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Abstract. We present two complex valued probabilistic logics, LCOMPB

and LCOMPS , which extend classical propositional logic. In LCOMPB one
can express formulas of the form Bz,ρα meaning that the probability of α is in
the complex ball with the center z and the radius ρ, while in LCOMPS one can
make statements of the form Sz,ρα with the intended meaning – the probability
of propositional formula α is in the complex square with the center z and the
side 2ρ. The corresponding strongly complete axiom systems are provided.
Decidability of the logics are proved by reducing the satisfiability problem for
LCOMPB (LCOMPS) to the problem of solving systems of quadratic (linear)
inequalities.

1. Introduction

In measure theory, complex measures generalize the concept of measures by let-
ting them have complex values. It is well known that complex measures are used for
characterization of linear functionals on the space of all continuous complex-valued
functions that vanish at infinity (Riesz Theorem) [9]. By adding the assumption
that the measure of the entire space is equal to 1, we obtain complex valued proba-
bilities [1, 3]. Complex valued probabilities have proven to be useful in applications.
For example, in [12] the author considers relativistic quantum mechanics based on
complex probability theory. In this approach, a wave function Ψ is not treated as
“the state of the system". Ψ represents the best estimate of the complex probability
of finding particle at some point in a measure space. Actually, it says what is known
about the system. Thus, the collapse of the wave function represents learning a
new fact about the system and therefore leads to calculation of new complex prob-
abilities. In this way realistic quantum theory gives simple explanations of several
paradoxical problems in quantum mechanics. In [13] complex probabilities are ap-
plied to the concepts of degradation of systems and estimation of remaining useful
life of faulty components in the field of prognostic based on reliability. Complex
probabilities also appear in Markov Stochastic Processes, where in [14] the authors
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consider the transition probability matrix P of a discrete Markov chain and give a
motivating example for calculating P r where n < r < n + 1, for some n ∈ Z. It
turns out that, in general, P r is a complex matrix, i.e., it belongs to the class of
generalized stochastic matrices.

In this paper, we develop two logics for reasoning about complex valued prob-
abilities. Since the field of complex numbers is not ordered, we can not use the
standard probabilistic operators of the form P>rα, with the intended meaning “The
probability of α is greater or equal to r" [4, 5, 6, 7, 8]. We had a similar situa-
tion formalizing p-adic valued probabilities [10], where we introduced probabilistic
operators of the form Kr,ρα that have the intuitive meaning “The probability of
α belongs to the p-adic ball with the center r and the radius ρ". Similarly, in this
paper we use complex balls (in the first logic) and squares (in the second logic) to
estimate probabilities of events. The main differences between axiomatizations for
the logics from [10] and those presented in this paper, as well as in the proofs of the
corresponding statements, follow from the fact that the strong triangle inequality
holds for p-adic fields, but not for complex numbers.

We consider two logics:

• LCOMPB, with the probabilistic operators Bz,ρα meaning “The probability of
α is in the ball with the center z and the radius ρ",

• LCOMPS , with the probabilistic operators Sz,ρα meaning “The probability of
α is in the square with the center z and the side 2 · ρ"

For these logics, the corresponding axiom systems with infinitary rules of inference
are given and proved to be sound and strongly complete.

Decidability for the logic LCOMPB is proved by reducing the satisfiability
problem to the problem of solving systems of quadratic inequalities, which is known
to be in PSPACE [1]. For the logic LCOMPS the same reduction can be done to
the linear systems solving problem, which implies NP-completeness of the logic.

The rest of the paper is organized as follows: In Sections 2 and 3 we present the
logics LCOMPB and LCOMPS , respectively. Section 2 is divided into 4 subsections,
within which we present Syntax and Semantics, and then axioms and inference
rules, prove the corresponding soundness and completeness and discuss decidability.
Finally, the concluding remarks are given in Section 4.

2. The logic LCOMPB

In this section, we present the probability logic LCOMPB in which we use
probabilistic operators of the form Bz,ρα. The intended meaning of these operators
is: “The probability of α belongs to the ball B[z, ρ]".

Let | · | denote the standard real absolute value, (|x| = x if x > 0, |x| = −x if
x < 0). If C is a field of complex numbers and z = x+ iy ∈ C, then we use ‖ · ‖ for

the complex norm, ‖x+ iy‖ =
√

x2 + y2. Let B[z, ρ] = {z1 ∈ C : ‖z − z1‖ 6 ρ} be
a complex ball with the center z and the radius ρ, CQ = {a+ ib | a, b ∈ Q} the set
of complex numbers with rational coordinates, and Q+ the set of all non-negative
rationals.
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2.1. Syntax and semantics. Suppose that Var is a countable set of propo-
sitional letters. By ForCl we will denote the set of all propositional formulas over
Var. Propositional formulas will be denoted by α, β and γ. The set ForCP of all
probabilistic formulas is defined as the least set satisfying the following conditions:

• If α ∈ ForCl, z ∈ CQ, ρ ∈ Q+, then Bz,ρα is a probabilistic formula;
• If ϕ, φ are probabilistic formulas, then (¬ϕ), (ϕ∧φ) are probabilistic formulas.

Probabilistic formulas will be denoted by ϕ, φ and θ. The set For of all LCOMPB-
formulas is a union of ForCl and ForCP. Formulas will be denoted by A, B and C,
indexed if necessary. The other classical connectives (∨,⇒,⇔) can be defined as
usual. We denote both α ∧ ¬α and ϕ ∧ ¬ϕ by ⊥, letting the context to determine
the meaning. Also, we use ⊤ for α ∨ ¬α and ϕ ∨ ¬ϕ.

