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OPTIMAL QUADRATURE FORMULA

IN THE SENSE OF SARD IN K2(P3) SPACE

Abdullo R. Hayotov, Gradimir V. Milovanović,

and Kholmat M. Shadimetov

Communicated by Stevan Pilipović

Abstract. We construct an optimal quadrature formula in the sense of Sard
in the Hilbert space K2(P3). Using Sobolev’s method we obtain new op-
timal quadrature formula of such type and give explicit expressions for the
corresponding optimal coefficients. Furthermore, we investigate order of the
convergence of the optimal formula and prove an asymptotic optimality of such
a formula in the Sobolev space L

(3)
2 (0, 1). The obtained optimal quadrature

formula is exact for the trigonometric functions sin x, cos x and for constants.
Also, we include a few numerical examples in order to illustrate the application
of the obtained optimal quadrature formula.

1. Introduction and preliminaries

We consider the following quadrature formula

(1.1)

∫ 1

0
ϕ(x) dx ∼=

N
∑

ν=0

Cνϕ(xν),

with an error functional given by

(1.2) ℓ(x) = χ[0,1](x) −
N

∑

ν=0

Cνδ(x− xν),
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where Cν and xν (∈ [0, 1]) are coefficients and nodes of formula (1.1), respectively,
χ[0,1](x) is the characteristic function of the interval [0, 1], and δ(x) is Dirac’s delta-
function. We suppose that the functions ϕ(x) belong to the Hilbert space

K2(P3) =
{

ϕ : [0, 1] → R
∣

∣ ϕ′′ is absolutely continuous and ϕ′′′ ∈ L2(0, 1)
}

,

equipped with the norm

(1.3) ‖ϕ |K2(P3)‖ =

{∫ 1

0

(

P3

( d

dx

)

ϕ(x)
)2

dx

}1/2

,

where

P3

( d

dx

)

=
d3

dx3 +
d

dx
and

∫ 1

0

(

P3

( d

dx

)

ϕ(x)
)2
dx < ∞.

Equality (1.3) is semi-norm and ‖ϕ‖ = 0 if and only if ϕ(x) = c1 sin x +
c2 cosx + c3. The case without the constant term in ϕ(x) was considered in our
previous work [12].

It should be noted that for a linear differential operator of order n, L ≡
Pn(d/dx), Ahlberg, Nilson, and Walsh in the book [1, Chapter 6] investigated
the Hilbert spaces in the context of generalized splines. Namely, with the inner
product

〈ϕ, ψ〉 =

∫ 1

0
Lϕ(x) · Lψ(x) dx,

K2(Pn) is a Hilbert space if we identify functions that differ by a solution of Lϕ = 0.
Also, such a type of spaces of periodic functions and optimal quadrature formulae
were discussed in [6].

The corresponding error of the quadrature formula (1.1) can be expressed in
the form

(1.4) RN (ϕ) =

∫ 1

0
ϕ(x) dx −

N
∑

ν=0

Cνϕ(xν) = (ℓ, ϕ) =

∫

R

ℓ(x)ϕ(x) dx

and it is a linear functional in the conjugate space K∗
2 (P3) to the space K2(P3).

By the Cauchy–Schwarz inequality

|(ℓ, ϕ)| 6 ‖ϕ |K2(P3)‖ · ‖ℓ |K∗
2 (P3)‖

error (1.4) can be estimated by the norm of error functional (1.2), i.e.,

‖ℓ |K∗
2 (P3)‖ = sup

‖ϕ |K2(P3)‖=1
|(ℓ, ϕ)|.

In this way, the error estimate of quadrature formula (1.1) on the space K2(P3) can
be reduced to finding a norm of the error functional ℓ(x) in the conjugate space
K∗

2 (P3).
Obviously, this norm of the error functional ℓ(x) depends on the coefficients Cν

and the nodes xν , ν = 0, 1, . . . , N . The problem of finding the minimal norm of the
error functional ℓ(x) with respect to the coefficients Cν and the nodes xν is called
Nikol’skĭı problem, and the obtained formula is called optimal quadrature formula

in the sense of Nikol’skĭı. This problem was first considered by Nikol’skĭı [16],
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and continued by many authors (cf. [3]– [6], [17, 34] and references therein). A
minimization of the norm of the error functional ℓ(x) with respect only to the
coefficients Cν , when the nodes are fixed, is called Sard’s problem. The obtained
formula is called the optimal quadrature formula in the sense of Sard. This problem
was first investigated by Sard [19].

There are several methods of construction of optimal quadrature formulas in

the sense of Sard (see e.g., [3,28]). In the space L
(m)
2 (a, b), based on these methods,

Sard’s problem was investigated by many authors (see, for example, [2,3,5], [7]– [9],

[13]– [15], [20,21], [23]– [30], [32,33] and references therein). Here, L
(m)
2 (a, b) is

the Sobolev space of functions, with a square integrablem-th generalized derivative.
It should be noted that a construction of optimal quadrature formulas in the

sense of Sard, which are exact for solutions of linear differential equations, was
given in [9, 14], using the Peano kernel method, including several examples for
some number of nodes.

An optimal quadrature formula in the sense of Sard was constructed in [22],

using Sobolev’s method in the space W
(m,m−1)
2 (0, 1), with the norm defined by

∥

∥ϕ |W (m,m−1)
2 (0, 1)

∥

∥ =

{∫ 1

0

(

ϕ(m)(x) + ϕ(m−1)(x)
)2
dx

}1/2

.

In this paper we give the solution of Sard’s problem in the space K2(P3), using
Sobolev’s method for an arbitrary number of nodes N + 1. Namely, we find the

coefficients Cν

(

and the error functional ℓ̊
)

such that

(1.5) ‖ℓ̊ |K∗
2 (P3)‖ = inf

Cν

‖ℓ |K∗
2(P3)‖.

Thus, in order to construct an optimal quadrature formula in the sense of Sard in
K2(P3), we need consequently to solve the following two problems:

Problem 1. Calculate the norm of the error functional ℓ(x) for the given

quadrature formula (1.1).

