ in the base $\partial_{1}, \ldots, \partial_{N}$ with $L_{j k}^{i}$, we have $\stackrel{1}{\nabla}_{\partial_{k}} \partial_{j}=L_{j k}^{i} \partial_{i}, \stackrel{2}{\nabla}_{\partial_{k}} \partial_{j} \underset{(1.2)}{\bar{\nabla}} \stackrel{1}{\nabla}_{\partial_{j}} \partial_{k}=L_{k j}^{i} \partial_{i}$, where $\underset{\underline{\overline{1.2}}}{ }$ denotes "equal with respect to (1.2) ".

Further, if we take by definition

$$
\stackrel{\theta}{T}(X, Y)=\stackrel{\theta}{\nabla}_{Y} X-\stackrel{\theta}{\nabla}_{X} Y+[X, Y], \quad \theta \in\{1,2\}
$$

it follows

$$
\begin{gathered}
\stackrel{2}{T}(X, Y)=-\stackrel{1}{T}(X, Y) \equiv-T(X, Y) \\
(\stackrel{2}{T}(X, Y)=\stackrel{1}{T}(X, Y)) \Leftrightarrow(\stackrel{1}{\nabla}=\stackrel{2}{\nabla}=\nabla) .
\end{gathered}
$$

We proved in $\mathbf{1 8}$ how it is possible to obtain several curvature tensors in $L_{N}$ by polylinear mappings. It is proved that among these tensors there are 5 independent ones:

$$
\begin{equation*}
\stackrel{5}{R}_{R}(X ; Y, Z)=\frac{1}{2}\left(\stackrel{1}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} X-\stackrel{2}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} X+\stackrel{2}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} X-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} X+\stackrel{1}{\nabla}_{[Y, Z]} X+\stackrel{2}{\nabla}_{[Y, Z]} X\right) \tag{1.7}
\end{equation*}
$$

while the rest can be expressed as linear combinations of these five tensors. For $X=\partial / \partial x^{j} \equiv \partial_{j}, Y=\partial_{k}, Z=\partial_{l}$, one obtains

$$
\begin{align*}
& \stackrel{1}{R_{j k l}^{i}}=L_{j k, l}^{i}-L_{j l, k}^{i}+L_{j k}^{p} L_{p l}^{i}-L_{j l}^{p} L_{p k}^{i}  \tag{1.8}\\
& \stackrel{2}{R_{j k l}^{i}}=L_{k j, l}^{i}-L_{l j, k}^{i}+L_{k j}^{p} L_{l p}^{i}-L_{l j}^{p} L_{k p}^{i}  \tag{1.9}\\
& \stackrel{3}{R_{j k l}^{i}}=L_{j k, l}^{i}-L_{l j, k}^{i}+L_{j k}^{p} L_{l p}^{i}-L_{l j}^{p} L_{p k}^{i}+L_{l k}^{p}\left(L_{p j}^{i}-L_{j p}^{i}\right)  \tag{1.10}\\
& \stackrel{4}{R_{j k l}^{i}}=L_{j k, l}^{i}-L_{l j, k}^{i}+L_{j k}^{p} L_{l p}^{i}-L_{l j}^{p} L_{p k}^{i}+L_{k l}^{p}\left(L_{p j}^{i}-L_{j p}^{i}\right)  \tag{1.11}\\
& \stackrel{5}{R_{j k l}^{i}}=\frac{1}{2}\left(L_{j k, l}^{i}+L_{k j, l}^{i}-L_{j l, k}^{i}-L_{l j, k}^{i}+L_{j k}^{p} L_{p l}^{i}+L_{k j}^{p} L_{l k}^{i}-L_{j l}^{p} L_{k p}^{i}-L_{l j}^{p} L_{p k}^{i}\right) \tag{1.12}
\end{align*}
$$

## 2. Identities for a vector and for a covector by both connections

2.1. Consider an expression

$$
\begin{equation*}
\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} X-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} X\right)(\omega), \mu, \nu \in\{1,2\} \tag{2.1}
\end{equation*}
$$

Let us quote the relations (for $\mu=1,2$ )

$$
\left(\stackrel{\mu}{\nabla}_{Y} X\right)(\omega)=Y[X(\omega)]-X\left(\stackrel{\mu}{\nabla}_{Y} \omega\right), \quad\left(\stackrel{\mu}{\nabla}_{Y} \omega\right)(X)=Y[\omega(X)]-\omega\left(\stackrel{\mu}{\nabla}_{Y} X\right)
$$

and denote
a) $\stackrel{\mu}{\nabla}_{Y} X=\bar{X} \in \mathfrak{X}\left(\mathcal{M}_{\mathcal{N}}\right), \quad$ b) $\stackrel{\nu}{\nabla}_{Z} \omega=\bar{\omega} \in \mathfrak{X}^{*}\left(\mathcal{M}_{\mathcal{N}}\right)$.

Then we have

$$
\begin{align*}
\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} X\right)(\omega) & \underset{(2 a)}{=}\left(\stackrel{\nu}{\nabla}_{Z} \bar{X}\right)(\omega) \underset{(2)}{=} Z[\bar{X}(\omega)]-\bar{X}\left(\stackrel{\nu}{\nabla}_{Z} \omega\right) \\
& \stackrel{(2)}{=} Z\left[\left(\stackrel{\mu}{\nabla}_{Y} X\right)(\omega)\right]-\left(\stackrel{\mu}{\nabla}_{Y} X\right)(\bar{\omega}) \\
& \underset{(2 b)}{=} Z\left\{Y[X(\omega)]-X\left(\stackrel{\mu}{\nabla}_{Y} X\right)\right\}-\left\{Y\left[X\left(\stackrel{\nu}{\nabla}_{Z} \omega\right)\right]-X\left(\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega\right)\right\}  \tag{2.3}\\
& =Z Y[X(\omega)]-Z\left[X\left(\stackrel{\mu}{\nabla}_{Y} \omega\right)\right]-Y\left[X\left(\stackrel{\nu}{\nabla}_{Z} \omega\right)\right]+X\left(\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega\right),
\end{align*}
$$

and one gets

$$
\begin{equation*}
\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} X-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} X\right)(\omega)=[Z, Y][X(\omega)]-X\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} \omega-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega\right) \tag{2.4}
\end{equation*}
$$

i.e.,

$$
\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} X-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} X\right)(\omega)=[Z, Y][X(\omega)]-\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} \omega-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega\right)(X), \mu, \nu \in\{1,2\}
$$