Definition 2.1. An LCOMPB-model is a structure M = 〈W,H, µ, v〉 where:

• W is a nonempty set of elements called worlds;
• H is an algebra of subsets of W ;
• µ : H −→ C is a measure (additive function) such that µ(W ) = 1;
• v : W × Var → {true, false} is a valuation which associated with every world
w ∈ W a truth assignment v(w, ·) on propositional letters; the valuation v(w, ·)
is extended to classical propositional formulas as usual.

If M is an LCOMPB-model, we will denote by [α] the set of all worlds w such
that v(w,α) = true. An LCOMPB-model M = 〈W,H, µ, v〉 is measurable if [α] ∈ H
for every formula α ∈ ForCl. In this paper we focus on the class of all measurable
LCOMPB-models. Thus, when we write “LCOMPB-model" we mean “measurable
LCOMPB-model".

Definition 2.2. Let M = 〈W,H, µ, v〉 be an LCOMPB-model. The satisfia-
bility relation |= is inductively defined as follows:

• If α ∈ ForCl„ then M |= α iff v(w,α) = true for every w ∈ W .
• If α ∈ ForCl, z ∈ CQ, ρ ∈ Q+, then M |= Bz,ρα iff ‖µ([α]) − z‖ 6 ρ.
• If ϕ ∈ ForCP„ then M |= ¬ϕ iff it is not M |= ϕ.
• If ϕ, ψ ∈ ForCP, then M |= ϕ ∧ ψ iff M |= ϕ i M |= ψ. �

Note that for all ρ ∈ Q+, z ∈ CQ, M |= Bz,ρα means that µ([α]) belongs to
the complex ball with the center z and the radius ρ. If ρ = 0„ then we obtain that
the probability of α is equal to z.

2.2. Axiomatization. The axiom system AXLCOMPB
of the logic LCOMPB

contains the following axioms and inference rules:
Axioms

A1. Substitutional instances of tautologies;
A2. Bz,ρα ⇒ Bz,ρ′α, whenever ρ′ > ρ;
A3. Bz1,ρ1α ∧Bz2,ρ2β ∧B0,0(α ∧ β) ⇒ Bz1+z2,ρ1+ρ2 (α ∨ β);
A4. Bz1,ρ1α ⇒ ¬Bz2,ρ2α, if ‖z1 − z2‖ > ρ1 + ρ2;
A5. Bz1,ρ1α ⇒ Bz2,ρ1+ρ2α, if ‖z1 − z2‖ 6 ρ2;

Inference rules
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R1. From A and A ⇒ B infer B. Here A and B are either both propositional, or
both probabilistic formulas;

R2. From α infer B1,0α;
R3. If n ∈ N, from ϕ ⇒ ¬Bz, 1

n
α for every z ∈ CQ, infer ϕ ⇒⊥;

R4. From α ⇒⊥, infer B0,0α;
R5. If z ∈ CQ, from ϕ ⇒ Bz,ρ+ 1

n
α for every n ∈ N, infer ϕ ⇒ Bz,ρα;

R6. From (α ⇔ β), infer (Bz,ρα ⇒ Bz,ρβ);

We will briefly discuss the meaning and the scope of the axioms and inference
rules. Axiom A1 provides validity of all classical tautologies. Axiom A2 corre-
sponds to the obvious property of balls: a ball of smaller radius is contained in a
ball of larger radius. Axiom A3 corresponds to the additivity of measures. Ax-
iom A4 provides that the measure of a formula cannot belong to two disjoint balls.
Axiom A5 allows that the following holds: if the measure of α belongs to the ball
B, it belongs to some larger ball B′, such that B ⊆ B′.

Rule R2 can be considered as the rule of necessitation in modal logic, but it
can be applied only to theorems. Rule R3 provides that for every classical formula
α and every n ∈ N, there must be some z ∈ CQ such that the measure of α belongs
to the ball B[z, 1

n ]. Rule R4 guarantees that contradiction has the measure 0.
Rule R5 expresses the next property: if the measure of α is arbitrarily close to
some number z ∈ CQ„ then the measure of α is equal to z. Finally, rule R6 says
that equivalent classical formulas have the same measure. Note that the rules R3
and R5 are infinitary.

Definition 2.3. A formula A is deducible from the set T of formulas (denoted
T ⊢ A) if there is a sequence (called a proof) of formulas A0, A1. . .An, where
An = A such that every Ai is either an instance of some axiom, or it is a formula
from the set T , or it can be derived from the preceding formulas by some inference
rule. The length of a proof is a successor ordinal. As it is usual, T 0 α means that
T ⊢ α does not hold. A formula A is a theorem (⊢ A) iff it is deducible from the
empty set. A set of formulas T is consistent if there are α ∈ ForCl and ϕ ∈ ForCP

such that T 0 α and T 0 ϕ. A consistent set T of formulas is said to be maximal
consistent if it has the following properties:

• For every α ∈ ForCl, if T ⊢ α„ then both α and B1,0α are in T ;
• For every ϕ ∈ ForCP, either ϕ ∈ T or ¬ϕ ∈ T .

A set of formulas T is deductively closed if for every A ∈ For, if T ⊢ A, then A ∈ T .

2.3. Soundness and completeness.

Theorem 2.1 (Deduction theorem). Let T be a set of formulas and A and B
both classical or both propositional formulas. Then, T,A ⊢ B implies T ⊢ A ⇒ B.