Problem 2. Find such values of the coefficients Cν such that equality (1.5) is

satisfied with fixed nodes xν .

The paper is organized as follows. In Section 2 we determine the extremal
function which corresponds to the error functional ℓ(x) and give a representation
of the norm of the error functional (1.2). Section 3 is devoted to a minimization of

‖ℓ‖2
with respect to the coefficients Cν . We obtain a system of linear equations for

the coefficients of the optimal quadrature formula in the sense of Sard in the space
K2(P3). Moreover, the existence and uniqueness of the corresponding solution is
proved. Explicit formulas for coefficients of the optimal quadrature formula of the
form (1.1) are found in Section 4. In Section 5 we calculate the norm of the error
functional (1.2) of the optimal quadrature formula (1.1). Furthermore, we give an
asymptotic analysis of this norm. Finally, in Section 6 some numerical results are
presented. It should be noted that the results of this paper is a continuation of the
results of [12].
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2. The extremal function and representation

of the error functional ℓ(x)

In order to solve Problem 1, i.e., to calculate the norm of the error functional
(1.2) in the space K∗

2 (P3), we use a concept of the extremal function for a given
functional. The function ψℓ is called the extremal for the functional ℓ (cf. [29]) if
the following equality is fulfilled

(ℓ, ψℓ) = ‖ℓ |K∗
2(P3)‖ · ‖ψℓ |K2(P3)‖.

Since K2(P3) is a Hilbert space, the extremal function ψℓ in this space can be
found using the Riesz theorem about general form of a linear continuous functional
on Hilbert spaces. Then, for the functional ℓ and for any ϕ ∈ K2(P3) there exists
such a function ψℓ ∈ K2(P3), for which the following equality

(2.1) (ℓ, ϕ) = 〈ψℓ, ϕ〉
holds, where

(2.2) 〈ψℓ, ϕ〉 =

∫ 1

0

(

ψ′′′
ℓ (x) + ψ′

ℓ(x)
)(

ϕ′′′(x) + ϕ′(x)
)

dx

is an inner product defined on the space K2(P3).
Further, we will investigate the solution of Equation (2.1). Let first ϕ ∈

C̊(∞)(0, 1), where C̊(∞)(0, 1) is a space of infinity-differentiable and finite functions
in the interval (0, 1). Then from (2.2), an integration by parts gives

(2.3) 〈ψℓ, ϕ〉 = −
∫ 1

0

(

ψ
(6)
ℓ (x) + 2ψ

(4)
ℓ (x) + ψ′′

ℓ (x)
)

ϕ(x) dx.

According to (2.1) and (2.3) we conclude that

(2.4) ψ
(6)
ℓ (x) + 2ψ

(4)
ℓ (x) + ψ′′

ℓ (x) = −ℓ(x).

Thus, when ϕ ∈ C̊(∞)(0, 1), the extremal function ψℓ is a solution of the equation
(2.4). But, we have to find the solution of (2.1) when ϕ ∈ K2(P3).

Since the space C̊(∞)(0, 1) is dense in K2(P3), then functions from K2(P3)
can be uniformly approximated as closely as desired by functions from the space
C̊(∞)(0, 1). For ϕ ∈ K2(P3) we consider the inner product 〈ψℓ, ϕ〉. An integration
by parts gives

〈ψℓ, ϕ〉 =
(

ψ′′′
ℓ (x) + ψ′

ℓ(x)
)(

ϕ′′(x) + ϕ(x)
)∣

∣

1
0 −

(

ψ
(4)
ℓ (x) + ψ′′

ℓ (x)
)

ϕ′(x)
∣

∣

1
0

+
(

ψ
(5)
ℓ (x) + ψ′′′

ℓ (x)
)

ϕ(x)
∣

∣

1
0 −

∫ 1

0

(

ψ
(6)
ℓ (x) + 2ψ

(4)
ℓ (x) + ψ′′

ℓ (x)
)

ϕ(x) dx.

Hence, taking into account the arbitrariness ϕ(x) and uniqueness of the function
ψℓ(x) (up to functions sinx, cosx and 1), taking into account (2.4), the following
equation must be fulfilled

(2.5) ψ
(6)
ℓ (x) + 2ψ

(4)
ℓ (x) + ψ′′

ℓ (x) = −ℓ(x),
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with boundary conditions

ψ′′′
ℓ (0) + ψ′

ℓ(0) = 0, ψ′′′
ℓ (1) + ψ′

ℓ(1) = 0,(2.6)

ψ
(4)
ℓ (0) + ψ′′

ℓ (0) = 0, ψ
(4)
ℓ (1) + ψ′′

ℓ (1) = 0,(2.7)

ψ
(5)
ℓ (0) + ψ′′′

ℓ (0) = 0, ψ
(5)
ℓ (1) + ψ′′′

ℓ (1) = 0.(2.8)

Thus, we conclude, that the extremal function ψℓ(x) is a solution of boundary
value problem (2.5)–(2.8).

Taking the convolution of two functions f and g, i.e.,

(2.9) (f ∗ g)(x) =

∫

R

f(x− y) g(y)dy =

∫

R

f(y) g(x− y)dy,

we can state the following result:

Theorem 2.1. The solution of boundary value problem (2.5)–(2.8) is the ex-

tremal function ψℓ(x) of the error functional ℓ(x) and it has the following form

ψℓ(x) = (G ∗ ℓ)(x) + d1 sinx+ d2 cosx+ d3,

where d1, d2 and d3 are arbitrary real numbers, and

(2.10) G(x) = 1
4 sgnx · (x cos x− 3 sinx+ 2x)

is the solution of the equation

ψ
(6)
ℓ (x) + 2ψ

(4)
ℓ (x) + ψ′′

ℓ (x) = δ(x).

