
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 95 (109) (2014), 133–147 DOI: 10.2298/PIM1409133M

ON THE COMPLEXITY OF (RESTRICTED) ALCIr

Milenko Mosurović and Michael Zakharyaschev

Communicated by Žarko Mijajlović

Abstract. We consider a new description logic ALCIr that extends ALCI

with role inclusion axioms of the form R ⊑ QR1 . . . Rm satisfying a certain reg-
ularity condition. We prove that concept satisfiability with respect to RBoxes
in this logic is ExpTime-hard. We then define a restriction ALCIr− of ALCIr

and show that concept satisfiability with respect to RBoxes in ALCIr− is
PSpace-complete.

1. Introduction

Description logics (DLs, for short) are well-known knowledge representation for-
malisms in AI [2] and the Semantic Web, underlining the Web Ontology Language

OWL 2.1 The language of DLs is built around concept names (unary predicates)
and role names (binary predicates) using various constructs such as the Booleans,
universal and existential restrictions, taking the inverse of a role, etc. The resulting
complex concepts and roles are used to form knowledge base (or ontology) axioms.
For example, the axiom Parent ≡ Person ⊓∃hasChild. Person defines a parent as a
person who has child, which is also a person, while ancestor ◦ ancestor ⊑ ancestor

says that ancestor is a transitive role. An important feature of standard DLs is that
reasoning problems such as concept and role satisfiability with respect to knowledge
bases or instance checking are decidable and reasonably scalable in practice; more-
over, there are a number of highly optimized DL reasoners for performing those
reasoning tasks.2

In recent years, a considerable interest has been attracted to DLs with complex
role inclusion axioms of the form R1 ◦ · · · ◦ Rn ⊑ S1 ◦ · · · ◦ Sk, where the Ri and
Sj are role names or their inverses. Such axioms are required, for instance, in
multiple use cases in the life sciences domain and ontological product modelling
and collaborative design [14, 5, 3, 12]. In fact, complex role inclusion axioms were
already used in the original KL-ONE terminological language [4], where they were

2010 Mathematics Subject Classification: 68T27, 03B70, 68T30, 68W40, 68Q25.
1http://www.w3.org/TR/owl2-overview/
2See, e.g., http://en.wikipedia.org/wiki/Description_logic#Tools

133

http://www.w3.org/TR/owl2-overview/
http://en.wikipedia.org/wiki/Description_logic##Tools

134 MOSUROVĆ AND ZAKHARYASCHEV

called ‘role-value-maps’ and could be applied to certain individuals. However, it
turned out [16] that KL-ONE was undecidable. One way to defeat undecidability
is to restrict the right-hand side of role inclusions to a single role and impose on
them a certain regularity condition, which is done in the DL SROIQ underlying
OWL 2 [9, 5] (see also [1, 7, 10, 8, 11]).

A decidable DL, SR+OIQ, with role inclusion axioms that allow a non-trivial
right-hand side (and also satisfy a regularity condition) has been recently con-
structed in [13]. However, the exact complexity of reasoning with this logic is still
unknown. To understand the impact of such role inclusions, we here consider the
fragment ALCIr of SR+OIQ which extends the basic DL ALCI with axioms of
the form R ⊑ QR1 . . . Rm satisfying the same regularity condition as SR+OIQ.
We prove, in Section 3, that concept satisfiability with respect to RBoxes (finite
sets of role inclusion axioms) in ALCIr is ExpTime-hard. However, we have not
managed yet to obtain a matching upper bound. Instead, in Section 4, we develop a
PSpace tableau-based decision algorithm for a fragment of ALCIr which imposes
further restrictions on role inclusion axioms.

2. Description Logic ALCIr

We begin by formally defining the syntax and semantics of the description logic
ALCIr. The alphabet of ALCIr consists of two countably infinite and disjoint
sets NC and NR of concept names and role names, respectively. This alphabet
is interpreted in structures, or interpretations, of the form I = (∆I , ·I), where
∆I 6= ∅ is the domain of interpretation and ·I an interpretation function that
assigns to every A ∈ NC a subset AI ⊆ ∆I and to every R ∈ NR a binary relation
RI ⊆ ∆I × ∆I .

We now introduce the role and concept constructs that are available in ALCIr,
together with their interpretations. For each role name R ∈ NR, the inverse R− of
R is interpreted by the relation

(R−)I = {(y, x) ∈ ∆I × ∆I | (x, y) ∈ RI}.

We call role names and their inverses basic roles, set N −
R = NR ∪ {R− | R ∈ NR}

and write rn(R) = rn(R−) = R, for R ∈ NR. We define an ALCIr-role as a chain

R1 . . . Rn of basic roles Ri and interpret it by taking

(R1 . . . Rn)I = RI
1 ◦ · · · ◦ RI

n,

where ◦ denotes the composition of binary relations. We also define a function
inv(·) on role chains by inv(R1 · · · Rn) = inv(Rn) · · · inv(R1), where inv(R) = R−

and inv(R−) = R, for R ∈ NR.
ALCIr-concepts, C, are defined by the following grammar, where A ∈ NC and

R is a basic role:

C ::= A | ⊥ | ⊤ | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃R.C | ∀R.C.

The interpretation of these concepts is defined as follows:

⊤I = ∆I , ⊥I = ∅, (¬C)I = ∆I
r CI ,

(C1 ⊓ C2)I = CI
1 ∩ CI

2 , (C1 ⊔ C2)I = CI
1 ∪ CI

2 ,

ON THE COMPLEXITY OF (RESTRICTED) ALCIr 135

(∃R.C)I = {x ∈ ∆I | ∃y ∈ CI (x, y) ∈ RI},

(∀R.C)I = {x ∈ ∆I | ∀y ((x, y) ∈ RI → y ∈ CI)}.

An RBox, R, is a finite set of role inclusions axiom (RIs) of the form

R ⊑ QR1 . . . Rm, m > 1,

where R, Q, R1, . . . , Rm are basic roles satisfying the following regularity condition:
the transitive closure of the relation induced by rn(R) ≺ rn(Q), for all such RIs in
R, is a strict partial order on the set of role names. We denote this strict partial
order by ≺R. If ̺i is a role, i = 1, 2, then ̺1 ⊑ ̺2 is satisfied in I if ̺I

1 ⊆ ̺I
2 . We

say that an RBox R is satisfiable if there exists an interpretation I satisfying all
the members of R. In this case we write I |= R and call I a model of R.