Proof. We use transfinite induction on the length of the proof of B from
T ∪ {A}. For example, we consider the case where B = (ϕ ⇒ ⊥) obtained from
T ∪ {A} by an application of rule R3 and A ∈ ForP . Then for some n ∈ N,
α ∈ ForCl:

T,A ⊢ ϕ ⇒ ¬(Bz, 1
n
α) for every z ∈ CQ
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T ⊢ A ⇒ (ϕ ⇒ ¬(Bz, 1
n
α)) for every r ∈ CQ, by induction hypothesis

T ⊢ A ∧ ϕ ⇒ ¬(Bz, 1
n
α) for every r ∈ CQ, by classical reasoning

T ⊢ A ∧ ϕ ⇒ ⊥, by rule R3
T ⊢ A ⇒ (ϕ ⇒ ⊥).
The other cases follow similarly. �

Theorem 2.2. Every consistent set can be extended to a maximal consistent
set.

Proof. Let T be a consistent theory, T the set of all classical formulas that
are consequences of T , α0, α1,. . . an enumeration of all formulas from ForCl, and
ϕ0, ϕ1,. . . an enumeration of all formulas from ForCP. Let f : N → N2 be any
bijection (i.e., f is of the form f(i) = (π1(i), π2(i))1). We define a sequence of
theories Ti in the following way:

(1) T0 = T ∪ T ∪ {B1,0α|α ∈ T};
(2) For every i > 0,

(a) If T2i ∪ {ϕi} is consistent, then T2i+1 = T2i ∪ {ϕi};
(b) Otherwise, if T2i ∪ {ϕi} is inconsistent, then:

(i) If ϕi = (ψ ⇒ Bz,ρα), then T2i+1 = T2i ∪ {¬ϕi, ψ ⇒ ¬Bz,ρ+p−nα}
for some n ∈ N such that T2i+1 is consistent,

(ii) Otherwise T2i+1 = T2i ∪ {¬ϕi};
(3) For every i > 0, T2i+2 = T2i+1 ∪ {Bz, 1

π1(i)
απ2(i)} for some z ∈ CQ

such that T2i+2 is consistent.

We show that for every i, Ti is consistent.
The set T0 is consistent since it contains consequences of a consistent set. The

sets obtained by the steps 2a are obviously consistent. The step 2b (ii) produces
consistent sets too. For if T2i, ϕi ⊢⊥, by Deduction Theorem we have T2i ⊢ ¬ϕi, and
since T2i is consistent so is T2i ∪ {¬ϕi}. Let us consider the step 2b(i). Suppose
that ϕi = (ψ ⇒ Bz,0α), T2i ∪ {ϕi} is inconsistent and that for every n ∈ N,
T2i ∪ {¬(ψ ⇒ Bz,0α), ψ ⇒ ¬Bz,p−nα} is inconsistent. Then:

T2i,¬(ψ ⇒ Bz,ρα), ψ ⇒ ¬Bz,ρ+ 1
n
α ⊢⊥, for every n ∈ N

T2i,¬(ψ ⇒ Bz,ρα) ⊢ ¬(ψ ⇒ ¬Bz,ρ+ 1
n
α), for every n ∈ N, by Deduction

theorem
T2i,¬(ψ ⇒ Bz,ρα) ⊢ ψ ⇒ Bz,ρ+ 1

n
α, for every n ∈ N, by classical tautology

¬(α ⇒ ¬β) ⇒ (α ⇒ β)
T2i,¬(ψ ⇒ Bz,ρα) ⊢ ψ ⇒ Bz,ρα, by rule R5
T2i ⊢ ¬(ψ ⇒ Bz,ρα) ⇒ (ψ ⇒ Bz,ρα), by Deduction theorem
T2i ⊢ ψ ⇒ Bz,ρα.

1For instance, we can consider the function f(x) = (π1(x), π2(x)), where π1(x) = (x + 1)1,

π2(x) =
[

1

2

([

x+1

2(x+1)1

]

−̇ 1
)]

. Here, (x)i is the degree of the i-th prime number in the factorization

of x and

x −̇ y =

{

x − y if x > y

0 otherwise.

Note that f is the inverse function of the function F : N2
→ N, F (m, n) = 2m(2n + 1) − 1.
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Since T2i ∪ {ψ ⇒ Bz,ρα} is not consistent, from T2i ⊢ ψ ⇒ Bz,ρα it follows that
T2i is not consistent, a contradiction.

Next, consider the step 3. Suppose that for every z ∈ CQ the set T2i+1 ∪
{Bz, 1

π1(i)
α 1

π2(i)
} is inconsistent. Let T2i+1 = T0 ∪ T+

2i+1, where T+
2i+1 is set of all

formulas from ForP which were added to T0 in previous steps of the construction.
Then:

T0, T
+
2i+1, Bz, 1

π1(i)
απ2(i) ⊢⊥, for every z ∈ CQ

T0, T
+
2i+1 ⊢ ¬Bz, 1

π1(i)
απ2(i) for every z ∈ CQ, by Deduction theorem

T0 ⊢ (
∧

ϕ∈T +
2i+1

ϕ) ⇒ ¬Bz, 1
π1(i)

απ2(i), for every z ∈ CQ, by Deduction theorem

T0 ⊢ (
∧

ϕ∈T +
2i+1

ϕ) ⇒⊥, by rule R3.

Therefore T2i+1 ⊢⊥, a contradiction.
Let T ∗ =

⋃

i<ω Ti. It remains to show that T ∗ is maximal and consistent. The
steps 1 and 2 of the above construction guarantee that T ∗ is maximal. We continue
by showing that T ∗ is a deductively closed set which does not contain all formulas,
and, as a consequence, that T ∗ is consistent.