Proof. It is known that the general solution of a non-homogeneous differential
equation can be represented as a sum of its particular solution and the general
solution of the corresponding homogeneous equation. In our case, the general
solution of the corresponding homogeneous equation for (2.5) is given by

ψh
ℓ (x) = d1 sin x+ d2 cosx+ d3 + d4x sin x+ d5x cos x+ d6x,

where dk, k = 1, 6, are arbitrary constants. It is not difficult to verify that a partic-
ular solution of the differential equation (2.5) can be expressed as a convolution of
the functions ℓ(x) and G(x) defined by (2.9). The function G(x) is the fundamental
solution of the equation (2.5), and it is determined by (2.10).

According to the general rule for finding fundamental solutions of a linear

differential operators (cf. [31, p. 88]), in our case for the operator d6

dx6 + 2 d4

dx4 + d2

dx2

we get (2.10).
Thus, we have the following general solution of equation (2.5)

(2.11) ψℓ(x) = (ℓ ∗G)(x) + d1 sinx+ d2 cosx+ d3 + d4x sin x+ d5x cos x+ d6x.

In order that in the space K2(P3) the function ψℓ(x) will be unique (up to func-
tions sinx, cosx and 1), it has to satisfy conditions (2.6)–(2.8), where derivatives
are taken in a generalized sense. In computations we need the first five derivatives
of the function G(x):

G′(x) = sgn x
4 (2 − 2 cosx− x sin x),

G′′(x) = sgn x
4 (sinx− x cos x), G′′′(x) = sgn x

4 x sinx,
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G(4)(x) = sgn x
4 (sinx+ x cos x), G(5)(x) = sgn x

4 (2 cosx− x sin x),

where we used the following formulas from the theory of generalized functions [31],
(sgnx)′ = 2δ(x), δ(x)f(x) = δ(x)f(0). Further, using the well-known formula

d

dx
(f ∗ g)(x) = (f ′ ∗ g)(x) = (f ∗ g′)(x),

we can get expressions for ψ
(ν)
ℓ (x), ν = 1, . . . , 5, and then, using these expressions

and (2.11), as well as expressions for G(k)(x), k = 0, 5, boundary conditions (2.6)–
(2.8) reduce to

(ℓ(y), 1) − (ℓ(y), cos y) + 4d5 − 2d6 = 0,

(ℓ(y), 1) − cos 1(ℓ(y), cos y) − sin 1(ℓ(y), sin y) − 4d4 sin 1 − 4d5 cos 1 + 2d6 = 0,

(ℓ(y), sin y) − 4d4 = 0,

sin 1 (ℓ(y), cos y) − cos 1 (ℓ(y), sin y) − 4d4 cos 1 + 4d5 sin 1 = 0,

(ℓ(y), cos y) − 4d5 = 0,

cos 1 (ℓ(y), cos y) + sin 1 (ℓ(y), sin y) + 4d4 sin 1 + 4d5 cos 1 = 0.

Hence we have d4 = 0, d5 = 0, d6 = 0 and

(2.12) (ℓ(y), sin y) = 0, (ℓ(y), cos y) = 0, (ℓ(y), 1) = 0.

Substituting these values into (2.11), we get the assertion of the theorem. �

The equalities (2.12) mean that our quadrature formula will be exact for con-
stants and for the functions sin x and cosx.

Now, using Theorem 2.1, we immediately obtain a representation of the norm
of the error functional

(2.13) ‖ℓ|K∗
2 (P3)‖2 = (ℓ(x), ψℓ(x)) = −

N
∑

ν=0

N
∑

γ=0

CνCγ G(xν − xγ)

+ 2

N
∑

ν=0

Cν

∫ 1

0
G(x− xν) dx−

∫ 1

0

∫ 1

0
G(x− y) dx dy.

Thus, Problem 1 is solved. Further in Sections 3 and 4 we deal with Problem 2.

3. Existence and uniqueness of optimal coefficients

Let the nodes xν of quadrature formula (1.1) be fixed. The error functional (1.2)
satisfies conditions (2.12). The norm of error functional ℓ(x) is a multidimensional
function of the coefficients Cν (ν = 0, 1, . . . , N). For finding its minimum under
conditions (2.12), we apply the Lagrange method, i.e., we consider the function

Ψ(C0, . . . , CN , d1, d2, d3) = ‖ℓ‖2 + 2d1(ℓ(x), sin x) + 2d2(ℓ(x), cos x) + 2d3(ℓ(x), 1).

It leads to the following system of linear equations

N
∑

γ=0

CγG(xν − xγ) + d1 sinxν + d2 cosxν + d3 = f(xν), ν = 0, 1, . . . , N,(3.1)
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N
∑

γ=0

Cγ sinxγ = 1 − cos 1,
N

∑

γ=0

Cγ cosxγ = sin 1,
N

∑

γ=0

Cγ = 1,(3.2)

where G(x) is determined by (2.10) and f(xν) =
∫ 1

0 G(x− xν) dx.
First, we put C = (C0, C1, . . . , CN ) and d = (d1, d2, d3) for the solution of the

system of equations (3.1)–(3.2), which represents a stationary point of the function
Ψ(C,d). Setting Cν = C̄ν + C1ν , ν = 0, 1, . . . , N , (2.13) and system (3.1)–(3.2)
becomes

(3.3) ‖ℓ‖2 = −
N

∑

ν=0

N
∑

γ=0

C̄νC̄γG(xν − xγ) + 2

N
∑

ν=0

(C̄ν + C1ν)

∫ 1

0
G(x − xν) dx

−
N

∑

ν=0

N
∑

γ=0

(2C̄νC1γ + C1νC1γ)G(xν − xγ) −
∫ 1

0

∫ 1

0
G(x − y) dx dy

and
N

∑

γ=0

C̄γG(xν − xγ) + d1 sin xν + d2 cosxν + d3 = F (xν), ν = 0, 1, . . . , N,(3.4)