The main reasoning problem we are concerned with in this paper is concept

satisfiability with respect to an RBox : given an ALCIr concept C and an RBox R,
decide whether there is a model I of R such that CI 6= ∅.

For a concept C, we denote by role(C) the set of all basic roles R such that
at least one of R or inv(R) occurs in C; role(C, R) contains those basic roles and
their inverses that occur in C or R.

We assume that all concepts are in negation normal form (NNF). In particular,
when we write ¬C, for a concept C, we actually mean the NNF of ¬C. Denote by
con(C) the smallest set that contains C and is closed under sub-concepts and ¬.

The DL ALCIr defined above is an extension of the well-known DL ALCI [2]
with regular RBoxes. Thus, concept satisfiability w.r.t. RBoxes in ALCIr is
PSpace-hard. On the other hand, ALCIr is a fragment of the decidable DL
SR+OIQ [13] the precise complexity of reasoning in which is still unknown.

3. ExpTime-Hardness

In this section we establish an ExpTime lower bound for the complexity of
concept satisfiability w.r.t. RBoxes in ALCIr. The following example illustrates
the reduction used in the proof.

Example 3.1. Let R = {R ⊑ QR}. Consider the concept

C0 = (¬An−1 ⊓ · · · ⊓ ¬A0) ⊓ ∃R.⊤ ⊓ C′ ⊓ C′′,

where

C′ =

n−1l

k=0

∀R.∀R−.

((k−1l

i=0

Ai

)

⇒
(

(Ak ⇒ ∀Q.¬Ak) ⊓ (¬Ak ⇒ ∀Q.Ak)
)

)

,

C′′ =
n−1l

k=0

∀R.∀R−.

((k−1
⊔

i=0

¬Ai

)

⇒
(

(Ak ⇒ ∀Q.Ak) ⊓ (¬Ak ⇒ ∀Q.¬Ak)
)

)

and C ⇒ D is an abbreviation for ¬C ⊔ D. It is not hard to see that C0 is of
size O(n2) and that every model of R satisfying C0 has a Q-path of length 2n.
For n = 3, such a model I is shown below, where x0 ∈ (¬A2 ⊓ ¬A1 ⊓ ¬A0)I ,
x1 ∈ (¬A2 ⊓ ¬A1 ⊓ A0)I , x2 ∈ (¬A2 ⊓ A1 ⊓ ¬A0)I , . . . , x7 ∈ (A2 ⊓ A1 ⊓ A0)I .

136 MOSUROVĆ AND ZAKHARYASCHEV

x0

y

x1 x2 x3 x4 x5 x6 x7

R

R−

Q

R−

Q

R−

Q

R−

Q

R−

Q

R−

Q

R−

Q

Q

In other words, the concepts An−1, . . . , A0 encode the bits of an n-bit binary
counter, with A0 representing the least significant bit and An−1 the most significant
one.

Theorem 3.1. Concept satisfiability w.r.t. ALCIr-RBoxes is ExpTime-hard.

Proof. The proof is by encoding computations of alternating Turing machines
with a polynomial tape. Recall [6] that an alternating Turing machine (ATM) is a
quadruple of the form M = (Q, Σ, q0, δ), where Q = Q∃ ⊎Q∀ ⊎{qa}⊎{qr} is a finite
set of states containing existential states Q∃, universal states Q∀, an accepting state

qa and a rejecting state qr; Σ = {a0, . . . , an−1, b} is a tape alphabet with a special
symbol b for ‘blank’; q0 ∈ Q∃ ⊎ Q∀ is an initial state; and

δ : (Q r {qa, qr}) × Σ → (Q × Σ × {l, r})2

is a transition function that, for any q ∈ Qr{qa, qr} and a ∈ Σ, gives two alternative
transitions. If δ(q, a) = ((q1, a1, d1), (q2, a2, d2)), then we write δi(q, a) = (qi, ai, di),
for i = 1, 2.

A configuration of an ATM M is a word wqw′, where q ∈ Q and w, w′ ∈ Σ∗;
it represents the situation when the tape contains the word ww′, the machine is in
state q, with its head scanning the first symbol of w′. The successor configurations

of wqw′ are defined in the usual way in terms of the transition function δ (where l
and r instruct the head to move one cell to the left or, respectively, to the right).
A halting configuration is of the form wqw′ with q ∈ {qa, qr}.

A computation path of M on a word w ∈ Σ∗ is a sequence of configurations
c1, c2, . . . such that c1 = q0w and, for i > 1, ci+1 is a successor configuration of ci.
We assume that there is a polynomial function p such that M uses at most p(m)
tape cells on any input of length m and that every computation path of M is of
length 6 2p(m). A halting configuration is accepting if it is of the form wqaw′. For
a non-halting configuration c = wqw′, we define (inductively) c to be accepting if
either q ∈ Q∃ and at least one of the successor configurations of c is accepting, or
q ∈ Q∀ and both the successor configurations are accepting. Finally, we say that
M accepts an input w if the initial configuration q0w is accepting. We use L(M) to
denote the language accepted by M, that is, L(M) = {w ∈ Σ∗ | M accepts w}. It
is well known [6] that the acceptance problem for such ATMs is ExpTime-complete.

Now, given an ATM M and a word w = x0 · · · xn−1 ∈ Σ∗, we construct a
concept C0 and an RBox R in ALCIr such that w ∈ L(M) iff C0 is satisfiable
w.r.t. R. To achieve this, we use Example 3.1 to represent successive configurations

ON THE COMPLEXITY OF (RESTRICTED) ALCIr 137

of M by individuals of models of R satisfying C0 and arrange them in a binary
tree-like structure with branching factor 2 and depth 6 2p(n).

Consider the RBox

R = {R ⊑ Q1R, R ⊑ Q2R}.

We use the role name Qj, j = 1, 2, to connect two successive configurations c and
c′ such that c′ is obtained from c by means of the jth component of the pair δ(q, a)
that is applicable to c. We require the following concept names:

– A to say that a configuration is accepting;
– Bq, for q ∈ Q, to say that the current state is q;
– Hi, for i 6 p(n), to say that the head is currently scanning cell i;
– Di

a, for a ∈ Σ and i 6 p(n), to say that the current symbol in the ith cell
is a;

– Ai, for i < p(n), to encode the binary counter;
– E to say that an object is a Q1-successor of its parent;
– F ≡ (Ap(n)−1 ⊓ · · · ⊓ A0) to say that an object is a leaf.