First we show that T ∗ does not contain all formulas. Let α ∈ ForCl. According
to the construction of T0, α and ¬α cannot be simultaneously in T0. Suppose
that ϕ ∈ ForCP. Then for some i, j, ϕ = ϕi and ¬ϕ = ϕj . Since Tmax(2i,2j)+1 is
consistent, T ∗ cannot contain both ϕ and ¬ϕ.

Next we show that T ∗ is deductively closed. If α ∈ ForCl and T ∗ ⊢ α, then
by the construction of T0, α ∈ T ∗ and B1,0α ∈ T ∗. Let ϕ ∈ ForCP. Notice that if
ϕ = ϕj and Ti ⊢ ϕj , it must be ϕ ∈ T ∗ because Tmax(i,2j)+1 is consistent. Suppose
that the sequence ϕ1, ϕ2, . . . ϕ forms the proof of ϕ from T ∗. If the sequence is
finite, there must be a set Ti such that Ti ⊢ ϕ. Then, similarly as above, ϕ ∈ T ∗.
Thus suppose that the sequence is countably infinite.We can show that for every i,
if ϕi is obtained by an application of an inference rule, and all premises belong to
T ∗, then there must be ϕi ∈ T ∗. If the rule is a finitary one, then there must be a
set Tj which contains all premises and Tj ⊢ ϕi. Reasoning as above, we conclude
that ϕi ∈ T ∗. So, let us now consider the infinitary rules.

Suppose that ϕi = (ψ ⇒ ⊥) is obtained from the set {ϕz = (ψ ⇒ ¬Bz, 1
n
α) |

z ∈ CQ} of premises, by rule R3 and for some α ∈ ForCl, n ∈ N. By the induction
hypothesis ϕz ∈ T ∗ for every z ∈ CQ. By the step 3 of the construction there must
be some z′ and some l such that ψ ⇒ Bz′, 1

n
α belongs to Tl. Since all premises

belongs to T ∗, for some k, ψ ⇒ ¬Bz′, 1
n
α ∈ Tk. If m = max(l, k), then ψ ⇒

¬Bz′, 1
n
α, ψ ⇒ Bz′, 1

n
α ∈ Tm. Thus Tm ⊢ ψ ⇒ Bz′, 1

n
α and Tm ⊢ ψ ⇒ ¬Bz′, 1

n
α so

Tm ⊢ ψ ⇒⊥ Then, in the same way as above, we have ψ ⇒⊥∈ T ∗. Finally, the
case ϕi = (ψ ⇒ Bz,ρα) follows similarly. �

Let T ∗ be a maximal consistent set obtained from a consistent set T by the
construction from Theorem 2.2. According to the step (3), T ∗ has the following
property: For every formula α ∈ ForCl and every n ∈ N there is at least one
z ∈ CQ such that Bz, 1

n
α ∈ T ∗. Since T ∗ is deductively closed, using axiom A5, we

can obtain countably many numbers z ∈ CQ such that Bz, 1
n
α ∈ T ∗. Now, for each

formula α ∈ ForCl we make a sequence zn in the following way:
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• For every n ∈ N we arbitrarily chose any number z such that Bz, 1
n
α ∈ T ∗ and

this z will be the n-th number of the sequence, i.e., zn = z.

In this way we obtain the sequence z(α)=z0, z1, z2 . . . where Bzn, 1
n
α ∈ T ∗.

Notice that it is possible that zm = zk, for some m 6= k.

Lemma 2.1. Let z(α) be defined as above. Then, z(α) is a Cauchy sequence
(with respect to the norm ‖ · ‖).

Proof. Let ε be arbitrary. Choose n0 such that 2
n0

6 ε. If n,m > n0,

then according to the definition of z(α), Bzn, 1
n
α,Bzm, 1

m
α ∈ T ∗. We claim that

‖zn − zm‖ 6 1
n + 1

m . To prove this, suppose that ‖zn − zm‖ > 1
n + 1

m . Then:
T ∗ ⊢ Bzn, 1

n
α

T ∗ ⊢ Bzm, 1
m
α

T ∗ ⊢ Bzn, 1
n
α ⇒ ¬Bzm, 1

m
α by axiom A4

T ∗ ⊢ ¬Bzm, 1
m
α by rule R1, which contradicts the consistency of T ∗.

Thus, ‖zn − zm‖ 6 1
n + 1

m 6 2
n0

6 ε. �

In the following lemma we will show that this limes does not depend on the
choice of zk’s.

Lemma 2.2. Let α ∈ T ∗, α ∈ ForCl. Suppose that (zn)n∈N, and (z′

n)n∈N are
two different sequences obtained by the above given construction (i.e., for at least
one m, zm 6= z′

m). Then limn→∞ zn = limn→∞ z′

n.

Proof. According to axiom A4, as in the previous lemma we conclude that
for every n, ‖zn −z′

n‖ 6 2
n . Suppose that limn→∞ zn = a. Let ε be arbitrary. Then

there is n′

0 such that for n > n′

0 ‖zn − a‖ 6 ε
2 . Choose n′′

0 such that n′′

0 >
4
ε and

let n0 > max{n′

0, n
′′

0}. Then for n > n0:

‖z′

n − a‖ = ‖(z′

n − zn) + (zn − a)‖ 6 ‖z′

n − zn‖ + ‖zn − a‖ 6
2

n
+
ε

2
6
ε

2
+
ε

2
= ε.

Therefore limn→∞ z′

n = a. �

Next we define a canonical model. Let MT ∗ = 〈W,H, µ, v〉, where:

• W = {w | w |= T} contains all classical propositional interpretations that
satisfy the set T of all classical consequences of the set T ,

• H = {[α] : α ∈ ForCl}
• µ : H → C: Let z(α) = (zn)n∈N. Then

µ([α]) =

{

z if Bz,0α ∈ T ∗

limn→∞ zn otherwise

• for every world w and every propositional letter p ∈ Var, v(w, p) = true iff
w |= p.