N
∑

γ=0

C̄γ sinxγ = 0,
N

∑

γ=0

C̄γ cosxγ = 0,
N

∑

γ=0

C̄γ = 0,(3.5)

respectively, where F (xν) = f(xν)−∑N
γ=0C1γG(xν −xγ) and C1γ , γ = 0, 1, . . . , N ,

are partial solutions of system (3.2).
System (3.1)–(3.2) has a unique solution and it gives the minimum to ‖ℓ‖2

under conditions (3.2). The uniqueness of this solution was proved in [30, Chapter
I]. However, we directly get that the minimization of (2.13) under conditions (2.12)
by Cν is equivalent to the minimization of expression (3.3) by C̄ν under conditions
(3.5). Therefore, it is sufficient to prove that system (3.4)–(3.5) has the unique
solution with respect to C̄ = (C̄0, C̄1, . . . , C̄N ) and d = (d1, d2, d3) and this solution
gives the conditional minimum for ‖ℓ‖2. From the theory of conditional extrema,
we need the positivity of the quadratic form

(3.6) Φ(C̄) =

N
∑

ν=0

N
∑

γ=0

∂2Ψ

∂C̄ν∂C̄γ

C̄νC̄γ

on the set of vectors C̄ = (C̄0, C̄1, . . . , C̄N ), under the condition SC̄ = 0, where S
is the matrix of the system of equations (3.5)

S =





sin x0 sin x1 · · · sinxN

cosx0 cosx1 · · · cosxN

1 1 · · · 1





Now we show that in this case the condition is satisfied.

Theorem 3.1. For any nonzero vector C̄ ∈ R
N+1 lying in the subspace SC̄ = 0,

the function Φ(C̄) is strictly positive.
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Proof. Using the definition of the function Ψ(C̄,d) and the previous equa-
tions, (3.6) reduces to

(3.7) Φ(C̄) = −2

N
∑

ν=0

N
∑

γ=0

G(xν − xγ)C̄νC̄γ .

Consider now a linear combination of delta functions

(3.8) δ
C̄

(x) =
√

2

N
∑

ν=0

C̄νδ(x− xν).

By virtue of the condition SC̄ = 0, this functional belongs to the space K∗
2 (P3).

So, it has an extremal function u
C̄

(x) ∈ K2(P3), which is a solution of the equation

(3.9)
( d6

dx6 + 2
d4

dx4 +
d2

dx2

)

u
C̄

(x) = −δ
C̄

(x).

As u
C̄

(x), we can take a linear combination of shifts of the fundamental solution

G(x), u
C̄

(x) = −
√

2
∑N

ν=0 C̄νG(x − xν), and we can see that

‖u
C̄

|K2(P3)‖2 = (δ
C̄
, u

C̄
) = −2

N
∑

ν=0

N
∑

γ=0

C̄νC̄γG(xν − xγ) = Φ(C̄).

Thus, it is clear that for a nonzero C̄, the function Φ(C̄) is strictly positive and
Theorem 3.1 is proved. �

If the nodes x0, x1, . . . , xN are selected such that the matrix S has the right
inverse, then the system of equations (3.4)–(3.5) has the unique solution, as well as
the system of equations (3.1)–(3.2).

Theorem 3.2. If the matrix S has the right inverse matrix, then the main

matrix Q of the system of equations (3.4)–(3.5) is nonsingular.

Proof. We denote by M the matrix of the quadratic form − 1
2 Φ(C̄), given in

(3.7). It is enough to consider the homogenous system of linear equations

(3.10) Q

(

C̄

d

)

=

(

M S∗

S 0

) (

C̄

d

)

= 0

and prove that it has only the trivial solution.
Let C̄, d be a solution of (3.10). Consider the function δ

C̄
(x), defined before

by (3.8). As an extremal function for δ
C̄

(x) we take the following function

u
C̄

(x) = −
√

2

( N
∑

ν=0

C̄νG(x− xν) + d1 sin x+ d2 cosx+ d3

)

.

This is possible, because u
C̄

belongs to the space K2(P3) and it is a solution of
equation (3.9). The first N + 1 equations of system (3.10) mean that u

C̄
(x) takes
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the value zero at all the nodes xν , ν = 0, 1, . . . , N . Then, for the norm of the
functional δ

C̄
(x) in K∗

2 (P3), we have

‖δ
C̄

|K∗
2 (P3)‖2 = (δ

C̄
, u

C̄
) = −2

N
∑

ν=0

C̄ν uC̄
(xν) = 0,

which is possible only when C̄ = 0. Taking into account this, from the first N + 1
equations of system (3.10) we obtain S∗d = 0. Since the matrix S is right-inversive
(by the hypotheses of this theorem), we conclude that S∗ has the left inverse matrix,
and therefore d = 0, i.e., d1 = d2 = d3 = 0, which completes the proof. �

According to (2.13) and Theorems 3.1 and 3.2, it follows that at fixed values
of the nodes xν , ν = 0, 1, . . . , N , the norm of the error functional ℓ(x) has the

unique minimum for some concrete values of Cν = C̊ν , ν = 0, 1, . . . , N . As we
mentioned in the first section, the quadrature formula with such coefficients C̊ν is
called optimal quadrature formula in the sense of Sard, and C̊ν , ν = 0, 1, . . . , N ,
are the optimal coefficients. In the sequel, for convenience the optimal coefficients
C̊ν will be denoted only as Cν .

4. Coefficients of the optimal quadrature formula

In this section we solve system (3.1)–(3.2) and find an explicit formula for
the coefficients Cν . We use a similar method, offered by Sobolev [28] for finding

optimal coefficients in the space L
(m)
2 (0, 1). Here, we mainly use a concept of

functions of a discrete argument and the corresponding operations (see [29, 30]).
For completeness we give some of definitions.

Let nodes xν be equaly spaced, i.e., xν = νh, h = 1/N . Assume that ϕ(x) and
ψ(x) are real-valued functions defined on the real line R.

Definition 4.1. The function ϕ(hν) is a function of a discrete argument if it
is given on some set of integer values of ν.

Definition 4.2. The inner product of two discrete argument functions ϕ(hν)
and ψ(hν) is given by [ϕ, ψ] =

∑∞
ν=−∞ ϕ(hν) ·ψ(hν), if the series on the right hand

side converges absolutely.