From
(2.5) $\left(\stackrel{\nu}{\nabla}_{[Z, Y]} X\right)(\omega)=\stackrel{\nu}{\nabla}_{[Z, Y]}[X(\omega)]-X\left(\stackrel{\nu}{\nabla}_{[Z, Y]} \omega\right)=[Z, Y][X(\omega)]+\left(\stackrel{\nu}{\nabla}_{[Y, Z]} \omega\right)(X)$, we find the first addend on the right side and substitute in (2.7). We obtain

$$
\begin{align*}
& \left(\stackrel{\nu}{\nabla} \stackrel{\mu}{\nabla}_{Y} X-\stackrel{\nu}{\nabla}_{Y} \stackrel{\mu}{\nabla}_{Z} X+\stackrel{\nu}{\nabla}_{[Y, Z]} X\right)(\omega)  \tag{2.6}\\
& \quad=-\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} \omega-\stackrel{\nu}{\nabla}_{Y} \stackrel{\mu}{\nabla}_{Z} \omega+\stackrel{\nu}{\nabla}_{[Y, Z]} \omega\right)(X), \quad \mu, \nu \in\{1,2\}
\end{align*}
$$

Definition 2.1. The equations (2.4) for $\mu, \nu \in\{1,2\}$ are Ricci type identities for a vector in $L_{N}$.
2.2. Taking $\mu=\nu=1$, we obtain the corresponding identity for $\stackrel{1}{\nabla}$ :

$$
\begin{equation*}
\stackrel{1}{R}(X ; Y, Z)(\omega)=-\left(\stackrel{1}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega-\stackrel{1}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} \omega+\stackrel{1}{\nabla}_{[Y, Z]} \omega\right)(X) \tag{2.7}
\end{equation*}
$$

Denoting

$$
\begin{equation*}
\frac{1}{R}(\omega ; Y, Z)=\stackrel{1}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega-\stackrel{1}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} \omega+\stackrel{1}{\nabla}_{[Y, Z]} \omega, \tag{2.8}
\end{equation*}
$$

the equation (2.7) gives a relation

$$
\begin{equation*}
\stackrel{1}{R}(X ; Y, Z)(\omega)=-\frac{1}{\bar{R}}(\omega ; Y, Z)(X) \tag{2.9}
\end{equation*}
$$

In order to write the equation (2.4) in local coordinates for $\mu=\nu=1$, we take $X=X^{j} \partial_{j}, Y=\partial_{k}, Z=\partial_{l}, \omega=d x^{i}$. For the left side in (2.4) we obtain

$$
\begin{aligned}
& \mathcal{L}=\left(\stackrel{1}{\nabla}_{\partial_{l}} \stackrel{1}{\nabla}_{\partial_{k}} X-\stackrel{1}{\nabla} \partial_{\partial_{k}} \stackrel{1}{\nabla}_{\partial_{l}} X\right)\left(d x^{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\underset{1 k}{\left.\left(X_{\mid k}^{j}\right)_{, l} \delta_{j}^{i}+\underset{1}{X_{1 k}^{j}} L_{j l}^{p} \delta_{p}^{i}-\underset{{ }_{1}}{\left(X_{\mid l}^{j}\right)}\right)_{, k} \delta_{j}^{i}-\underset{\mid l}{X_{\mid l}^{j}} L_{j k}^{p} \delta_{p}^{i}} \\
& =\left(X_{\mid k}^{i}\right)_{, l}+X_{\mid k}^{j} L_{j l}^{i}-\left(X_{\mid l}^{i}\right)_{, k}-X_{\mid l}^{j} L_{j k}^{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\underset{\substack{|k| l \\
11}}{i}-\underset{\substack{|k| l \\
1}}{i}+T_{k l}^{p} X_{\mid p}^{i} .
\end{aligned}
$$

For the right-hand side in (2.4) we obtain

$$
\begin{aligned}
\mathcal{R} & =\left[\partial_{l}, \partial_{k}\right]\left(X\left(d x^{i}\right)\right)+X\left(\stackrel{1}{\nabla}_{\partial_{l}} \stackrel{1}{\nabla}_{\partial_{k}} d x^{i}-\stackrel{1}{\nabla}_{\partial_{k}} \stackrel{1}{\nabla}_{\partial_{l}} d x^{i}\right) \\
& =0+X\left[\stackrel{1}{\nabla}{ }_{\partial_{l}}\left(-L_{p l}^{i} d x^{p}\right)-\stackrel{1}{\nabla}{ }_{\partial_{l}}\left(-L_{p k}^{i} d x^{p}\right)\right] \\
& =X\left(\underset{1}{R_{p k l}^{i}} d x^{p}\right)=\underset{1}{R_{p k l}^{i}} d x^{p}(X)={\underset{1}{R}}_{i}^{i} X^{p},
\end{aligned}
$$

and from $\mathcal{L}=\mathcal{R}$, we have

$$
\begin{equation*}
\underset{\mid k l}{X_{1}^{i}}-\underset{1}{i} \underset{1}{i}=\underset{1}{R_{p k l}}{ }_{p}^{i} X^{p}-T_{k l}^{p} X_{\mid p}^{i} \tag{2.10}
\end{equation*}
$$

i.e., the known identity in local coordinates. So, we have proved the following theorem.

THEOREM 2.1. In the space $L_{N}$, with non-symmetric affine connection $\stackrel{1}{\nabla}$ by equation (2.4) for $\mu=\nu=1$ the first Ricci type identity for a vector is given. That identity can be written in forms (2.5), (2.6), (2.9), here $\stackrel{1}{R}$ is given by (1.3) and $\frac{1}{R}$ by (2.8). The corresponding identity in local coordinates is (2.10).
2.3. By using equation (2.4) and the condition $X(\omega)=\omega(X) \in \mathcal{F}\left(\mathcal{M}_{\mathcal{N}}\right)$, we obtain the equation analogous to (2.4) ( $X$ and $\omega$ have changed the roles):

$$
\begin{equation*}
\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} \omega-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega\right)(X)=[Z, Y][\omega(X)]-\omega\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} X-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} X\right) \tag{2.11}
\end{equation*}
$$

Definition 2.2. Equations (2.11) for $\mu, \nu \in\{1,2\}$ are Ricci type identities for a covector in $L_{N}$.