The axioms guarantee that everything is well defined. For example, by the
classical reasoning we can show that {[α] : α ∈ ForCl} is an algebra of subsets
of W . The rule R6 implies that if [α] = [β], then µ([α]) = µ([β]). From the axioms
A2, A3 and rule R4 it follows that µ is finitely additive probability measure.
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Theorem 2.3 (Strong completeness). A set of formulas T is consistent iff it
has an LCOMPB-model.

Proof. (⇐) This direction follows from the soundness of the above axiomatic
system.

(⇒) In order to prove this direction we construct MT ∗ = (W,H, µ, v) as
above, and show, by induction on complexity of formulas, that for every formula
A,MT ∗ |= A iff A ∈ T ∗. For instance, we will consider the case where A = Bz,ρα
for some z ∈ CQ, ρ ∈ Q and α ∈ ForCl.

Suppose that Bz,ρα ∈ T ∗. First we assume that ρ > 0. Let z(α) = (zn)n∈N

and µ([α]) = limp
n→∞

zn. Thus (∀ε)(∃n0)(∀n)(n > n0 → ‖µ([α]) − zn‖ 6 ε).
We distinguish the following cases:

• There is ρ1 < ρ such that Bz,ρ1α ∈ T ∗. Then ρ − ρ1 > 0 > 1
m , for some

m ∈ N. Let ε = ρ − ρ1 − 1
m > 0. Let n0 be such that for every n > n0,

‖µ([α]) − zn‖ 6 ρ − ρ1 − 1
m . If n > max{n0,m}, then from T ∗ ⊢ Bz,ρ1 and

T ∗ ⊢ Bzn, 1
n

α, using axiom A4 we obtain ‖z−zn‖ 6 ρ1 + 1
n . Thus ‖z−µ([α])‖ =

‖z − zn + zn − µ([α])‖ 6 ‖z − zn‖ + ‖zn − µ([α])‖ 6 ρ1 + 1
n + ρ− ρ1 − 1

m 6 ρ.
Therefore MT ∗ |= Bz,ρα.

• There is no ρ1 < ρ such that Bz,ρ1α ∈ T ∗. But from T ∗ ⊢ Bz,ρα and axiom A2,
we obtain T ∗ ⊢ Bz,ρ+ 1

n
α, for every n ∈ N. Therefore, according to the previous

considerations, we obtain ‖z − µ([α])‖ 6 ρ + 1
n , for every n ∈ N, and thus

‖z − µ([α])‖ 6 ρ.

Finally, let ρ = 0, i.e., T ∗ ⊢ Bz,0α. Then, according to the definition of measure µ
in the canonical model, µ([α]) = z, i.e., ‖µ([α]) − z‖ = 0. Thus, MT ∗ |= Bz,0α.

For the other direction, suppose that MT ∗ |= Bz,ρα. Let ρ > 0. As in the
previous direction, we consider the following cases.

• ‖µ([α]) − z‖ < ρ, that is, there is ρ1 < ρ such that MT ∗ |= Bz,ρ1α. Choose
k ∈ N such that ρ− ρ1 >

1
k . Let µ([α]) = limp

n→∞
zn. Then, there is n0 such

that (∀n)(n > n0 → ‖µ([α]) − zn‖ 6 1
k ). Let n > n0 and 1

n + 1
k +ρ1 6 ρ. Then

from ‖zn − µ([α])‖ 6 1
k and ‖z − µ([α])‖ 6 ρ1, we obtain ‖z − zn‖ 6 ρ1 + 1

k .
Therefore, T ∗ ⊢ Bzn, 1

n
α

T ∗ ⊢ Bzn, 1
n
α ⇒ Bz, 1

n
+ρ1+ 1

k
α, by A5

T ∗ ⊢ Bz, 1
n

+ρ1+ 1
k
α

T ∗ ⊢ Bz,ρα, using A2
• There is no ρ1 < ρ such that ‖µ([α]) − z‖ < ρ1. Since ‖µ([α]) − z‖ < ρ, we

have ‖µ([α]) − z‖ < ρ + 1
n , for every n ∈ N. Therefore, using the previous

considerations we obtain T ∗ ⊢ Bz,ρ+ 1
n
α for every n ∈ N, and according to

rule R5, T ∗ ⊢ Bz,ρα.

If ρ = 0, then ‖µ([α]) − z‖ = 0, so ‖µ([α]) − z‖ < 1
n for every n ∈ N. Thus

T ∗ ⊢ Bz,0+ 1
n
α for every n ∈ N, and by rule R5, Thus T ∗ ⊢ Bz,0α. �

2.4. Decidability. In this section, we analyze decidability of the satisfiability
problem for LCOMPB-formulas. Since there is a procedure for deciding satisfiabil-
ity of classical propositional formulas, we will consider only ForCP-formulas.
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Let ϕ ∈ ForCP. If p1, . . . , pn are all propositional letters appearing in ϕ, then
an atom of a formula ϕ is a formula of the form ±p1 ∧ . . . ∧ ±pn, where ±pi is
either pi or ¬pi. It can be shown, using classical propositional reasoning, that ϕ is
equivalent to a formula

DNF(ϕ) =
∨

i=1,m

(

∧

j=1,ki

±Bzi,j , 1
ni,j

αi,j

)

where ±Bzi,j, 1
ni,j

αi,j denotes either Bzi,j , 1
ni,j

αi,j or ¬Bzi,j , 1
ni,j

αi,j

ϕ is satisfiable iff at least one disjunct from DNF(ϕ) is satisfiable.
Fix some i and consider disjunct Di =

∧

j=1,ki
±Bzi,j , 1

ni,j

αi,j from DNF(ϕ).