Definition 4.3. The convolution of two functions ϕ(hν) and ψ(hν) is the inner
product

ϕ(hν) ∗ ψ(hν) = [ϕ(hγ), ψ(hν − hγ)] =

∞
∑

γ=−∞

ϕ(hγ) · ψ(hν − hγ).

Suppose that Cν = 0 when ν < 0 and ν > N . Using these definitions, the
system (3.1)–(3.2) can be rewritten in the convolution form

G(hν) ∗ Cν + d1 sin(hν) + d2 cos(hν) + d3 = f(hν), ν = 0, 1, . . . , N,(4.1)

N
∑

ν=0

Cν sin(hν) = 1 − cos 1,
N

∑

ν=0

Cν cos(hν) = sin 1,
N

∑

γ=0

Cγ = 1,(4.2)
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where

f(hν) = cos(1 − hν) + 1
4 sin(1 − hν) − 1

4hν sin(1 − hν)(4.3)

+ cos(hν) + 1
4hν sin(hν) + 1

2 (hν)2 − 1
2hν − 7

4 .

Now, we consider the following problem.

Problem 1. For a given f(hν) find a discrete function Cν and unknown coef-

ficients d1, d2, d3, which satisfy system (4.1)–(4.2).

Further, instead of Cν we introduce the functions v(hν) and u(hν) by

v(hν) = G(hν) ∗ Cν and u(hν) = v(hν) + d1 sin(hν) + d2 cos(hν) + d3.

In such a statement it is necessary to express Cν by the function u(hν). For this
we have to construct such an operator D(hν), which satisfies the equation

(4.4) D(hν) ∗G(hν) = δ(hν),

where δ(hν) is equal to 0 when ν 6= 0 and is equal to 1 when ν = 0, i.e., δ(hν) is a
discrete delta-function.

In connection with this, a discrete analogue D(hν) of the differential operator

D6 =
d6

dx6 + 2
d4

dx4 +
d2

dx2 ,

which satisfies (4.4) was constructed in [11] and some properties were investigated.
Following [11] we have:

Theorem 4.1. The discrete analogue of the differential operator D6 satisfying

the equation (4.4) has the form

D(hν) =
2

2h+ h cosh− 3 sinh























∑2
k=1 Ak λ

|ν|−1
1 , |ν| > 2,

1 +
∑2

k=1 Ak, |ν| = 1,

3 sin 2h− 4h cos2 h− 2h

2h+ h cosh− 3 sinh
+

∑2
k=1

Ak

λk
, ν = 0,

where

λ1 =
−p1 −

√

p2
1 − 4p2 + 8 +

√

2p2
1 − 4p2 − 8 + 2p1

√

p2
1 − 4p2 + 8

4
,

λ2 =
−p1 +

√

p2
1 − 4p2 + 8 +

√

2p2
1 − 4p2 − 8 − 2p1

√

p2
1 − 4p2 + 8

4

are zeros of the polynomial P4(λ) = λ4 + p3λ
3 + p2λ

2 + p1λ+ 1, with coefficients

p3 = p1 =
3 sin 2h+ 6 sinh− 10h cosh− 2h

2h+ h cosh− 3 sinh
= 26 +O(h2),

p2 =
8h cos2 h+ 8h+ 2h cosh− 6 sinh− 6 sin 2h

2h+ h cosh− 3 sinh
= 66 +O(h2),
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h is a small parameter, |λk| < 1, and Ak =
Q6(λk)

λkP ′
4(λk)

, where

Q6(λ) = λ6 − (2 + 4 cosh)λ5 + (4 cos2 h+ 8 cosh+ 3)λ4

− (4 cosh+ 8 cos2 h+ 4 + cosh)λ3 + (4 cos2 h+ 8 cosh+ 3)λ2

− (2 + 4 cosh)λ+ 1.

Theorem 4.2. The discrete analogue D(hν) of the differential operator D6

satisfies the following equalities:

1) D(hν) ∗ sin(hν) = 0, 5) D(hν) ∗ 1 = 0,

2) D(hν) ∗ cos(hν) = 0, 6) D(hν) ∗ (hν) = 0,

3) D(hν) ∗ (hν) sin(hν) = 0, 7) D(hν) ∗G(hν) = δ(hν).
4) D(hν) ∗ (hν) cos(hν) = 0,

Here G(hν) is the function of discrete argument, corresponding to the function

G(x) defined by (2.10), and δ(hν) is the discrete delta-function.

Then, taking into account (4.4) and Theorems 4.1 and 4.2, for optimal coeffi-
cients we have

(4.5) Cν = D(hν) ∗ u(hν).

Thus, if we find the function u(hν), then the optimal coefficients can be obtained
from (4.5). In order to calculate convolution (4.5), we need a representation of
the function u(hν) for all integer values of ν. According to (4.1) we get that
u(hν) = f(hν) when hν ∈ [0, 1]. Now, we need a representation of the function
u(hν) when ν < 0 and ν > N .

Since Cν = 0 for hν /∈ [0, 1], then Cν = D(hν) ∗ u(hν) = 0, hν /∈ [0, 1]. Now,
we calculate the convolution v(hν) = G(hν) ∗ Cν when hν /∈ [0, 1].

Let ν < 0. Taking into account the equalities (2.10) and (4.2) and denoting

b1 =
1

4

N
∑

γ=0

Cγ hγ sin(hγ), b2 =
1

4

N
∑

γ=0

Cγ hγ cos(hγ), b3 =
1

2

N
∑

γ=0

Cγ hγ,

we get

v(hν) = − 1
4

[

(hν cos(hν) − 3 sin(hν)) sin 1 + (hν sin(hν) + 3 cos(hν))(1 − cos 1)

+ 2hν − 4b1 sin(hν) − 4b2 cos(hν) − 4b3
]

Similarly, for ν > N we obtain

v(hν) = 1
4

[

(hν cos(hν) − 3 sin(hν)) sin 1 + (hν sin(hν) + 3 cos(hν))(1 − cos 1)

+ 2hν − 4b1 sin(hν) − 4b2 cos(hν) − 4b3
]

.