Equation (2.11) can be obtained also by consideration of the expression on the left-hand side in (2.11). The known Ricci identity for a covariant vector in local
coordinates can be obtained from (2.11) by substituting $\omega=\omega_{j} x^{j}, X=\partial_{i}, Y=\partial_{k}$, $Z=\partial_{l}:$

$$
\begin{equation*}
\omega_{j \mid k l}-\omega_{j \mid l k}=-R_{1}^{p} p{ }_{j k l}^{p} \omega_{p}-T_{k l}^{p} \omega_{j \mid p} \tag{2.12}
\end{equation*}
$$

So, the following theorem is valid.
THEOREM 2.2. In the space $L_{N}$, with non-symmetric affine connection $\stackrel{1}{\nabla}$, by equation (2.11) for $\mu=\nu=1$, the first Ricci type identity for a covector is given. The corresponding identity in local coordinates is (2.12).
2.4. For $\mu=\nu=2$ from (2.4) is obtained

$$
\begin{equation*}
\left(\stackrel{2}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} X-\stackrel{2}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} X\right)(\omega)=[Z, Y][X(\omega)]-X\left(\stackrel{2}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} \omega-\stackrel{2}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega\right) \tag{2.13}
\end{equation*}
$$

From here

$$
\begin{equation*}
\stackrel{2}{R}(X ; Y, Z)(\omega)=-\frac{2}{R}(\omega ; Y, Z)(X) \tag{2.14}
\end{equation*}
$$

where $\frac{2}{R}$ is expressed by $\stackrel{2}{\nabla}$ analogously to (2.8) and $\stackrel{2}{R}$ is given in (1.3). Surpassing to local coordinates, from (2.13) one obtains

$$
\begin{equation*}
\underset{\mid k l}{X_{\mid k l}^{i}}-\underset{\substack{ \\\mid l k}}{i}=\underset{2}{R_{p k l}^{i}} X^{p}+T_{k l}^{p} X_{\mid p}^{i}, \tag{2.15}
\end{equation*}
$$

and also equations similar to (2.11), (2.12) (for a covector).
Thus, we state
THEOREM 2.3. In the space $L_{N}$ with non-symmetric affine connection $\stackrel{2}{\nabla}$, defined by (1.1), the second Ricci type identity for a vector is given by equation (2.13). The corresponding identity in local coordinates is (2.15).

## 3. Identities for a vector and covector obtained by combinations of both connections

3.1. Putting $\mu=1, \nu=2$ into (2.4), we get the identity

$$
\begin{equation*}
\left(\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} X-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} X\right)(\omega)=[Z, Y][X(\omega)]-\left(\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega\right)(X) \tag{3.1}
\end{equation*}
$$

and from (2.6)
(3.2) $\left(\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} X-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} X+\stackrel{2}{\nabla}_{[Y, Z]} X\right)(\omega)=-\left(\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega+\stackrel{2}{\nabla}_{[Y, Z]} \omega\right)(X)$

Analogously to (1.5), let us put

$$
\begin{equation*}
\frac{3}{R}(\omega ; Y, Z)=\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega+\stackrel{2}{\nabla}_{\nabla_{Y} Z} \omega-\stackrel{1}{\nabla}_{\nabla_{Y} Z} \omega \in \mathfrak{X}^{*}\left(\mathcal{M}_{\mathcal{N}}\right) \tag{3.3}
\end{equation*}
$$

and (3.2) becomes

$$
\begin{align*}
& \left(\stackrel{3}{R}(X ; Y, Z)+{\left.\left.\stackrel{1}{\nabla_{2}^{2}} \underset{\nabla_{Y} Z}{ } X-\stackrel{2}{\nabla}_{\nabla_{\nabla_{Y} Z}} X+\stackrel{2}{\nabla}_{[Y, Z]} X\right)(\omega)\right) ~}_{\text {( }}\right. \tag{3.4}
\end{align*}
$$

Because of

$$
\begin{aligned}
\left(\stackrel{1}{\nabla}_{\nabla_{\nabla_{Z} Y}} X-\stackrel{2}{\nabla}_{\nabla_{\nabla_{Y} Z}} X+\stackrel{2}{\nabla}_{[Y, Z]} X\right)(\omega) & =\left({\left.\stackrel{1}{\nabla_{2}^{2}} \stackrel{\nabla}{Z} Y X-\stackrel{2}{\nabla}_{\nabla_{\nabla_{Y} Z+[Z, Y]}} X\right)(\omega)}=\left(\stackrel{1}{\nabla}_{\stackrel{\rightharpoonup}{\nabla}_{Z} Y} X-\stackrel{2}{\nabla}_{\nabla_{Z} Y} X\right)(\omega)\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& -\left(\stackrel{1}{\nabla}_{{\underset{\nabla}{Z}}^{2} Y} \omega-\stackrel{2}{\nabla}_{\stackrel{\rightharpoonup}{\nabla}_{Y} Z} \omega+\stackrel{2}{\nabla}_{[Y, Z]} \omega\right)(X)=-\left(\stackrel{1}{\nabla}_{{\underset{\nabla}{Z}}^{2} Y} \omega-\stackrel{2}{\nabla}_{\stackrel{1}{\nabla}_{Y} Z+[Z, Y]} \omega\right)(X) \\
& =\left(\stackrel{2}{\nabla}_{{\underset{\nabla}{Z}}_{2}} \omega-\stackrel{1}{\nabla}_{{\underset{\nabla}{Z}}^{2} Y} \omega\right)(X) \\
& =\stackrel{2}{\nabla}_{\nabla_{\nabla_{Z} Y}}[\omega(X)]-\omega\left({\stackrel{2}{\nabla^{2}}}_{\nabla_{Z} Y} X\right)-{\stackrel{1}{\nabla^{2}}}_{\nabla_{Z} Y}[\omega(X)]+\omega\left({\stackrel{1}{\nabla^{2}}}_{\nabla_{Z} Y} X\right) \\
& =\left(\stackrel{1}{\nabla}_{\nabla_{Z} Y} X-\stackrel{2}{\nabla}_{\nabla_{Z} Y} X\right)(\omega),
\end{aligned}
$$

we see that the right-hand sides of these equations are identical and from (3.4):

$$
\begin{equation*}
\stackrel{3}{R}(X ; Y, Z)(\omega)=-\frac{3}{R}(\omega ; Y, Z)(X) \tag{3.5}
\end{equation*}
$$