To construct the required binary tree-like structure, we use the following concept
CT , where C ⇔ D stands for (C ⇒ D) ⊓ (D ⇒ C):

CT = Czero ⊓ CF ⊓ ∃R.⊤ ⊓
2l

j=1

(C′
j ⊓ C′′

j ⊓ C′′′
j),

where

Czero = ¬Ap(n)−1 ⊓ · · · ⊓ ¬A0,

CF = ∀R.∀R−.
(

F ⇔ (Ap(n)−1 ⊓ · · · ⊓ A0)
)

,

C′
j =

p(n)−1l

k=0

∀R.∀R−.(F ⊔ C invert
k,j),

C invert
k,j =

(k−1l

i=0

Ai

)

⇒
(

(Ak ⇒ ∀Qj .¬Ak) ⊓ (¬Ak ⇒ ∀Qj.Ak)
)

,

C′′
j =

p(n)−1l

k=0

∀R.∀R−.(F ⊔ Cretain
k,j),

Cretain
k,j =

(k−1
⊔

i=0

¬Ai

)

⇒
(

(Ak ⇒ ∀Qj .Ak) ⊓ (¬Ak ⇒ ∀Qj.¬Ak)
)

,

C′′′
1 = ∀R.∀R−.∀Q1.E, C′′′

2 = ∀R.∀R−.∀Q2.¬E.

It is not hard to see that there is a model of R satisfying CT that contains the full
binary tree of depth 2p(n) − 1 every non-leaf node of which has distinct Q1-and a
Q2-successors.

We now construct the concept C0 by giving its subconcepts. The concept Cini

defines the initial configuration. Cl
(q,i,a) and Cr

(q,i,a) describe the movements of

the head to the left and right. Cnh makes sure that the symbols that are not

138 MOSUROVĆ AND ZAKHARYASCHEV

in the active cell do not change. Cdfh , Cdfq and Cdfs ensure uniqueness of the
head position, current state and symbol in the active cell. Cacc describes accepting
configurations using concepts C∀ and C∃. These concepts are defined as follows:

C ini = Bq0
⊓ H0 ⊓

(n−1l

i=0

Di
xi

)

⊓

(p(n)l

i=n

Di
b

)

,

Cr
(q,i,a) = (Bq ⊓ Hi ⊓ Di

a) ⇒

(l

t∈{1,2}, δt(q,a)=(q′,a′,r)

∀Qt.(Bq′ ⊓ Hi+1 ⊓ Di
a′)

)

,

Cl
(q,i,a) = (Bq ⊓ Hi ⊓ Di

a) ⇒

(l

t∈{1,2}, δt(q,a)=(q′,a′,l)

∀Qt.(Bq′ ⊓ Hi−1 ⊓ Di
a′)

)

,

Cnh =
l

a∈Σ, 06i,j6p(n), i6=j

∀R.∀R−.
(

(Hj ⊓ Di
a) ⇒ (∀Q1.Di

a ⊓ ∀Q2.Di
a)

)

,

Cdfh =
l

06j<i6p(n)

∀R.∀R−.(¬Hj ⊔ ¬Hi),

Cdfq =
l

q,q′∈Q, q 6=q′

∀R.∀R−.(¬Bq ⊔ ¬Bq′),

Cdfs =
l

a,b∈Σ, a6=b, 06i6p(n)

∀R.∀R−.(¬Di
a ⊔ ¬Di

b),

C∀ =
⊔

q∈Q∀, a∈Σ, 06i6p(n)

(

Bq ⊓ Hi ⊓ Di
a ⊓ ∀Q1.A ⊓ ∀Q2.A

)

,

C∃ =
⊔

q∈Q∃, a∈Σ, 06i6p(n)

(

Bq ⊓ Hi ⊓ Di
a ⊓ (∀Q1.A ⊔ ∀Q2.A)

)

,

Cacc = A ⊓ ∀R.∀R−.
(

(Bqa
⊔ C∀ ⊔ C∃) ⇔ A

)

.

Finally, we set

C0 = CT ⊓ C ini ⊓ Cacc ⊓ Cdfh ⊓ Cdfq ⊓ Cdfs ⊓ Cnh ⊓
l

q∈Q, a∈Σ, 06i6p(n)−1

∀R.∀R−.Cr
(q,i,a) ⊓

l

q∈Q,a∈Σ,16i6p(n)

∀R.∀R−.Cl
(q,i,a).

The size of C0 is O(p(n)2), and one can check that C0 is satisfiable w.r.t. R iff the
ATM M accepts input w. �

The precise complexity of concept satisfiability w.r.t. ALCIr RBoxes is still
unknown. As shown by Example 3.1 and the proof above, models of R satisfying
C0 can be of exponential width. The tableau algorithm for SR+OIQ from [13]
indicates that, for this more powerful language, we can expect multiple exponential
blowups of the depth. However, we hope that this does not happen for ALCIr and
conjecture that concept satisfiability w.r.t. ALCIr RBoxes is ExpTime-complete.
Some grounds for this conjecture will be given in the next section, where we define
a non-trivial fragment of ALCIr for which this problem turns out to be PSpace-
complete.

ON THE COMPLEXITY OF (RESTRICTED) ALCIr 139

4. Description Logic ALCIr−

Let R be an ALCIr RBox and C0 an ALCIr concept. To simplify presentation,
and without loss of generality, we can assume that all RIs are of the form R ⊑ QP .
Let R = {ri | i = 1, . . . , l}, where ri = (Ri ⊑ QiPi), for i = 1, . . . , l. We denote
by ALCIr− the fragment of ALCIr in which RBoxes are such that no role name
rn(Pi), for i = 1, . . . , l, occurs on the left-hand side of RIs (that is, rn(Pi) 6= rn(Rj)
for any i, j 6 l). Our aim in this section is to develop a tableau algorithm for
this DL that works in the polynomial space. This algorithm can be obtained by
properly modifying the tableau algorithm for SR+OIQ given in [13]. So, we begin
by reminding the reader of the basic definitions and notation used [13].