Now, setting

d−
1 = d1 + b1, d−

2 = d2 + b2, d−
3 = d3 + b3,

d+
1 = d1 − b1, d+

2 = d2 − b2, d+
3 = d3 − b3

we formulate the following problem:
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Problem 2. Find the solution of the equation

(4.6) D(hν) ∗ u(hν) = 0, hν /∈ [0, 1],

in the form

u(hν) =







































− sin 1
4 (hν cos(hν) − 3 sin(hν)) + 1−cos 1

4 [hν sin(hν) + 3hν cos(hν)]

− 1
2hν + d−

1 sin(hν) + d−
2 cos(hν) + d−

3 , ν < 0,

f(hν), 0 6 ν 6 N,

sin 1
4 (hν cos(hν) − 3 sin(hν)) + 1−cos 1

4 [hν sin(hν) + 3hν cos(hν)]

+ 1
2hν + d+

1 sin(hν) + d+
2 cos(hν) + d+

3 , ν > N,

where d−
1 , d−

2 , d−
3 , d+

1 , d+
2 , d+

3 are unknown coefficients.

It is clear that

d1 = 1
2 (d−

1 + d+
1 ), d2 = 1

2 (d−
2 + d+

2 ), d3 = 1
2 (d−

3 + d+
3 ),

b1 = 1
2 (d−

1 − d+
1 ), b2 = 1

2 (d−
2 − d+

2 ), b3 = 1
2 (d−

3 − d+
3 ).

These unknowns d−
1 , d

−
2 , d

−
3 , d

+
1 , d

+
2 , d

+
3 can be found from equation (4.6),

using the function D(hν). Then, the explicit form of the function u(hν) and optimal
coefficients Cν can be obtained. Thus, in this way, Problem 2, as well as Problem
1, can be solved.

However, instead of this, using D(hν) and u(hν) and taking into account (4.5),
we find here expressions for the optimal coefficients Cν , ν = 1, . . . , N − 1. For this
purpose we introduce the following notations

p =
2

2h+ h cosh− 3 sinh
,

mk =
pAk

λk

∞
∑

γ=1

λγ
k

[

−f(−hγ) − 1
4 (3 sin(hγ) − hγ cos(hγ)) sin 1 − 1

4 (3 cos(hγ)

+ hγ sin(hγ))(1 − cos 1) + 1
2hγ − d−

1 sin(hγ) + d−
2 cos(hγ) + d−

3

]

,

nk =
Akp

λk

∞
∑

γ=1

λγ
k

[

1
4 (h(N + γ) cos((N + γ)h) − 3 sin((N + γ)h)) sin 1

+ 1
4 (3 cos((N + γ)h) + h(N + γ) sin((N + γ)h))(1 − cos 1) + 1

2h(N + γ)

+ d+
1 sin((N + γ)h) + d+

2 cos((N + γ)h) + d+
3 − f((N + γ)h)

]

.

for k = 1, 2. The series in the previous expressions are convergent, because |λk| < 1.
Using the previous results we can get the following relation for the coefficients

Cν = D(hν) ∗ f(hν) +

2
∑

k=1

(

mkλ
ν
k + nkλ

N−ν
k

)

,

and then, using Theorems 4.1 and 4.2 and equality (4.3), we can calculate the
convolution D(hν) ∗ f(hν) = D(hν) ∗ 1

2 (hν)2 = h, so that we obtain the following
statement:
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Theorem 4.3. The coefficients of optimal quadrature formulas in the sense of

Sard of form (1.1) in the space K2(P3) have the following representation

(4.7) Cν = h+
2

∑

k=1

(

mkλ
ν
k + nkλ

N−ν
k

)

, ν = 1, . . . , N − 1,

where mk and nk are defined above, and λk are given in Theorem 4.1.

According to Theorem 4.3, it is clear that in order to obtain the exact expres-
sions of the optimal coefficients Cν we need only mk and nk. They can be found
from an identity with respect to (hν), which can be obtained by substituting equal-
ity (4.7) into (4.1). Namely, equating the corresponding coefficients on the left and
the right hand sides of equation (4.1) we find mk and nk. The coefficients C0 and
CN follow directly from (4.2).

Finally, we can formulate the following result:

Theorem 4.4. The coefficients of the optimal quadrature formulas in the sense

of Sard of the form (1.1) in the space K2(P3) are

Cν =



























2(1 − cos 1)(1 − cosh) − h(sin(1 − h) + sin h− sin 1)

2(1 − cosh) sin 1

− ∑2
k=1 mk

(λk + λN+1
k )(sin(1 − h) + sinh) − (λN

k + λ2
k) sin 1

(λ2
k + 1 − 2λk cosh) sin 1

, ν = 0, N,

h+
∑2

k=1 mk

(

λν
k + λN−ν

k

)

, ν = 1, N − 1,

where

(4.8) m1 =
A22B1 −A12B2

A11A22 −A12A21
, m2 =

A11B2 −A21B1

A11A22 −A12A21
,

and

A11 =
λ1 + λN+1

1

λ2
1 + 1 − 2λ1 cosh

, A12 =
λ2 + λN+1

2

λ2
2 + 1 − 2λ2 cosh

,

A21 =
(λ1 + λN+1

1 )(sin(1 − h) + sin h) − (λ2
1 + λN

1 ) sin 1

λ2
1 + 1 − 2λ1 cosh

− (λ1 − λN
1 ) sin 1

1 − λ1
,

A22 =
(λ2 + λN+1

2 )(sin(1 − h) + sin h) − (λ2
2 + λN

2 ) sin 1

λ2
2 + 1 − 2λ2 cosh

− (λ2 − λN
2 ) sin 1

1 − λ2
,

B1 =
2(1 − cosh) − h sinh

2(1 − cosh) sinh
, B2 =

(1 − cos 1)(2(1 − cosh) − h sinh)

2(1 − cosh)
,

λk are given in Theorem 4.1 and |λk| < 1.