3.2. If we put $X=X^{j} \partial_{j}, Y=\partial_{k}, Z=\partial_{l}, \omega=d x^{i}$, equation (3.1) will be written in local coordinates as follows. For the left-hand side $\mathcal{L}$ we have

$$
\begin{align*}
& \left.=\left[\stackrel{2}{\nabla}_{\partial_{l}}\left(X_{\mid k}^{j} \partial_{j}\right)-{\stackrel{1}{\nabla} \partial_{\partial_{k}}}_{\nabla_{2}}^{{ }_{2}} X_{j}^{j} \partial_{j}\right)\right]\left(d x^{i}\right) \tag{3.6}
\end{align*}
$$

$$
\begin{aligned}
& =\underset{1}{\left(X_{\mid k}^{i}\right)_{, l}}+\underset{\mid k}{X_{\mid k}^{j}} L_{l j}^{i}-\underset{2}{\left(X_{\mid l}^{i}\right)_{, k}}-\underset{2}{X_{\mid l}^{j}} L_{j k}^{i} \\
& =\underset{\substack{|k| l \\
12}}{i}-\underset{\substack{|l| k}}{i}-L_{l k}^{p}(\underset{\substack{\mid p}}{i}-\underset{\substack{\mid p}}{i})=X_{\substack{|k| l \\
i}}^{i}-\underset{\substack{|l| k}}{i}-L_{l k}^{p} T_{s p}^{i} X^{s},
\end{aligned}
$$

where

$$
\begin{aligned}
& X_{\substack{|k| l \\
i}}^{i}=\underset{1}{1}\left(X_{\mid k}^{i}\right)_{, l}+\underset{{ }_{1 k}}{X_{l p}^{p}} L_{l p}^{i}-X_{\mid p}^{i} L_{l k}^{p}, \\
& X_{\substack{|l| k \\
i}}^{i}=\underset{2}{\left(X_{\mid l}^{i}\right)},{ }_{, k}+\underset{{ }_{2 l}}{X_{\mid l}^{p}} L_{p k}^{i}-\underset{\substack{\mid p}}{i} L_{l k}^{p} .
\end{aligned}
$$

For the right-hand side one obtains

$$
\begin{align*}
\mathcal{R} & =-\left(\stackrel{2}{\nabla}_{\partial_{l}} \stackrel{1}{\nabla}_{\partial_{k}} d x^{i}-\stackrel{1}{\nabla}_{\partial_{k}} \stackrel{2}{\nabla}_{\partial_{l}} d x^{i}\right)(X)  \tag{3.7}\\
& =\left(L_{p k, l}^{i} d x^{p}-L_{p k}^{i} L_{l s}^{p} d x^{s}+L_{l p, k}^{i} d x^{p}+L_{l p}^{i} L_{s k}^{p} d x^{s}\right)(X) \\
& =\left(L_{p k, l}^{i}-L_{s k}^{i} L_{l p}^{s}-L_{l p, k}^{i}+L_{l s}^{i} L_{p k}^{s}\right) X^{p}
\end{align*}
$$

By virtue of (3.6) and (3.7), from $\mathcal{L}=\mathcal{R}$ it is

$$
\begin{equation*}
\underset{|c| c}{|k| l} X_{\substack{|l| k}}^{i}-X_{3}^{i} R_{p k l}^{i} X^{p} \tag{3.8}
\end{equation*}
$$

and, analogously to that exposed above, for a covariant vector $\omega$ it is obtained

$$
\begin{equation*}
\omega_{\substack{j|k| l \\ 1 / 2}}-\omega_{\substack{j|l| k}}=-R_{3}^{p} p \omega_{p} . \tag{3.9}
\end{equation*}
$$

3.3. Introducing $\stackrel{4}{R}(X ; Y, Z)$ into (3.2) by virtue of (1.6) and defining $\frac{4}{R}(\omega ; Y, Z)$ according to

$$
\begin{equation*}
\frac{4}{R}(\omega ; Y, Z)=\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega+\stackrel{2}{\nabla}_{\nabla_{\nabla_{Y} Z}} \omega-\stackrel{1}{\nabla}_{\nabla_{\nabla_{Y} Z}} \omega \in \mathfrak{X}^{*}\left(\mathcal{M}_{\mathcal{N}}\right) \tag{3.10}
\end{equation*}
$$

equation (3.2) gives

$$
\begin{aligned}
& \left(\stackrel{4}{R}(X ; Y, Z)+{\left.\stackrel{1}{\nabla_{\nabla_{Z} Y}} X-\stackrel{2}{\nabla}_{\nabla_{Y} Z} X+\stackrel{2}{\nabla}_{[Y, Z]} X\right)(\omega)}^{=}-\left(\stackrel{4}{\bar{R}}(\omega ; Y, Z)+\stackrel{1}{\nabla}_{\nabla_{\nabla_{Z} Y}} \omega-\stackrel{2}{\nabla}_{\nabla_{\nabla_{Y} Z}} \omega+\stackrel{2}{\nabla}_{[Y, Z]} \omega\right)(X) .\right.
\end{aligned}
$$

As in the case of $\frac{3}{R}$, we obtain

$$
\begin{equation*}
\stackrel{4}{R}(X ; Y, Z)(\omega)=-\frac{4}{R}(\omega ; Y, Z)(X) \tag{3.11}
\end{equation*}
$$

Putting $X=\partial_{j}, Y=\partial_{k}, Z=\partial_{l}, \omega=d x^{i}$ and taking into consideration (3.10), we get

$$
\stackrel{4}{R}_{j k l}^{p} \partial_{p}\left(d x^{i}\right)=-\left[\stackrel{2}{\nabla}_{\partial_{l}}\left(-L_{p k}^{i} d x^{p}\right)-\stackrel{2}{\nabla}_{\partial_{k}}\left(-L_{l p}^{i} d x^{p}\right)+\stackrel{2}{\nabla}_{L_{k l}^{p} \partial_{p}} d x^{i}-\stackrel{1}{\nabla}_{L_{k l}^{p} \partial_{p}} d x^{i}\right]\left(\partial_{j}\right)
$$

from where for $\stackrel{4}{R}$ the value (1.11) is obtained. In view of (1.10), (1.11) it is

$$
\stackrel{4}{R}_{j k l}^{p}-\stackrel{3}{R_{j k l}^{p}}=T_{p j}^{i} T_{k l}^{p}
$$

and, using (3.8) and (3.9), we obtain

$$
\begin{align*}
& X_{\substack{|k| l \\
12}}^{i}-X_{\substack{|l| k \\
i}}^{i}=R_{4}^{i}{ }_{p k l}^{i} X^{p}+T_{p s}^{i} T_{k l}^{s} X^{p},  \tag{3.12}\\
& \omega_{\substack{j|k| l \\
12}}-\omega_{\substack{j|l| k \\
21}}=-\underset{4}{R_{j k l}^{p}} \omega_{p}+T_{s j}^{p} T_{k l}^{s} \omega_{p} . \tag{3.13}
\end{align*}
$$