4.1. Quasi-Concepts. First we define a set qc(C0, R) the elements of which
are called quasi-concepts (for C0 w.r.t. R); we need them in labels for tableau nodes.
In the definition of qc(C0, R), we require a dependency relation ⊳ on R, which is
defined by taking ri ⊳ rj if rn(Ri) = rn(Qj). The following lemma shows that the
transitive closure of ⊳ is acyclic:

Lemma 4.1. [13] (i) If ri ⊳ rj, then rj ⊳ ri does not hold.

(ii) If ri1
⊳ ri2

and ri2
⊳ ri3

, then ri3
⊳ ri1

does not hold.

For a set Σ ⊆ con(C0) and a basic role P , we set Σ|∀P = {C | ∀P.C ∈ Σ}.
Sometimes it will be convenient to write qc(r0) in place of con(C0) and assume
that r0 ⊳ ri, for 1 6 i 6 l. Now, assuming that qc(rj) is defined for every rj ⊳ ri

with 0 6 i, j 6 l, we define qc(ri) to be the set of all ∀Ri.∃P −
i .(tr, t∀, t−) such that

tr = Qi, t∀ ⊆
⋃

rj⊳ri

qc(rj)|∀tr , t− ⊆
⋃

rj⊳ri

qc(rj)|∀inv(tr).

For Σ(ri) ⊆ qc(ri) and a basic role P , let

Σ(ri)|
∀
P =

{

∃P −
i .(tr, t∀, t−) | ∀Ri.∃P −

i .(tr , t∀, t−) ∈ Σ(ri) and P = Ri

}

.

Finally, we set qc(C0, R) =
⋃l

i=0 qc(ri), and, for Σ ⊆ qc(C0, R) and a basic role P ,

Σ|∀P =

l
⋃

j=0

(Σ ∩ qc(rj))|∀P .

For Σ ⊆ qc(C0, R) and 1 6 i 6 l, let Ξ(ri, Σ) = ∃P −
i .(tr, t∀, t−), where tr = Qi,

t∀ = Σ|∀tr , t− = Σ ∩ qc(C0, R)|∀inv(tr).

4.2. Tableaux and Concept Tableaux. A tableau for C0 w.r.t. R is a struc-
ture of the form T = (S, ℓ, E), where S is a nonempty set, ℓ : S → 2qc(C0,R) and
E : role(C0, R) → 2S×S are such that the following conditions hold:

p1: C0 ∈ ℓ(u0), for some u0 ∈ S,
p2: if C ∈ ℓ(u), then ¬C /∈ ℓ(u), where C is a concept name,
p3: ⊤ ∈ ℓ(u) and ⊥ /∈ ℓ(u) for any u,
p4: if (C1 ⊓ C2) ∈ ℓ(u), then C1 ∈ ℓ(u) and C2 ∈ ℓ(u),
p5: if (C1 ⊔ C2) ∈ ℓ(u), then C1 ∈ ℓ(u) or C2 ∈ ℓ(u),
p6: if ∃R.C ∈ ℓ(u), then there is some v ∈ S with (u, v) ∈ E(R) and C ∈ ℓ(v),

140 MOSUROVĆ AND ZAKHARYASCHEV

p7: (u, v) ∈ E(R) iff (v, u) ∈ E(inv(R)),
p8: if ∀R.C ∈ ℓ(u) and (u, v) ∈ E(R), then C ∈ ℓ(v),
p9: if ∀R.C ∈ ℓ(u) and (u, v) ∈ E(R), then C ∈ ℓ(v),

p10: ∀Ri.C ∈ ℓ(u), where C = Ξ(ri, ℓ(u)), for all u ∈ S and 1 6 i 6 l,
p11: if ∃P.(tr , t∀, t−) ∈ ℓ(u), then there is v with (u, v) ∈ E(P), t∀ ⊆ ℓ(v) and

ℓ(v)|∀inv(tr) ⊆ t−.

A concept tableau for C0 w.r.t. R is a structure of the form T = (S, c, E), where S

is nonempty set, c : S → 2con(C0) and E : role(C0, R) → 2S×S are such that:

a: conditions (p1)–(p8) hold for ℓ replaced by c;
b: if (u, v) ∈ E(Ri), then (u, v) ∈ E(Qi) ◦ E(Pi).

Theorem 4.1. Suppose C0 is an ALCIr concept and R an ALCIr RBox.

Then the following conditions are equivalent:

(a) C0 is satisfiable w.r.t. R;

(b) there exists a tableau for C0 w.r.t. R;

(c) there exists a concept tableau for C0 w.r.t. R.

Proof. The equivalence (a) ⇔ (b) follows from [13].
(b) ⇒ (c). Let T = (S, ℓ, E) be a tableau for C0 w.r.t. R. Define a concept

tableau T ′ = (S′, c, E ′) by taking S′ = S, c(u) = ℓ(u) ∩ con(C0) for all u ∈ S. For
a role name R, we define E ′(R), by induction on ≺R, as follows:

E ′(R) = E(R)

∪
⋃

{i|R=Qi}

{(u, v) | ar(R, u, v) & ∃z ((u, z) ∈ E ′(Ri) ∧ (v, z) ∈ E(Pi))}

∪
⋃

{i|R=inv(Qi)}

{(u, v) | ar(R, u, v) & ∃z ((v, z) ∈ E ′(Ri) ∧ (u, z) ∈ E(Pi))}.

Here ar(R, u, v) is an abbreviation for ℓ(u)|∀R ⊆ ℓ(v) and ℓ(v)|∀inv(R) ⊆ ℓ(u). We

also set E ′(inv(R)) = {(u, v) | (v, u) ∈ E ′(R)}. It is easy to see that T ′ = (S′, c, E ′)
is concept tableau for C0 w.r.t. R.

(c) ⇒ (b) Let T ′ = (S′, c, E ′) be a concept tableau for C0 w.r.t. R. Construct a
tableau T = (S, ℓ, E) by taking S = S′, E = E ′ and defining ℓ as follows. First, we
define, by induction on ⊳, auxiliary sets ℓ′(u, r), where r is an RI. Recalling that
r0 ⊳ ri for all i, 1 6 i 6 l, we set ℓ′(u, r0) = c(u). Then, assuming that ℓ′(u, r′) is
defined for every r′ ⊳ ri, we set

ℓ′(u, ri) =
{

∀Ri.C | C = Ξ
(

ri,
⋃

r′⊳ri
ℓ′(u, r′)

)}

∪
{

C | ∃v ∈ S, (v, u) ∈ E ′(Ri), C = Ξ
(

ri,
⋃

r′⊳bsri
ℓ′(v, r′)

)}

.