Let p1, . . . , pn be all propositional letters appearing in Di. Every propositional
formula α is equivalent to the complete disjunctive normal form, denoted FDNF(α).

If |= (α ⇔ β), then according to the rule R6, for every model M and every
z ∈ CQ, ρ ∈ Q+, M |= Bz,ρα iff M |= Bz,ρβ. Thus, disjunct Di is satisfiable iff the
formula

∧

j=1,ki
±Bzi,j , 1

ni,j

FDNF(αi,j) is satisfiable. Since for two different atoms

ai and aj , [ai] ∩ [aj ] = ∅, for every model M , µ[ai ∨ aj ] = µ[ai] + µ[aj ]. Hence,
disjunct Di is satisfiable iff the following system is satisfiable

2n

∑

t=1

zt = 1

J1 =















(

∑

at∈αi,1

xt − a1

)2
+

(

∑

at∈αi,1

yt − b1

)2
6 ρ2

1 if ±Bz1,ρ1αi,1 = Bz1,ρ1αi,1

(

∑

at∈αi,1

xt − a1

)2
+

(

∑

at∈αi,1

yt − b1

)2
> ρ2

1 if ±Bz1,ρ1αi,1 = ¬Bz1,ρ1αi,1

...

Jki
=















(

∑

at∈αi,ki

xt−aki

)2
+

(

∑

at∈αi,ki

yt−bki

)2
6ρ2

ki
if ±Bzki

,ρki
αi,ki

= Bzki
,ρki

αi,ki

(

∑

at∈αi,ki

xt−aki

)2
+

(

∑

at∈αi,ki

yt−bki

)2
>ρ2

ki
if ±Bzki

,ρki
αi,ki

= ¬Bzki
,ρki

αi,ki

where at ∈ αi,j denote that the atom at appears in FDNF(αi,j), zt = µ([at]) =
xt + iyt and zj = aj + ibj , 1 6 j 6 ki.

As we can see, our formulas can be coded in the existential fragment of the RCF.
It is well known that the SAT problem for this fragment is PSPACE complete [1],
so PSAT for LCOMPB is in PSPACE.

Therefore, we have the following result.

Theorem 2.4. The satisfiability problem for LCOMPB-formulas is decidable.

3. The logic LCOMPS

In this section we present the probability logic LCOMPS in which we use proba-
bilistic operators Sz,ρα meaning “The probability of α belongs to the square parallel
to the x axis, with the center z and the side 2ρ". Let [a, b] = {x ∈ R | a 6 x 6 b}
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denote interval on real line. The most of the notions defined in Section 2 are also
used for the logic LCOMPS . The main, but important differences are:

• In the definition of all probabilistic formulas ForS
CP, basic probabilistic formulas

are of the form Sz,ρα where α ∈ ForCl, z ∈ CQ and ρ ∈ Q+.
• If M = 〈W,H, µ, v〉 is an LCOMPS model, then for α,ForCl, z ∈ CQ, ρ ∈ Q+

and z = a + ib, M |= Sz,ρα iff Re(µ([α])) ∈ [a − ρ, a + ρ] and Im(µ([α])) ∈
[b− ρ, b+ ρ].

Note that, for arbitrary ρ ∈ Q+, z ∈ CQ, M |= Sz,ρα means that µ([α]),
belongs to the complex square parallel to the x axis, with the center z and the
side 2ρ. If ρ = 0, then we obtain that the probability is equal to z.

The axiom system AXLCOMPS
of the logic LCOMPS contains the following

axioms and inference rules:
Axioms

A1. Substitutional instances of tautologies;
A2. Sz,ρα ⇒ Sz,ρ′α, whenever ρ′ > ρ;
A3. Sz1,ρ1α ∧ Sz2,ρ2β ∧ S0,0(α ∧ β) ⇒ Sz1+z2,ρ1+ρ2 (α ∨ β);
A4. Sz1,ρ1α ⇒ ¬Sz2,ρ2α, if [a1 − ρ1, a1 + ρ1] ∩ [a2 − ρ2, a2 + ρ2] = ∅ or [b1 − ρ1, b1 +

ρ1] ∩ [b2 − ρ2, b2 + ρ2] = ∅, where z1 = a1 + ib1 and z2 = a2 + ib2;
A5. Sz1,ρ1α ⇒ Sz2,ρ2α, if [a1 −ρ1, a1 +ρ1] ⊆ [a2 −ρ2, a2 +ρ2] and [b1 −ρ1, b1 +ρ1] ⊆

[b2 − ρ2, b2 + ρ2]

Inference rules

R1. From A and A ⇒ B infer B. Here A and B are either both propositional, or
both probabilistic formulas;

R2. From α infer S1,0α;
R3. If n ∈ N, from ϕ ⇒ ¬Sz, 1

n
α for every z ∈ CQ, infer ϕ ⇒⊥;

R4. From α ⇒⊥, infer S0,0α;
R5. If z ∈ CQ, from ϕ ⇒ Sz,ρ+ 1

n
α for every n ∈ N, infer ϕ ⇒ Sz,ρα;

R6. From (α ⇔ β), infer (Sz,ρα ⇒ Sz,ρβ);

Axiom A2 corresponds to the obvious property of squares: a square with smaller
side is contained in a square with larger side and the same center. Axiom A3
corresponds to the additivity of measures. Axiom A4 provides that the measure of
formula cannot belong to two disjoint squares. Axiom A5 allows that the following
holds: if the measure of the formula α belongs to the square S, it belongs to a larger
square S′, such that S ⊆ S′. Rule R3 provides that for every classical formula α
and every n ∈ N, there must be some z ∈ CQ such that the measure of α belongs
to the square S[z, 1

n ]. Rule R5 expresses the following property: if the measure of
α is arbitrary close to some number z ∈ CQ, then the measure of α is equal to z.