Now, we can state the following theorem

THEOREM 3.1. In the space $L_{N}$ with two non-symmetric affine connections $\stackrel{1}{\nabla}$, $\stackrel{2}{\nabla}$, linked by equation (1.1), the third Ricci type identity for a vector is given by equation (3.1). This identity can be written also in forms (3.2), (3.5) and (3.11). From (2.8), for $\mu=1, \nu=2$, one obtains the third Ricci type identity for a covector. The corresponding identities in coordinates are (3.8), (3.9), (3.12) and (3.13).
3.4. In order to obtain an identity in which $\stackrel{5}{R}$ appears, let us start from the expression which appears in (1.7). So,

$$
\begin{aligned}
&\left(\stackrel{1}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} X+\stackrel{2}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} X-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} X-\stackrel{2}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} X\right)(\omega) \\
& \stackrel{\stackrel{(2.3)}{=}}{=}\left\{Z Y[X(\omega)]-Z\left[X\left(\stackrel{1}{\nabla}_{Y} \omega\right)\right]-Y\left[X\left(\stackrel{1}{\nabla}_{Z} \omega\right)\right]+X\left(\stackrel{1}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} \omega\right)\right. \\
&+Z Y[X(\omega)]-Z\left[X\left(\stackrel{2}{\nabla}_{Y} \omega\right)\right]-Y\left[X\left(\stackrel{2}{\nabla}_{Z} \omega\right)\right]+X\left(\stackrel{2}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega\right) \\
& \quad-Y Z[X(\omega)]+Y\left[X\left(\stackrel{2}{\nabla}_{Z} \omega\right)\right]+Z\left[X\left(\stackrel{1}{\nabla}_{Y} \omega\right)\right]-X\left(\stackrel{1}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega\right) \\
&\left.\quad-Y Z[X(\omega)]+Y\left[X\left(\stackrel{1}{\nabla}_{Z} \omega\right)\right]+Z\left[X\left(\stackrel{2}{\nabla}_{Y} \omega\right)\right]-X\left(\stackrel{1}{\nabla}_{Z}^{\nabla^{\nabla}}{ }_{Y} \omega\right)\right\}(\omega)
\end{aligned}
$$

that is

$$
\begin{align*}
& \frac{1}{2}\left(\stackrel{1}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} X+\stackrel{2}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} X-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} X-\stackrel{2}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} X\right)(\omega)  \tag{3.14}\\
& \quad=[Z, Y][X(\omega)]+\frac{1}{2} X\left(\stackrel{1}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} \omega+\stackrel{2}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega-\stackrel{1}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} \omega-\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega\right)
\end{align*}
$$

Definition 3.1. Equation (3.14) we call the combined Ricci type identity for a vector in $L_{N}$.

Using (1.7), from (3.14) it is obtained

$$
\begin{align*}
& \stackrel{5}{R}(X ; Y, Z)(\omega)+\left(\stackrel{0}{\nabla}_{[Z, Y]} X\right)(\omega)  \tag{3.15}\\
& \quad=[Z, Y][\omega(X)]+\frac{1}{2}\left(\stackrel{1}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} \omega+\stackrel{2}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega-\stackrel{1}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} \omega-\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega\right)(X) .
\end{align*}
$$

From

$$
\left(\stackrel{0}{\nabla}_{[Z, Y]} X\right)(\omega)=[Z, Y][X(\omega)]-X\left(\stackrel{0}{\nabla}_{[Z, Y]} \omega\right)=[Z, Y][\omega(X)]+\left(\stackrel{0}{\nabla}_{[Y, Z]} \omega\right)(X)
$$

we find the first addend of the right-hand side and substitute into (3.15). So,

$$
\begin{aligned}
&\left.{\stackrel{5}{R}(X ; Y, Z)(\omega)+\left(\stackrel{0}{\nabla_{[Z, Y]}}\right.} X\right)(\omega) \\
&=\left(\stackrel{0}{\nabla}_{[Z, Y]} X\right)(\omega)+\left(\stackrel{0}{\nabla}_{[Z, Y]} \omega\right)(X) \\
&+\frac{1}{2}\left(\stackrel{1}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} \omega+\stackrel{2}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega-\stackrel{1}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} \omega-\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega\right)(X),
\end{aligned}
$$

where $\stackrel{5}{R}$ is given in (1.7). Denoting (3.16)

$$
\frac{5}{R}(\omega ; Y, Z)=\frac{1}{2}\left(\stackrel{1}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega+\stackrel{2}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} \omega-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega-\stackrel{2}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} \omega+\stackrel{1}{\nabla}_{[Y, Z]} \omega+\stackrel{2}{\nabla}_{[Y, Z]} \omega\right)
$$

the previous equation gives

$$
\begin{equation*}
\stackrel{5}{R}(X ; Y, Z)(\omega)=\stackrel{5}{\bar{R}}(\omega ; Z, Y)(X) \tag{3.17}
\end{equation*}
$$

Substituting here $X=\partial_{j}, Y=\partial_{k}, Z=\partial_{l}, \omega=d x^{i}$ and taking into consideration (3.16), for $\stackrel{5}{R}_{j k l}^{i}$ (1.12) is obtained.

Remark 3.1. We see that relation between $\stackrel{5}{R}$ and $\frac{5}{R}$ is not of the form relating to $\stackrel{\theta}{R}, \frac{\theta}{R}, \theta=1,2,3,4$. In fact using the corresponding values from [22]

$$
\begin{aligned}
\stackrel{5}{R} & =\stackrel{0}{R}(X ; Y, Z)+\tau(\tau(X, Y), Z)+\tau(\tau(X, Z), Y) \\
\stackrel{8}{R} & =\frac{1}{2}\left(\stackrel{1}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} X+\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} X-\stackrel{1}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} X-\stackrel{2}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} X+\stackrel{1}{\nabla}_{[Y, Z]} X+\stackrel{2}{\nabla}_{[Y, Z]} X\right) \\
& =\stackrel{0}{R}(X ; Y, Z)-\tau(\tau(X, Y), Z)-\tau(\tau(X, Z), Y)
\end{aligned}
$$

We conclude that $\stackrel{5}{R}-2 \stackrel{0}{R}=\stackrel{8}{R}$ and

$$
\stackrel{5}{R}(X ; Y, Z)(\omega)=\frac{5}{\bar{R}}(\omega ; Z, Y)(X)=-\frac{8}{R}(\omega ; Y, Z)(X)
$$