Finally, we set ℓ(u) =
⋃l

j=0 ℓ′(u, rj). One can show now that T is a tableau for C0

w.r.t. R. �

4.3. Completion Trees. We are now in a position to define a tableau algo-
rithm for ALCIr. For ALCIr concepts C0 and RBoxes R, the algorithm works on

ON THE COMPLEXITY OF (RESTRICTED) ALCIr 141

completion trees similarly to the algorithms of [2, 13]. To present it, we require
some additional notation. For RI ri = (Ri ⊑ QiPi) for 1 6 i 6 l, let

qc+(ri) =
{

∀Qi.C | ∀Qi.C ∈
⋃

rj⊳ri
qc(rj)

}

,

qc−(ri) =
{

C | ∀ inv(Qi).C ∈
⋃

rj⊳ri
qc(rj)

}

,

qc∗(ri) = qc+(ri) ∪ qc−(ri).

The set qc∗(ri) of quasi-concepts is to be guessed by the algorithm. Let qc(C0, R)
be the minimal set such that:

– qc(C0, R) ⊆ qc(C0, R),
– if ∀Q.C ∈ qc(C0, R), then C ∈ qc(C0, R),
– if ∃P.C ∈ qc(C0, R), then C ∈ qc(C0, R).

Unlike qc(C0, R), the set qc(C0, R) contains sub-quasi-concepts.

Given an ALCIr concept C0 and an RBox R, a completion tree for C0 and R
is a structure of the form T = (V, E, ℓ, g, i, l), where

– (V, E) is a directed tree;
– for each (x, y) ∈ E, we have l(x, y) ∈ role(C0, R); if l(x, y) = R, then y

is called an R-successor of x; y is called an R-neighbour of x if y is an
R-successor of x or x is an inv(R)-successor of y;

– ℓ(x) ⊆ qc(C0, R), g(x) ⊆
⋃l

i=1 qc∗(ri) and i(x) ⊆ {1, . . . , l}, for x ∈ V .

We say that a completion tree T contains a clash if there is x ∈ V such that at
least one of the following conditions holds:

– ⊥ ∈ ℓ(x),
– {A, ¬A} ⊆ ℓ(x), for a concept name A,
– i ∈ i(x) and there exists C ∈ (qc∗(ri) ∩ ℓ(x)) r g(x),
– C = (tr, t∀, t−) ∈ ℓ(x) and ℓ(x)|∀inv(tr) 6⊆ t−.

A completion tree that does not contain a clash is called clash-free.
To ensure that the tableau algorithm eventually comes to a stop, we use a

blocking technique that is similar to the one used in [13]. A node x ∈ V is called
blocked if it is either directly or indirectly blocked. A node x ∈ V is directly blocked

if none of its (not necessarily immediate) E-ancestors is blocked, and there are
nodes x′, y and y′ such that:

– y′ is not a root,
– (x′, x) ∈ E, (y′, y) ∈ E and y is an E-ancestor of x′,
– ℓ(x) = ℓ(y), ℓ(x′) = ℓ(y′) and l(x′, x) = l(y′, y).

In this case we say that y blocks x. A node y is indirectly blocked if one of
its E-ancestors is blocked. (Note that the blocking condition is the same as for
SR+OIQ.)

Our tableau algorithm is nondeterministic. It takes an ALCIr concept C0 and
an RBox R as input and returns ‘yes’ or ‘no’ to indicate whether C0 is satisfiable
w.r.t. R or not. It starts by constructing the completion tree T = (V, E, ℓ, g, i, l),
where V = {x0}, E = ∅, ℓ(x0) = {C0, ⊤}, g(x0) = ∅, i(x0) = ∅, l = ∅. Then
the algorithm non-deterministically applies one of the completion rules given in

142 MOSUROVĆ AND ZAKHARYASCHEV

Table 1. Completion rules for the ALCIr tableau algorithm.

(⊓) if C1 ⊓ C2 ∈ ℓ(x), x is not indirectly blocked and {C1, C2} 6⊆ ℓ(x),
then ℓ(x) := ℓ(x) ∪ {C1, C2}

(⊔) if C1 ⊔ C2 ∈ ℓ(x), x is not indirectly blocked and
{C1, C2} ∩ ℓ(x) = ∅,
then ℓ(x) := ℓ(x) ∪ {D}, for some D ∈ {C1, C2}

(∃c) if ∃S.C ∈ ℓ(x) ∩ con(C0), x is not blocked and
x has no S-neighbour y with C ∈ ℓ(y),
then create a new node y ∈ V with l(x, y) := {S}, ℓ(y) := {C, ⊤}

(∀) if ∀R.C ∈ ℓ(x), x is not indirectly blocked and
there is an R-neighbour y of x such that C 6∈ ℓ(y),
then set ℓ(y) := ℓ(y) ∪ {C}

(guessri
) if i 6∈ i(x) and x is not indirectly blocked, then

1) non-deterministic guess k and {C1, . . . ,Ck} ⊆ qc∗(ri),
2) set i(x) := i(x) ∪ {i}, ℓ(x) := ℓ(x) ∪ {C1, . . . ,Ck}, and
3) g(x) := g(x) ∪ ℓ(x) ∩ qc∗(ri)

(RIri
) if i ∈ i(x), ∀Ri.C /∈ ℓ(x), C = Ξ(ri, ℓ(x)) and

x is not indirectly blocked,
then ℓ(x) := ℓ(x) ∪ {∀Ri.C}

(∃q) if ∃P.C ∈ ℓ(x), for C = (tr, t∀, t−), x is not blocked and
x has no P -successor y with C ∈ ℓ(y), then
create a new node y ∈ V and set l(x, y) := {P }, ℓ(y) := {⊤,C}

(qc) if C ∈ ℓ(x), for C = (tr, t∀, t−), x is not indirectly blocked
and t∀ 6⊆ ℓ(x),
then set ℓ(x) := ℓ(x) ∪ t∀

Table 1; it keeps doing so till either the current completion graph contains a clash,
in which case the answer is ‘no’, or none of the rules is applicable, in which case
the algorithm returns ‘yes’.

As a consequence of [13], we obtain:

Lemma 4.2. The tableau algorithm always terminates.

Lemma 4.3. The tableau algorithm returns ‘yes’ iff there is a tableau for C0

w.r.t. R.