Because of complexity, the proof of this theorem will be omitted. Only we
mention here that the convolution G(hν) ∗ Cν in equation (4.1), i.e.,

G(hν) ∗ Cν =

N
∑

γ=0

CγG(hν − hγ) = S1 − S2,
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where

S1 =
1

2

ν
∑

γ=0

Cγ [(hν − hγ) cos(hν − hγ) − 3 sin(hν − hγ) + 2(hν − hγ)] ,

S2 =
1

4

N
∑

γ=0

Cγ [(hν − hγ) cos(hν − hγ) − 3 sin(hν − hγ) + 2(hν − hγ)] ,

provides the following identity with respect to (hν),

(4.9) S1 − S2 + d1 sin(hν) + d2 cos(hν) + d3 = f(hν),

where f(hν) is defined by (4.3). Unknowns in (4.9) aremk, nk (k = 1, 2), d1, d2 and
d3. Equating the corresponding coefficients of (hν) sin(hν), (hν) cos(hν) and (hν)
of both sides of this identity, for unknowns mk and nk (k = 1, 2) we obtain a system
of linear equations. After some simplifications we conclude that mk = nk, k = 1, 2,
and then, using (4.7), we can find the optimal coefficients Cν , ν = 0, 1, . . . , N .

Theorem 4.4 gives the solution of Problem 1, which is equivalent to Problem 2.
Thus, Problem 2 is solved, i.e., the coefficients of the optimal quadrature formula
(1.1) in the sense of Sard in the space K2(P3) for equal spaced nodes are found.

5. The norm of the error functional

of the optimal quadrature formula

This section is devoted to the calculation of the square of the norm of error
functional (1.2) for the optimal quadrature formula (1.1).

Theorem 5.1. The square of the norm of error functional (1.2) of the optimal

quadrature formula (1.1) on the space K2(P3) has the form

‖ℓ̊‖2 =
h2 − 18

12
+

5(1 − cos 1)

2 sin 1
+
h[5 sinh(1 − cos 1) − sin 1(h+ 2 sinh)]

4 sin 1(cosh− 1)

+

2
∑

k=1

mk

[λk(1+λN
k )[5(cos 1−1) sinh+ (cosh−sinh) sin 1] − (λN

k +λ2
k) sin 1

2(λ2
k + 1 − 2λk cosh) sin 1

+
λk(λ2

k − 1)(λN
k − 1)h sinh

(λ2
k + 1 − 2λk cosh)2 +

λk(λk + 1)(λN
k − 1)h2

(λk − 1)3 − λN
k − λk

2(λk − 1)

]

,

where λk are given in Theorem 4.1 and |λk| < 1, mk are defined in Theorem 4.4.

Proof. In the equal spaced case of the nodes, the expression (2.13), using
(2.10), we can rewrite in the following form

‖ℓ‖2 = −
N

∑

ν=0

Cν

( N
∑

γ=0

CγG(hν−hγ)−f(hν)

)

+

N
∑

ν=0

Cνf(hν)− 5

2
sin 1+

1

2
cos 1+

11

6
,

where f(hν) is defined by (4.3).
Then taking into account equality (3.1) we get

‖ℓ‖2 = −
N

∑

ν=0

Cν

[

−d1 sin(hν)−d2 cos(hν)−d3
]

+

N
∑

ν=0

Cνf(hν)− 5

2
sin 1+

1

2
cos 1+

11

6
.
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Using (4.3), (3.2), and (4.9), after some simplifications, we obtain

d1 =
sin 1 − cos 1

4
+

3(1 − cos 1)

2 sin 1
− 3(1 − cos 1)h sinh

4 sin 1 · (1 − cosh)
− 1

4

N
∑

γ=0

Cγ(hγ) sin(hγ)

+
1

2

2
∑

k=1

mkλk sinh

λ2
k + 1 − 2λk cosh

(

3(λN
k + 1)(cos 1 − 1)

sin 1
+
h(λ2

k − 1)(λN
k − 1)

λ2
k + 1 − 2λk cosh

)

,

d2 =
sin 1 + cos 1 + 7

4
− h(h+ 3 sinh)

4(1 − cosh)
− 1

4

N
∑

γ=0

Cγ(hγ) cos(hγ)

− 1

2

2
∑

k=1

mkλk(1 + λN
k )

λ2
k + 1 − 2λk cosh

(

3 sinh− h(λ2
k cosh− 2λk + cosh)

λ2
k + 1 − 2λk cosh

)

,

d3 = −7

4
− h(h+ 3 sinh)

4(cosh− 1)
− 1

2

N
∑

γ=0

Cγ(hγ) +
2

∑

k=1

mkλkh(1 + λN
k )

(λk − 1)2 .

as well as the corresponding value of ‖ℓ‖2,

‖ℓ‖2 =
18(1 − cos 1) − 7 sin 1

6 sin 1
+

3h(1 − cos 1)2 sinh

4(cosh− 1) sin 1
+
h(sin 1 − 1)(h+ 3 sinh)

4(cosh− 1)

+

2
∑

k=1

mk

[

3λk(1 + λN
k )(cos 1 − 1) sinh

(λ2
k + 1 − 2λk cosh) sin 1

+
λkh

2(λ2
k + 1 − 2λk cosh)2

(

(1 − cos 1)(λ2
k − 1)(λN

k − 1) sinh

+ (1 + λN
k )(λ2

k cosh− 2λk + cosh) sin 1
)

+
λkh(1 + λN

k )

(λk − 1)2

]

+
N

∑

γ=0

Cγ

(

cos 1

2
(hγ) sin(hγ) − sin 1

2
(hγ) cos(hγ) − hγ +

1

2
(hγ)2

)

.

Finally, using the expression for optimal coefficients Cγ from Theorem 4.4, after
some calculations and simplifications, we get the assertion of Theorem 5.1. �

Theorem 5.2. For the norm of error functional (1.2) of the optimal quadrature

formula of form (1.1) on the space K2(P3) we have

(5.1) ‖ℓ̊|K∗
2 (P3)‖2 =

1

30240
h6 +O(h7) as N → ∞.