Construction of maximal consistent extensions of consistent sets of formulas can
be done similarly as above. If T ∗ is maximal consistent set of formulas, then for
each formula α ∈ ForCl we make a sequence z(α) = z0, z1,. . . , where Szj, 1

j
α ∈ T ∗.

Lemma 3.1. For every α ∈ ForCl, z(α) is a Cauchy sequence (with respect to
the norm ‖ · ‖).
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Proof. Let ε be arbitrary. Choose n0 such that 4
n0

6 ε. If n,m > n0, then
Szn, 1

n
α, Szm, 1

m
α ∈ T ∗. Let zn/m = xn/m + iyn/m. Then, there exist x and y such

that x ∈ [xn − 1
n , xn + 1

n ] ∩ [xm − 1
m , xm + 1

m ] and y ∈ [yn − 1
n , yn + 1

n ] ∩ [ym −
1
m , ym + 1

m ]. To prove that, suppose that [xn − 1
n , xn + 1

n ] ∩ [xm − 1
m , xm + 1

m ] = ∅

or [yn − 1
n , yn + 1

n ] ∩ [ym − 1
m , ym + 1

m ] = ∅. Then:
T ∗ ⊢ Szn, 1

n
α

T ∗ ⊢ Szm, 1
m
α

T ∗ ⊢ Szn, 1
n
α ⇒ ¬Szm, 1

m
α by Axiom A4

T ∗ ⊢ ¬Szm, 1
m
α by rule R1, which contradicts the consistency of T ∗.

Thus, we have

xn ∈ [x− 1
n , x+ 1

n ], xm ∈ [x− 1
m , x+ 1

m ],

yn ∈ [y − 1
n , y + 1

n ], ym ∈ [y − 1
m , y + 1

m ].

Therefore |xn − xm| 6 1
n + 1

m and |yn − ym| 6 1
n + 1

m and hence

‖zn − zm‖ =
√

(xn − xm)2 + (yn − ym)2 6 2(
1

n
+

1

m
) 6

4

n0
6 ε. �

Lemma 3.2. Let α ∈ T ∗, α ∈ ForCl. Suppose that (zn)n∈N, and (z′

n)n∈N are
two different sequences obtained by the above given construction (i.e., for at least
one m, zm 6= z′

m). Then limn→∞ zn = limn→∞ z′

n.

Proof. Suppose that limn→∞ zn = a. Let ε be arbitrary. Then there is
n′

0 such that for n > n′

0 ‖zn − a‖ 6 ε
2 . Choose n′′

0 such that n′′

0 > 8
ε and let

n0 > max{n′

0, n
′′

0}. Then for n > n0 as in the previous Lemma we conclude that
‖zn − z′

n‖ 6 4
n0

6 ε
2 . Thus

‖z′

n − a‖ = ‖(z′

n − zn) + (zn − a)‖ 6 ‖z′

n − zn‖ + ‖zn − a‖ 6 ε
2 + ε

2 = ε.

Therefore limn→∞ z′

n = a. �

Theorem 3.1 (Strong completeness). A set of formulas T is consistent iff it
has an LCOMPS-model.

Proof. We analyze formulas of the form A = Sz,ρα for some z ∈ CQ, ρ ∈ Q
and α ∈ ForCl.

Suppose that Sz,ρα ∈ T ∗ where z = x + iy. Let z(α) = (zn)n∈N and µ([α]) =
limp

n→∞
rn = a+ ib.

First assume that ρ > 0. We distinguish the following cases:

• There is ρ1 < ρ such that Sz,ρ1α ∈ T ∗. Then ρ − ρ1 > 0 > 1
m , for some

m ∈ N. Let ε = ρ − ρ1 − 1
m > 0. Then, there is n0 such that for every

n > n0, ‖µ([α]) − zn‖ 6 ρ− ρ1 − 1
m . Let n > max{n0,m} and zn = xn + iyn.

Then from
√

(xn − a)2 + (yn − b)2 6 ε we obtain |xn − a|, |yn − b| 6 ε. Since
T ∗ ⊢ Sz,ρ1α and T ∗ ⊢ Szn, 1

n
α, using axiom A4, we conclude that there is

T ∈ [x − ρ1, x + ρ1] ∩ [xn − 1
n , xn − 1

n ]. Thus x− ρ1 6 T 6 x + ρ1, xn − 1
n 6

T 6 xn − 1
n and therefore |x− xn| 6 ρ1 + 1

n . In the same way, we obtain that

|y− yn| 6 ρ1 + 1
n . Then |a− x| = |(a− xn) + (xn − x)| 6 |a− xn| + |xn − x| 6
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ε + ρ1 + 1
n = ρ − ρ1 − 1

m + ρ1 + 1
n 6 ρ. Thus, a ∈ [x − ρ, x + ρ]. Similarly,

b ∈ [y − ρ, y + ρ]. Hence, MT ∗ |= Sz,ρα.
• There is no ρ1 < ρ such that Sz,ρ1α ∈ T ∗. But from T ∗ ⊢ Sz,ρα and ax-

iom A2, we obtain T ∗ ⊢ Sz,ρ+ 1
n
α, for every n ∈ N. Therefore, we obtain

MT ∗ |= Sz,ρ+ 1
n
α for every n ∈ N. Thus a ∈ [x − ρ + 1

n , x + ρ + 1
n ] and

b ∈ [y − ρ + 1
n , y + ρ + 1

n ] for every n ∈ N, and hence a ∈ [x − ρ, x + ρ],
b ∈ [y − ρ, y + ρ], that is MT ∗ |= Sz,ρα.