Remark 4.1. The main difference between the tableau rules in this paper and
those in [13] is in the rules (∃q) and (guessri

). The rule (∃q) creates a new node
in the case when a certain node has no P -successor, while in [13] a new node was
created if there was no P -neighbour. This simplification is possible because ALCIr

ON THE COMPLEXITY OF (RESTRICTED) ALCIr 143

does not have number restrictions. The analogue of the rule (guessri
) in [13], for

every D ∈ qc∗(ri), put either D or ¬D to ℓ(x). Here we only guess a polynomial
subset g(x) of qc∗(ri) and assume that the remaining (possibly exponentially many)
quasi-concepts from qc∗(ri) are taken with negations.

In the next two sections, we are going to show that if there is a model of
R satisfying C0, then there exists a tableau for C0 w.r.t. R of both polynomial

width and polynomial depth. These results will be used later to show that to check
whether such tableaux exist only the polynomial space is required.

4.4. Polynomial width. Observe first that the set con(C0) we use for la-
belling the nodes is of size l1 = O(|C0|). Note also that the rule ∃q always creates a
new node if there is no suitable P -successor, even though a suitable P -predecessor
may exist(cf. the tableau rules in [13]). As a results, the completion tree grows in
depth rather than in width. More precisely, we have the following:

Lemma 4.4. When applied to C0 and R, the tableau algorithm generates at

most (l + 1) × l1 successors of any node in the completion tree.

Proof. We say that a node x (a node y) in a completion tree is an inv(Qj)-
implicit neighbour (respectively, a Qj-implicit neighbour) of a node y (respectively,
x) if (i) there is no arc Qj connecting x and y, (ii) there is a predecessor z of y such
that x is an inv(Rj)-neighbour or an inv(Rj)-implicit neighbour z, and (iii) y has
been created by (∃q) applied to z and a quasi-concept ∃ inv(Pj).(tr, t∀, t−), where
tr = Qj . (Because of the rule (∃q), in (ii) we do not consider Pj-successors of y.)

Successors to a given node can be generated by the rules (∃c) or (∃q). The
rule (∃c) generates at most |ℓ(x) ∩ con(C0)| < l1 successors. On the other hand,
a quasi-concept of the form ∃ inv(Pi).C can be added to ℓ(x) by the rule (∀) when
x has an inv(Ri)-neighbour. Such a concept can also be added by the rule (qc)
if Ri = Qj, for some j, and x has an inv(Qj)-implicit neighbours or by the rule
(guessrj

) if Ri = inv(Qj), for some j, and x has an Qj-implicit neighbours. In the
latter case (since rn(Ri) = rn(Qj)), we have ri ⊳ rj . Thus, it suffices to compute
the number of inv(Ri)-neighbours (including implicit ones) of a given node. By
induction on k, we now prove the following property: if rik

⊳ rik−1
⊳ · · · ⊳ ri1

is a
longest chain of dependent RIs beginning with rik

, then any node in the completion
tree can have at most k × l1-many inv(Rik

)-neighbours (including implicit ones).
For k = 1, all inv(Rik

)-successors are created by the rule (∃c), and so there are
at most l1-many inv(Rik

)-neighbours. For k > 1, we have at most l1-many inv(Rik
)-

successors created by the rule (∃c) and at most (k − 1) × l1-many implicit inv(Rik
)-

neighbours, where rn(Qik−1
) = rn(Rik

). In total, we have at most k × l1-many
inv(Rik

)-neighbours. Namely, a node x can have implicit inv(Qik−1
)-neighbours or

Qik−1
-neighbours if it has a Pik−1

-predecessor y with inv(Rik−1
)-neighbours. By

IH, the node y can have at most (k − 1) × l1-many inv(Rik−1
)-neighbours, and so

x can have at most (k − 1) × l1 implicit inv(Rik
)-neighbours.

Since k 6 l, we conclude that the rule (∃q) can create at most l × l1 successors
of a given node. These neighbours are not affected by the addition of new quasi-
concepts of the form ∃ inv(Pi).C because Pi 6= Rj . Thus, any node can have at
most (l + 1) × l1 successors. �

144 MOSUROVĆ AND ZAKHARYASCHEV

4.5. Polynomial depth. Now we prove that if C0 is satisfiable w.r.t. R, then
it has a finite tableau of both polynomial width and polynomial depth. We do that
in three steps.

First, by Lemma 4.4, there is a completion tree whose branching factor is at
most (l + 1) × l1. Using this tree, we can construct in the same way as in [13]
a possibly infinite tableau T = (S, ℓ, E), which is a tree with branching factor
6 (l + 1) × l1. Then, by Theorem 4.1, we can add some edges to T and construct
a concept tableau T ′ = (S′, c, E ′), where E ′ = E1 ∪ E2, E1 = E and E2 = E ′

r E . As
the basis of the concept tableau is a tree, we call T ′ a quasi-tree concept tableau

(QTCT, for short) and write T ′ = (S′, c, E1, E2) instead of T ′ = (S′, c, E ′).
Second, we use the QTCT T ′ to construct a QTCT T of polynomial ‘depth’.

We describe this step in more detail. Suppose u0 is a root of T ′ = (S′, c, E1, E2).
We then say that u0 is of depth 0 in T ′. Now, a node u 6= u0 is of depth k in T ′ if
there is a neighbour v of u of depth k − 1 and there is no neighbour of u of depth
< k − 1.

For a concept C in NNF, we define its quantifier depth d(C) by taking

d(⊥) = d(⊤) = d(A) = d(¬A) = 0, for A ∈ NC ;

d(C1 ⊓ C2) = d(C1 ⊔ C2) = max{d(C1), d(C2)};

d(∃R.C) = d(∀R.C) = d(C) + 1.

A set P is called good w.r.t. T ′ if either P = {(C0, u0)} or P = P ′ ∪ {(C, u)} where
P ′ is good w.r.t. T ′, C ∈ c(u) and one of the following conditions holds:

– there is a concept C′ of the form C1 ⊓ C2 or C1 ⊔ C2, where C ∈ {C1, C2},
such that (C′, u) ∈ P ′

– there exist an inv(R)-neighbour v of u and a concept C′ of the form ∃R.C
or ∀R.C such that (C′, v) ∈ P ′.