So, we have
Theorem 3.2. In the space $L_{N}$ with two non-symmetric affine connections $\stackrel{1}{\nabla}$, $\stackrel{2}{\nabla}$, linked according to (1.1), by equation (3.14) the combined Ricci type identity for a vector is given. Some other forms of (3.14) are (3.15)-(3.17). From (3.15) combined Ricci type identity for a covector is obtained:

$$
\begin{align*}
& \frac{1}{2}\left(\stackrel{1}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} \omega+\stackrel{2}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} \omega-\stackrel{1}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} \omega-\stackrel{2}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} \omega\right)(X)  \tag{3.18}\\
& \quad=\frac{1}{2}\left(\stackrel{1}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y} X+\stackrel{2}{\nabla}_{Z} \stackrel{2}{\nabla}_{Y} X-\stackrel{1}{\nabla}_{Y} \stackrel{2}{\nabla}_{Z} X-\stackrel{2}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z} X\right)(\omega)+[Z, Y][\omega(X)]
\end{align*}
$$

From (3.14) and (3.18) we obtain the corresponding combined Ricci type identities for a vector and covector respectively local coordinates:

$$
\begin{aligned}
\frac{1}{2}\left(X_{1 k l}^{i}+\underset{2}{i}+\underset{1 \mid 2 l}{i}-X_{|l| k}^{i}-X_{|l| k}^{i}\right) & =\stackrel{5}{R_{p k l}^{i}} X^{p} \\
\frac{1}{2}\left(\omega_{j \mid k l}+\underset{\substack{1 \mid k l}}{\omega_{j}}-\omega_{\substack{j|l| k \\
12}}-\omega_{\substack{j|l| k}}\right) & =(\stackrel{5}{R}-2 \stackrel{0}{R})_{j k l}^{p} \omega_{p}
\end{aligned}
$$

where $\stackrel{0}{R_{j k l}^{i}}$ is defined by $\stackrel{0}{L}_{j k}^{i}=\frac{1}{2}\left(L_{j k}^{i}+L_{j k}^{i}\right)$, i.e., by symmetric connection coefficients.

Definition 3.2. The objects $\frac{\theta}{\bar{R}},(\theta=1, \ldots, 5)$, defined by $\frac{\theta}{R}: \mathfrak{X} \times \mathfrak{X} \times \mathfrak{X} \rightarrow \mathfrak{X}^{*}$ on $\mathcal{M}_{N}$, we call dual curvature tensors in relation to $\stackrel{\theta}{R}$.

## 4. Identities for a tensor field $t$ of the type $(r, s)$

4.1. Let us consider a tensor field of the type $(r, s)$, which will be denoted ${ }_{s}^{r} \equiv t$, i.e., consider a mapping ${ }_{s}^{r}:\left(\mathcal{X}^{*}\right)^{r} \times(\mathcal{X})^{s} \mapsto \mathcal{F}\left(\mathcal{M}^{\mathcal{N}}\right)$. So,

$$
{ }_{s}^{r}\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{s}\right) \in \mathcal{F}\left(\mathcal{M}^{\mathcal{N}}\right)
$$

is a differentiable function on $\mathcal{M}_{\mathcal{N}}$.
As known, a covariant derivative $\nabla_{Y}{ }_{s}^{r}$ is also of a type $(r, s)$. As in (2.1), one can consider the expression $\left(\nabla_{Z} \stackrel{\mu}{\nabla}_{Y} \stackrel{r}{t}-\stackrel{\mu}{\nabla}{ }_{Y} \stackrel{\nu}{\nabla}_{Z} \stackrel{r}{t}\right)\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{s}\right)$.
4.2. Let us examine nearer the case $(r, s)=(2,1)$, i.e., ${ }_{1}^{t} \equiv t$. We have

$$
\begin{aligned}
\left(\stackrel{\mu}{\nabla_{Y}} \stackrel{2}{t}\right)\left(\omega^{1}, \omega^{2} ; X\right) & =\stackrel{\mu}{\nabla_{Y}}\left[t\left(\omega^{1}, \omega^{2} ; X\right]-t\left(\stackrel{\mu}{\nabla}_{Y} \omega^{1}, \omega^{2} ; X\right)\right. \\
& -t\left(\omega^{1}, \stackrel{\mu}{\nabla_{Y}} \omega^{2} ; X\right)-t\left(\omega^{1}, \omega^{2} ; \stackrel{\mu}{\nabla_{Y}} X\right)
\end{aligned}
$$