Proof. Since

λ1 =
−p1 −

√

p2
1 − 4p2 + 8 +

√

2p2
1 − 4p2 − 8 + 2p1

√

p2
1 − 4p2 + 8

4

=
−13 −

√
105 +

√

270 + 26
√

105

2
+O(h2),
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λ2 =
−p1 +

√

p2
1 − 4p2 + 8 +

√

2p2
1 − 4p2 − 8 − 2p1

√

p2
1 − 4p2 + 8

4

=
−13 +

√
105 +

√

270 − 26
√

105

2
+O(h2),

that is |λk| < 1, k = 1, 2 and then λN
k → 0 as N → ∞. Thus, when N → ∞ from

Theorem 5.1 for ‖ℓ‖2 we get the following asymptotic expression

‖ℓ̊‖2 =
h2 − 18

12
+

5(1 − cos 1)

2 sin 1
+
h[5 sinh · (1 − cos 1) − sin 1 · (h+ 2 sinh)]

4 sin 1 · (cosh− 1)

+

2
∑

k=1

mk

[

λk[5(cosh− 1) sinh+ (cosh− sinh) sin 1] − λ2
k sin 1

2(λ2
k + 1 − 2λk cosh) sin 1

− h sinh(λ2
k − 1)λk

(λ2
k + 1 − 2λk cosh)2 − h2(λk + 1)λk

(λk − 1)3 +
λk

2(λk − 1)

]

,

where mk are defined in Theorem 4.4.
The expansion of the last expression in a series in powers of h gives the assertion

of Theorem 5.2. �

The following theorem gives an asymptotic optimality for our optimal quadra-
ture formula.

Theorem 5.3. The optimal quadrature formula of form (1.1) with the error

functional (1.2) in the space K2(P3) is asymptotic optimal in the Sobolev space

L
(3)
2 (0, 1), i.e.,

(5.2) lim
N→∞

‖ℓ̊|K∗
2 (P3)‖2

‖ℓ̊|L(3)∗
2 (0, 1)‖2

= 1.

Proof. Indeed, using Corollary 5.2 from [23] (for m = 2 and η0 = 0), for
square of the norm of error functional (1.2) of the optimal quadrature formula of

form (1.1) on the Sobolev space L
(3)
2 (0, 1) we get the following expression

‖ℓ̊|L(3)∗
2 (0, 1)‖2 =

h6

30240
+

2h7

6!

2
∑

k=1

dk

6
∑

i=1

−qN+i
k + (−1)iqk

(1 − qk)i+1 ∆i06,

i.e.,

(5.3) ‖ℓ̊|L(3)∗
2 (0, 1)‖2 =

h6

30240
+O(h7),

where dk, k = 1, 2 are known,

q1 =
−13 −

√
105 +

√

270 + 26
√

105

2
, q2 =

−13 +
√

105 +
√

270 − 26
√

105

2
,

∆iγ6 is the finite difference of order i of γ6, ∆i06 = ∆iγ6|γ=0.
Using (5.1) and (5.3) we obtain (5.2). �
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As we mentioned in Section 1, error (1.4) of the optimal quadrature formula of
form (1.1) in the space K2(P3) is estimated by the Cauchy–Schwarz inequality

(5.4) |RN (ϕ)| 6 ‖ϕ|K2(P3)‖ · ‖ℓ̊|K∗
2 (P3)‖.

Hence taking into account Theorem 5.2 we get

|RN (ϕ)| 6 ‖ϕ|K2(P3)‖
(

√
210

2520
h3 +O(h7/2)

)

,

from which we conclude that order of the convergence of our optimal quadrature
formula is O(h3).

In the next section we give some numerical examples which confirm our theo-
retical results.

6. Numerical results

As in [12] we considered numerical results for the following functions

f1(x) = ex, f2(x) = tan x, f3(x) =
313 x4 − 6900 x2 + 15120

13 x4 + 660 x2 + 15120
.

The corresponding integrals are

I1 =

∫ 1

0
exdx = e− 1 = 1.718281828459045 . . . ,

I2 =

∫ 1

0
tan xdx = − log(cos 1) = 0.6156264703860142 . . . ,

I3 =

∫ 1

0

313x4 − 6900x2 + 15120

13x4 + 660x2 + 15120
dx = 0.84147101789394123457 . . . .

Applying the optimal quadrature formula (1.1) with coefficients Cν , ν = 0, N
which are given in Theorem 4.4, for N = 10, 100, 1000, to the previous integrals we

obtain their approximate values denoted by I
(N)
k , k = 1, 2, 3, respectively. Using

Theorem 5.1 and taking into account inequality (5.4), we get upper bounds for abso-
lute errors of these integrals. The corresponding absolute errors and upper bounds
are displayed in Table 1. Numbers in parentheses indicate decimal exponents.

Table 1. Absolute errors of quadrature approximations I
(N)
1 ,

I
(N)
2 , and I

(N)
3 and corresponding upper bounds for N = 10k,

k = 1, 2, 3

N |I(N)
1 − I1| ‖f1‖ ‖ℓ̊‖ |I(N)

2 − I2| ‖f2‖ ‖ℓ̊‖ |I(N)
3 − I3| ‖f3‖ ‖ℓ̊‖

101 4.15(−6) 3.86(−5) 5.61(−5) 1.92(−4) 2.44(−10) 6.99(−10)

102 4.49(−10) 2.30(−8) 7.32(−9) 1.15(−7) 3.17(−14) 4.17(−13)

103 4.52(−14) 2.08(−11) 7.50(−13) 1.04(−10) 3.25(−18) 3.77(−16)
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We can see that optimal quadrature formula (1.1) gives the best results for
the last integral, because its integrand f3(x) is a rational approximation for the
function cosx (cf. [10, p. 66]).

All calculations were performed in Mathematica with 34 decimal digits man-
tissa. The same results can be obtained using Fortran in quadruple precision
arithmetic (with machine precision m.p. ≈ 1.93 × 10−34).
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