In either case, we say that the concept C was added to P because of C′. Clearly, if
both P and P ′ are good w.r.t. T ′, then P ∪ P ′ is also good w.r.t. T ′.

Suppose P is good w.r.t. T ′ and u ∈ S. Set d(u, P) = max{d(C) | (C, u) ∈ P}
if there is a concept C such that (C, u) ∈ P ; otherwise set d(u, P) = 0.

Lemma 4.5. If P = P ′ ∪ {(C, u)} is good w.r.t. T ′ and C was added to P
because of C′, then d(C′) > d(C).

Proof. If C′ ∈ c(u) is of the form C1 ⊓ C2 or C1 ⊔ C2, where C ∈ {C1, C2},
then d(C′) = max{d(C1), d(C2)} > d(C).

If C′ ∈ c(v) has the form ∀R.C or ∃R.C, where v is an inv(R)-neighbour of u,
then d(C′) = d(C) + 1 > d(C). �

Lemma 4.6. Suppose P is good w.r.t. T ′ and u is of depth k in T ′. If k 6 d(C0),
then d(u, P) 6 d(C0) − k.

Proof. The proof proceeds by induction on |P|. If P = {(C0, u0)}, then the
claim holds since, for u 6= u0, we have d(u, P) = 0 and d(u0, P) = d(C0). Let
P = P ′ ∪ {(C, v)}. By IH, d(u, P ′) 6 d(C0) − k. If v 6= u, then d(u, P) = d(u, P ′)
and again the claim holds. If u = v and d(v, P) = d(v, P ′), then the claim is obvious.

ON THE COMPLEXITY OF (RESTRICTED) ALCIr 145

If u = v and d(v, P) = d(C) > d(v, P ′), then C has been added to P because of a
concept C′ ∈ c(u′) of the form ∀R.C or ∃R.C, where u′ is an inv(R)-neighbour of v.
We have d(C′) = d(C)+1 > d(C) and u′ is of depth k′ in T ′ with k−1 6 k′ 6 k+1.
So d(u, P) = d(C) = d(C′) − 1 6 d(u′, P ′) − 1 6 d(C0) − k′ − 1 6 d(C0) − k. �

Corollary 4.1. Suppose P is good w.r.t. T ′.

(a) If a node u is of depth k = d(C0) in T ′, then d(u, P) = 0.

(b) If u is of depth k > d(C0) in T ′, then there is no concept C with (C, u) ∈ P.

Let P be a maximal set that is good w.r.t. T ′, that is,

P =
⋃

P is good w.r.t. T ′

P .

Using the QTCT T ′ = (S′, c, E1, E2) and P , we construct T = (S, c, E1, E2) as
follows. Let S0 = {u ∈ S′ | there is a concept C such that (C, u) ∈ P} and S be a
minimal set such that

– S0 ⊆ S ⊆ S′,
– if (u, v) ∈ E(Ri), then (u, v) ∈ E(Qi) ◦ E(Pi),

where, for any role R ∈ role(C0, R) and i = 1, 2, we set Ei(R) = Ei(R) ∩ (S × S)
and E(R) = E1(R)∪E2(R). Finally, we set c(u) = {C | (C, u) ∈ P}∪{⊤} for u ∈ S.

Theorem 4.2. The structure T = (S, c, E1, E2) is a QTCT with the following

properties:

– Any u ∈ S is of depth 6 d(C0) + l in T .

– Any path from the root node u0 to a node u (without repetitions) that uses

only E1-arcs is of the length 6 (d(C0) + l) × (l + 1).
– Any node u ∈ S has at most (l + 1) × l1-many E1-successors.

Proof. First, we prove that T is a concept tableau.

p1: C0 ∈ c(u0) since (C0, u0) ∈ P;
p2: holds because c(u) ⊆ c(u);
p3: ⊤ ∈ c(u) by the definition of c(u), and ⊥ /∈ c(u) because c(u) ⊆ c(u);
p4: if (C1 ⊓ C2) ∈ c(u) ⊆ c(u), then (C1 ⊓ C2, u) ∈ P , C1 ∈ c(u) and C2 ∈

c(u), so P ∪{(Ci, u)} is good w.r.t. T ′ for i = 1, 2 i.e., (C1, u), (C2, u) ∈ P ;
therefore, C1 ∈ c(u) and C2 ∈ c(u);

p5: is similar to (p4);
p6: if ∃R.C ∈ c(u) ⊆ c(u), then (∃R.C, u) ∈ P and there is some v ∈ S

with (u, v) ∈ E(R) and C ∈ c(v), so P ∪ {(C, v)} is good w.r.t. T ′, i.e.,
(C, v) ∈ P ; therefore, v ∈ S, C ∈ c(v) and (u, v) ∈ E(R);

p7: if (u, v) ∈ E(R), then (u, v) ∈ E(R) and u, v ∈ S; so (v, u) ∈ E(inv(R))
and (v, u) ∈ E(inv(R));

p8: is similar to (p6);
b: if (u, v) ∈ E(Ri), then (u, v) ∈ E(Qi) ◦ E(Pi) by the definition of S and

E(R).

If u ∈ S0, then, by Lemma 4.6, u is of depth 6 d(C0) in T . Consider two nodes
u, v ∈ S whose depth is 6 k in T . If (u, v) ∈ E(Ri), then (u, v) ∈ E(Qi)◦E(Pi), and

146 MOSUROVĆ AND ZAKHARYASCHEV

so there is z ∈ S such that (u, z) ∈ E(Qi). Clearly, the depth of z in T is 6 (k + 1).

The arc (u, z) ∈ E
′
(Qi) can require a new node, but only if rn(Qi) = rn(Rj). But

then we have rj ⊳ ri. This means that we can repeat the same procedure at most
l times, and so the depth of the new nodes we consider is 6 (k + l). Therefore, the
depth of u ∈ S in T is 6 d(C0) + l.

Now, consider nodes u, v ∈ S whose depth in T is k and k + 1, respectively. A
path from u to v that uses only E1-arcs is of length 6 (l+1). Therefore, a path from
the root u0 to any node u that uses only E1-arcs is of the length 6 (d(C0)+l)×(l+1).