Finally, let ρ = 0, i.e., T ∗ ⊢ Sz,0α. Then, according to the definition of measure µ
in the canonical model, µ([α]) = z, i.e., a ∈ [z − 0, z + 0], b ∈ [z − 0, z + 0]. Thus,
MT ∗ |= Sz,0α.

For the other direction, suppose that MT ∗ |= Sz,ρα, z = x + iy and µ([α]) =
a+ ib. Let ρ > 0. As in the previous direction, we consider the following cases.

• There is ρ1 < ρ such that MT ∗ |= Sz,ρ1α. Choosem ∈ N such that ρ− ρ1 >
1
m .

Let µ([α]) = limn→∞ zn, where zn = xn + iyn. Then, there is n0 such that
(∀n)(n > n0 → ‖µ([α])−zn‖ 6 ρ−ρ1 − 1

m , and therefore |xn −a| 6 ρ−ρ1 − 1
m ,

|yn−b| 6 ρ−ρ1− 1
m . Since MT ∗ |= Sz,ρ1α it follows that |x−a| 6 ρ1, |y−b| 6 ρ1.

Thus |x− xn| = |(x− a) + (a− xn)| 6 |x− a| + |xn − a| 6 ρ− ρ1 − 1
m + ρ1 =

ρ − 1
m 6 ρ − 1

n . In the same way we obtain |y − yn| 6 ρ − 1
n Therefore

[xn − 1
n , xn + 1

n ] ⊆ [x − ρ, x + ρ], [yn − 1
n , yn + 1

n ] ⊆ [y − ρ, y + ρ] and hence
form T ∗ ⊢ Szn, 1

n
α, using axiom A5 we obtain

T ∗ ⊢ Szn, 1
n
α ⇒ Sz,ρα, by A5 and by rule R1, T ∗ ⊢ Sz,ρα.

• There is no ρ1 < ρ such that MT ∗ |= Sz,ρ1α. Then, from MT ∗ |= Sz,ρα we
obtain MT ∗ |= Sz,ρ+ 1

n
α for every n ∈ N. Therefore, we obtain T ∗ ⊢ Sz,ρ+ 1

n
α

for every n ∈ N, and according to rule R5, T ∗ ⊢ Sz,ρα.

If ρ = 0, then from MT ∗ |= Sz,0α follows MT ∗ |= Sz, 1
n
α for every n ∈ N. Thus

T ∗ ⊢ Sz, 1
n
α for every n ∈ N, and by rule R5, T ∗ ⊢ Sz,0α. �

Theorem 3.2. The satisfiability problem for LCOMPS-formulas is NP-complete.

Proof. Let ϕ be a probabilistic LCOMPS-formula. Similarly as in Section2.4,
we consider one disjunct D from the DNF(ϕ) and we conclude that ϕ is satisfiable
iff the system of the following form is satisfiable:

2n

∑

t=1

zt = 1

J1 =



































a1 − ρ1 6
∑

at∈α1

xt 6 a1 + ρ1 and

b1 − ρ1 6
∑

at∈α1

yt 6 b1 + ρ1 if ± Sz1,ρ1α1 = Sz1,ρ1α1

∑

at∈α1

xt 6 a1 − ρ1 or
∑

at∈α1

xt > a1 + ρ1 or

∑

at∈α1

yt > b1 + ρ1 or
∑

at∈α1

yt 6 b1 − ρ1 if ± Sz1,ρ1α1 = ¬Sz1,ρ1α1

...
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Jk =



































ak − ρk 6
∑

at∈αk

xt 6 ak + ρk and

bk − ρk 6
∑

at∈αk

yt 6 bk + ρk if ± Szk,ρk
αk = Szk,ρk

αk

∑

at∈αk

xt 6 ak − ρk or
∑

at∈αk

xt > ak + ρk or

∑

at∈αk

yt > bk + ρk or
∑

at∈αk

yt 6 bk − ρk if ± Szk,ρk
αk = ¬Szk,ρk

αk

where at ∈ αj denotes that the atom at appears in FDNF(αj), zt = µ([at]) = xt+iyt

and zj = aj + ibj,1 6 j 6 k.
Thus, the statement is proved since PSAT for LCOMPS-satisfiability is reduced

to the linear systems solving problem, similarly as in [3]. �

4. Conclusion

We have presented two similar logics that formalize reasoning about complex
valued probabilities. The following example, however, shows that it is not possible
simply to replace operators of the forms Bz,ρ and Sz,ρ and keep the meaning of
formulas. Namely, since [2, 4] ⊂ [1, 17] and [3, 5] ⊂ [2, 18], S3+4i,1α ⇒ S9+10i,8α is
LCOMPS-valid, but its counterpart B3+4i,1α ⇒ B9+10i,8α, is not LCOMPB-valid,
because it is obvious that 5

2 + 7
2 i ∈ B[3 + 4i, 1] but 5

2 + 7
2 i /∈ B[9 + 10i, 8]. Similarly,

since B[4 + 4i, 2] ∩B[9 + 6i, 3] = ∅, B4+4i,2α ⇒ ¬B9+6i,3α is LCOMPB-valid, while
S4+4i,2α ⇒ ¬S9+6i,3α is not LCOMPS-valid, because the corresponding squares
have a common side.
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