Denoting $\stackrel{\mu}{\nabla}_{Y} t=\bar{t}$, we have

$$
\begin{aligned}
& \left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} t\right)\left(\omega^{1}, \omega^{2} ; X\right)=\left(\stackrel{\nu}{\nabla}{ }_{Z} \bar{t}\right)\left(\omega^{1}, \omega^{2} ; X\right) \\
& \underset{(4)}{=} \stackrel{\nu}{\nabla} Z\left[\bar{t}\left(\omega^{1}, \omega^{2} ; X\right]-\bar{t}\left(\stackrel{\nu}{\nabla}{ }_{Z} \omega^{1}, \omega^{2} ; X\right)-\bar{t}\left(\omega^{1}, \nu^{\nu}{ }_{Z} \omega^{2} ; X\right)-\bar{t}\left(\omega^{1}, \omega^{2} ; \nu_{Z} X\right)\right. \\
& =\stackrel{\nu}{\nabla}_{Z}\left[\left(\stackrel{\mu}{\nabla}_{Y} t\right)\left(\omega^{1}, \omega^{2} ; X\right]-\left(\stackrel{\mu}{\nabla}_{Y} t\right)\left(\stackrel{\nu}{\nabla}_{Z} \omega^{1}, \omega^{2} ; X\right)-\left(\stackrel{\mu}{\nabla}_{Y} t\right)\left(\omega^{1}, \stackrel{\nu}{\nabla}_{Z} \omega^{2} ; X\right)-\left(\stackrel{\mu}{\nabla}_{Y} t\right)\left(\omega^{1}, \omega^{2} ; \stackrel{\nu}{\nabla}_{Z} X\right)\right. \\
& \underset{(4)}{=} \stackrel{\nu}{\nabla}{ }_{Z}\left\{\stackrel{\mu}{\nabla}_{Y}\left[t\left(\omega^{1}, \omega^{2} ; X\right]-t\left(\stackrel{\mu}{\nabla_{Y}} \omega^{1}, \omega^{2} ; X\right)-t\left(\omega^{1}, \nabla_{Y} \omega^{2} ; X\right)-t\left(\omega^{1}, \omega^{2} ; \stackrel{\mu}{\nabla}_{Y} X\right)\right\}\right. \\
& -\left\{\stackrel{\mu}{\nabla}_{Y}\left[t\left(\stackrel{\nu}{\nabla}_{Z} \omega^{1}, \omega^{2} ; X\right]-t\left(\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega^{1}, \omega^{2} ; X\right)-t\left(\stackrel{\nu}{\nabla}_{Z} \omega^{1}, \stackrel{\mu}{\nabla}_{Y} \omega^{2} ; X\right)-t\left(\stackrel{\nu}{\nabla}_{Z} \omega^{1}, \omega^{2} ; \stackrel{\mu}{\nabla}_{Y} X\right)\right\}\right. \\
& -\left\{\stackrel{\mu}{\nabla}_{Y}\left[t\left(\omega^{1}, \stackrel{\nu}{\nabla} \omega^{2} ; X\right]-t\left(\stackrel{\mu}{\nabla} \omega^{\prime} \omega^{1}, \stackrel{\nu}{\nabla}{ }_{Z} \omega^{2} ; X\right)-t\left(\omega^{1}, \stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega^{2} ; X\right)-t\left(\omega^{1}, \stackrel{\nu}{\nabla}{ }_{Z} \omega^{2} ; \stackrel{\mu}{\nabla}_{Y} X\right)\right\}\right. \\
& -\left\{\stackrel{\mu}{\nabla}_{Y}\left[t\left(\omega^{1}, \omega^{2} ; \stackrel{\nu}{\nabla}_{Z} X\right]-t\left(\stackrel{\mu}{\nabla}_{Y} \omega^{1}, \omega^{2} ; \stackrel{\nu}{\nabla}_{Z} X\right)-t\left(\omega^{1}, \stackrel{\mu}{\nabla}_{Y} \omega^{2} ; \stackrel{\nu}{\nabla}_{Z} X\right)-t\left(\omega^{1}, \omega^{2} ; \stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} X\right)\right\}\right. \text {. }
\end{aligned}
$$

wherefrom

$$
\begin{align*}
& \left(\stackrel{\nu}{\nabla}{ }_{Z} \stackrel{\mu}{\nabla}_{Y}{ }_{1}^{2}-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}{ }_{Z}^{2}{ }_{1}^{2}\right)\left(\omega^{1}, \omega^{2} ; X\right)=[Z, Y]\left[{ }_{1}^{2}\left(\omega^{1}, \omega^{2} ; X\right)\right]  \tag{4.1}\\
& \left.=-\stackrel{2}{t}_{1}^{2} \stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} \omega^{1}-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega^{1}, \omega^{2} ; X\right) \\
& -\stackrel{1}{t}_{1}^{2}\left(\omega^{1}, \stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} \omega^{2}-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega^{2} ; X\right) \\
& -\stackrel{t}{t}_{1}^{2}\left(\omega^{1}, \omega^{2} ; \stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} X-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} X\right) .
\end{align*}
$$

4.3. In the general case, starting from

$$
\begin{align*}
& \left(\stackrel{\mu}{\nabla} \stackrel{r}{s}_{t}^{t}\left(\omega^{1}, \ldots, \omega^{r} ; X_{1}, \ldots, X_{s}\right)=\stackrel{\mu}{\nabla}_{Y}\left[{ }_{s}^{r}\left(\omega^{1}, \ldots, \omega^{r} ; X_{1}, \ldots, X_{s}\right)\right]\right.  \tag{4.2}\\
& -\sum_{i=1}^{r}{ }_{s}^{r} t\left(\omega^{1}, \ldots, \omega^{i-1}, \stackrel{\mu}{\nabla}{ }_{Y} \omega^{i}, \omega^{i+1}, \ldots, \omega^{r} ; X_{1}, \ldots, X_{s}\right) \\
& -\sum_{j=1}^{s}{ }_{s}^{r}\left(\omega^{1}, \ldots, \omega^{r} ; X_{1}, \ldots, X_{j-1}, \stackrel{\mu}{\nabla}{ }_{Y} X_{j}, X_{j+1}, \ldots, X_{s}\right),
\end{align*}
$$

we get
$\left(\stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla_{Y}}{ }_{s}^{r}-\stackrel{\mu}{\nabla_{Y}} \stackrel{\nu}{\nabla}_{Z}^{r}{ }_{s}^{r}\right)\left(\omega^{1}, \ldots, \omega^{r} ; X_{1}, \ldots, X_{s}\right)=[Z, Y]\left[t_{r}^{s}\left(\omega^{1}, \ldots, \omega^{r} ; X_{1}, \ldots, X_{s}\right)\right]$

$$
\begin{align*}
& -\sum_{i=1}^{r} \stackrel{r}{s}\left(\omega^{1}, \ldots, \omega^{i-1}, \stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} \omega^{i}-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} \omega^{i}, \omega^{i+1}, \ldots, \omega^{r} ; X_{1}, \ldots, X_{s}\right)  \tag{4.3}\\
& -\sum_{j=1}^{s} t{ }_{s}^{r}\left(\omega^{1}, \ldots, \omega^{r} ; X_{1}, \ldots, X_{j-1}, \stackrel{\nu}{\nabla}_{Z} \stackrel{\mu}{\nabla}_{Y} X_{j}-\stackrel{\mu}{\nabla}_{Y} \stackrel{\nu}{\nabla}_{Z} X_{j}, X_{j+1}, \ldots, X_{s}\right) .
\end{align*}
$$

Consider some particular cases, obtained from (4.2). For example:

1) For $\mu=\nu=1, r=1, s=0$ that is for $\underset{0}{1}=X$, from (2.4) corresponding identity is obtained, i.e., in coordinates, (2.10), and for $r=1, s=0$ it follows (2.11), respectively (2.12)
2) For $\mu=\nu=2, r=1, s=0$ analogous relation (2.13), and equations corresponding to (2.11) and (2.12) are obtained.
3) For $\mu=1, \nu=2, r=1, s=0$ we obtain (3.1) and for $r=0, s=1$ the corresponding equation follows, where the roles of $X$ and $\omega$ are exchanged.
4) For $r=2, s=1$, relation (4.1) follows.
4.4. Identities (4.3) can be written so that in them curvature tensors figure explicitly. For example, for $\mu=\nu=r=s=1, \stackrel{1}{\nabla} \equiv \nabla$ we have

$$
\begin{aligned}
& \left(\nabla_{Z} \nabla_{Y}^{1}{ }_{1}^{1}-\nabla_{Y} \nabla_{Z}^{1}{ }_{1}^{1}(\omega ; X)=[Z, Y]\left[1_{1}^{1}(\omega ; X)\right]\right. \\
& -{ }_{1}^{1}\left(\nabla_{Z} \nabla_{Y} \omega-\nabla_{Y} \nabla_{Z} \omega ; X\right)-{ }_{1}^{1}\left(\omega ; \nabla_{Z} \nabla_{Y} X-\nabla_{Y} \nabla_{Z} X\right) \\
& \left.=\nabla_{[Z, Y]}{ }_{1}^{1}(\omega ; X)\right]-{ }_{1}^{1}\left(\frac{1}{R}(\omega ; Y, Z)-\nabla_{[Y, Z]} \omega ; X\right)-{ }_{1}^{1}\left(\omega ;{ }_{1}^{1} R(X ; Y, Z)-\nabla_{[Y, Z]} X\right) \\
& \left.=\nabla_{[Z, Y]}{ }_{1}^{1}(\omega ; X)\right]-{ }_{1}^{1}\left(\frac{1}{R}(\omega ; Y, Z) ; X\right)+{ }_{1}^{1}\left(\nabla_{[Y, Z]} \omega ; X\right)-{ }_{1}^{1}(\omega ; \stackrel{1}{R}(X ; Y, Z))+{ }_{1}^{t}\left(\omega ; \nabla_{[Y, Z]}^{1} X\right) .
\end{aligned}
$$

In view of (4.2) it is
the previous equation gives the identity

$$
\begin{align*}
& \left(\stackrel{1}{\nabla}_{Z} \stackrel{1}{\nabla}_{Y}{ }_{1}^{t}-\stackrel{1}{\nabla}_{Y} \stackrel{1}{\nabla}_{Z}^{1}{ }_{1}^{t}\right)(\omega ; X)  \tag{4.4}\\
& \left.=(\stackrel{1}{\nabla} \underset{[Z, Y]}{1} \stackrel{1}{t})(\omega ; X)]-{ }_{1}^{1} \stackrel{1}{t}(\omega ; Y, Z) ; X\right)-{ }_{1}^{1}(\omega ; \stackrel{1}{R}(X ; Y, Z)) .
\end{align*}
$$

Herefrom, in the local coordinates one obtains

$$
t_{\substack{i \\ 1}}^{i}-t_{\substack{i \\ 1}}^{i}=\stackrel{1}{R_{p k l}^{i}} t_{j}^{p}-\stackrel{1}{R_{j k l}^{p}} t_{p}^{i}-T_{k l}^{p} t_{j \mid p}^{i} .
$$

Finally, from the exposed, the following theorem is valid.
THEOREM 4.1. In the space $L_{N}$ with two non-symmetric connections $\stackrel{1}{\nabla}, \stackrel{2}{\nabla}$, linked with equation (1.1), equation (4.3) represents general Ricci type identity for a tensor $\underset{s}{\underset{\sim}{r}}$ of the type $(r, s)$. The equations obtained previously for a vector and a covector, also (4.4), are particular cases of (4.3).

In (4.3) we see how the quantities $\stackrel{\theta}{R}$ and $\frac{\theta}{R}$ can be introduced.

## References

1. L. S. Das, R. Nivas, S. Ali, M. Ahmad, Study of submanifolds immersed in a manifolds with quater symmetric semi symmetric connection, Tensor N.S. 65 (2004), 250-260.
2. T. Imai, Notes on semi-symmetric metric connections, Tensor N.S. 24 (1972), 293-296.
3. S. M. Minčić, Ricci identities in the space of non-symmetric affine connexion, Mat. Vesnik 10(25) (2) (1973), 161-172.
4. $\qquad$ , On curvature tensors and pseudotensors of the space with non-symmetric affine connection, Math. Balkan. ?? (1974), 427-430 (in Russian).
5. -, Curvature tensors of the space of non-symmetric affine connexion, obtained from the curvature pseudotensors, Mat. Vesnik 13(28) (1976), 421-435.
6. _ New commutation formulas in the non-symetric affine connexion space, Publ. Inst. Math. (Beograd) (N.S) 22(36) (1977), 189-199.
7. _, Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connexion, Coll. Math. Soc. János Bolyai, 31 Dif. Geom., Budapest (Hungary), (1979), 445-460.
8. On curvature tensors of non-symmetric affine connection, Acta Comment. Univ. Tartu. Math. 9 (2005), 13-20.
9. $\qquad$ , Some characteristics of curvature tensors of nonsymmetric affine connexion, Novi Sad J. Math. 29(3) (1999), 169-186.
10. S. M. Minčić, Lj. S. Velimirović, Differential Geometry of Manifolds, Faculty of Science and Mathematics, Univ. of Niš, 2011 (in Serbian).
11. C. Nitescu, Bianchi identities in a non symmetric connection space, Bul. Inst. Polit. Iasi Sec.1, Mat. Mec. teor. Fiz. 20(24)(1-2) (1974),
12. H. D. Pande, Decomposition of curvature tensor in $R-\oplus$ recurent Finsler space with nonsymmetric connection (I), Prog. Math. 22(1,2) (1988), 61-68.
13. M. Prvanović, Une connexion non-symmetrique associé á l' éspace Riemannien, Publ. Inst. Math. 10(24) (1970), 53-64.
14. , Four curvature tensors of non-symmetric affine connexion, Proc. Conf. "150 years of Lobachevski geometry", Kazan 1976, Moscow 1997, 199-205 (in Russian).
15. U. P. Singh, On relative curvature tensors in the subspace of a Riemannian space, Revne Fac. Sci. Instambul 33 (1968), 69-75.
16. K. Yano, On semi-symmetric metric connection, Revne Roum. Math. Pures Appl. 15 (1970), 1579-1581.
17. N. Youssef, A. Sid-Ahmed, Linear connection and curvature tensors of the geometry of parallelisable manifolds, Reports Math. Phys. 60(1) (2007), 39.
18. S. M. Minčić, On curvature tensors obtained by two non-symmetric affine connections, submitted.

Faculty of Science and Mathematics
University of Niš
Niš
Serbia
svetislavmincic@yahoo.com


[^0]:    2010 Mathematics Subject Classification: Primary 53C05; Secondary 53B05.
    Key words and phrases: non-symmetric connection, curvature tensors, independent curvature tensors, Ricci type identities.