The property that all nodes u ∈ S have at most (l+1)×l1 E1-successors follows
from the fact that this property holds for QTCT T ′. �

Finally, starting from QTCT T , we construct the required tableau by adding
appropriate quasi-concepts as described in the proof of the Theorem 4.1. If we omit
the arcs from the tableau that belong to E2, then we obtain a tree-shaped tableau

T
′
. The depth of the tree is bounded by (d(C0) + l) × (l + 1) and the branching

factor is bounded by (l + 1) × l1.
By the proof of Lemma 4.4, we conclude that ℓ(x) contains at most l× l1 quasi-

concepts of the form ∃P.C and there are l quasi-concepts of the form ∀Ri.C, that
is, there are at most l × (l1 + 1) quasi-concepts in ℓ(x). On the other hand, there
are at most l1 concepts in ℓ(x). Therefore, |ℓ(x)| 6 l1 + l × (l1 + 1).

4.6. PSpace-completeness. PSpace-hardness of concept satisfiability w.r.t.
RBoxes in ALCIr− follows from the fact that concept satisfiability in ALC is
PSpace-complete. To prove a matching upper bound, we give a nondeterministic
algorithm that only requires the polynomial space. The algorithm proceeds in 8
steps:

1. Create a node u0, set u := u0 and guess a set ℓ(u0). If C0 ∈ ℓ(u0), then
go to step 2; otherwise return ‘no’.

2. If the conditions (p2), (p3), (p4), (p5) and (p10) hold for ℓ(u), then go to
step 3; otherwise return ‘no’.

3. Set m(u) := {∃R.C | ∃R.C ∈ ℓ(u)} ∪ {∃P.C | ∃P.C ∈ ℓ(u)}. Guess a
non-negative integer k(u) (the number of successors) and go to step 4.

4. If k(u) > 0, then go to step 5; otherwise go to step 6.
5. Create a new node v; set k(u) := k(u)−1. Guess ℓ(v) and R ∈ role(C0, R).

Set E(R) := E(R)∪{(u, v)} and E(inv(R)) := E(inv(R))∪{(v, u)}. For all
∃R.C ∈ m(u), if C ∈ ℓ(v) (i.e., (p6) holds), then m(u) := m(u)r {∃R.C}.
For all ∃R.(tr, t∀, t−) ∈ m(u), if t∀ ⊆ ℓ(v) (that is, (p11) holds), then
m(u) := m(u) r {∃R.(tr, t∀, t−)}. If (p8) and (p9) hold for u and v, set
u := v and go to step 2; otherwise return ‘no’.

6. If m(u) = ∅ go to step 7; otherwise return ‘no’.
7. If u = u0 (i.e., u is the root), then return ‘yes’; otherwise go to step 8.
8. If v is a parent of u with (u, v) ∈ E(R), then set E(R) := E(R) r {(u, v)}

and E(inv(R)) := E(inv(R)) r {(v, u)}, and set u := v. Go to step 4.

Clearly, the algorithm needs only polynomially space. As NPSpace=PSpace [15],
we obtain the following theorem.

ON THE COMPLEXITY OF (RESTRICTED) ALCIr 147

Theorem 4.3. Concept satisfiability w.r.t. RBoxes in ALCIr− is PSpace-

complete.

References

1. F. Baader, Restricted role-value-maps in a description logic with existential restrictions and
terminological cycles, in: D. Calvanese, G. De Giacomo, E. Franconi (Eds.), Proc. 2003
Internat. Workshop on Description Logics (DL2003).

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider, The Description
Logic Handbook: Theory, Implementation and Applications, 2nd ed., Cambridge Univ. Press,
2007.

3. C. Bock, X. Zha, H. Suh, J. Lee, Ontological product modeling for collaborative design, Ad-
vanced Engineering Informatics 24 (2010), 510–524.

4. R. J. Brachman, J. G. Schmolze, An overview of the KL-ONE knowledge representation sys-
tem, Cognitive Science 9(2) (1985) 171–216.

5. B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL 2:
The next step for OWL, J. Web Semantics 6(4) (2008), 309–322.

6. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, Alternation, J. ACM 28(1) (1981), 114–
133.

7. S. Demri, The complexity of regularity in grammar logics and related modal logics, J. Log.
Comput. 11(6) (2001), 933–960.

8. I. Horrocks, O. Kutz, U. Sattler, The irresistible SRIQ, in: B. Cuenca Grau, I. Horrocks,
B. Parsia, P. Patel-Schneider (Eds.), Proc. OWLED*05 Workshop on OWL, Experiences and
Directions,

9. , The even more irresistible SROIQ, in: P. Doherty, J. Mylopoulos, C. Welty (eds.),
Principles of Knowledge Representation and Reasoning: Proc. Tenth Internat. Conf. (KR-
06), 57–67,

10. I. Horrocks, U. Sattler, Decidability of SHIQ with complex role inclusion axioms Artif. Intell.
160(1-2) (2004), 79–104.

11. Y. Kazakov, An extension of complex role inclusion axioms in the description logic SROIQ.
in: J. Giesl, R. Hähnle (Eds.), Automated Reasoning, 5th Internat. Joint Conf., IJCAR 2010,
Lect. Notes Comput. Sci., Springer-Verlag, 2010, 472–486,.

12. N. Krdžavac, C. Bock, Reasoning in manufacturing part-part examples with OWL2, U.S.
National Institute of Standards and Technology, Gaithersburg, U.S.A, 2008.

13. M. Mosurović, N. Krdžavac, H. Graves, M. Zakharyaschev, A Decidable Extension of SROIQ
with Complex Role Chains and Unions, J. Artif. Intell. Res. (JAIR) 47 (2013), 809–851.

14. A. Rector, Analysis of propagation along transitive roles: formalisation of the GALEN ex-
perience with medical ontologies, in: I. Horrocks, S. Tessaris (Eds.), Proc 2002 International
Workshop on Description Logics (DL2002).

15. W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J.
Comp. System Sci. 4 (1970), 177–192.

16. M. Schmidt-Schauß, Subsumption in KL-ONE is undecidable, in: H. J. Levesque (Ed.), Proc.
First Internat. Conf. on Principles of Knowledge Representation and Reasoning, M. Kauf-
mann, 1989, 421–431.

Faculty of Mathematics and Natural Science (Received 29 09 2013)
University of Montenegro
Podgorica, Montenegro
milenko@ac.me

Department of Computer Science and Information Systems
Birkbeck, University of London, U.K.
michael@dcs.bbk.ac.uk

	1. Introduction
	2. Description Logic ALCIr
	3. ExpTime-Hardness
	4. Description Logic ALCIr-
	References

