ON THE CONVERSE THEOREM OF APPROXIMATION IN VARIOUS METRICS FOR NONPERIODIC FUNCTIONS

Miloš Tomić

Communicated by Gradimir Milovanović

Abstract

The modulus of smoothness in the norm of space L_{q} of nonperiodic functions of several variables is estimated by best approximations by entire functions of exponential type in the metric of space $L_{p}, 1 \leqslant p \leqslant q<\infty$.

1. Introduction and preliminaries

A converse theorem of approximation in various metrics for 2π periodic functions of several variables was proved in [5. We prove the theorem of representation for the derivative of a function, and then the analogous converse theorem for nonperiodic functions defined on the space R^{n}. In this way we generalize and improve the results from 4, 6.4].

As usually we say that $f\left(x_{1}, \ldots, x_{n}\right) \in L_{p}\left(R^{n}\right), 1 \leqslant p<\infty$ if

$$
\|f\|_{p}=\left(\int_{R^{n}}|f|^{p} d x_{1} \ldots d x_{n}\right)^{1 / p}=\left(\int_{R^{n}}|f|^{p} d x\right)^{1 / p}<\infty, \quad x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

The notions of the best approximation and of the modulus of smoothness are given in [2] and 4].

Let $g_{\nu}=g_{\nu_{1} \ldots \nu_{n}}\left(x_{1}, \ldots, x_{n}\right), \nu=\left(\nu_{1}, \ldots, \nu_{n}\right),\left(g_{\nu} \in L_{p}\right)$ be an entire function of exponential type ν_{i} with respect to the variable $x_{i}(i=1,2, \ldots, n)$. The best approximation $E_{\nu_{1}, \ldots, \nu_{n}}(f)_{p}$ of a function $f \in L_{p}\left(R^{n}\right)$ by entire functions of exponential type is the quantity

$$
E_{\nu_{1}, \ldots, \nu_{n}}(f)_{p}=\inf _{g_{\nu}}\left\|f-g_{\nu_{1} \ldots \nu_{n}}\right\|_{p}
$$

[^0]The modulus of smoothness of order k of a function f with respect to the variable x_{i} is

$$
\omega_{k}\left(f ; \delta_{i}\right)_{p}=\omega_{k}\left(f ; 0, \ldots, 0, \delta_{i}, 0, \ldots, 0\right)_{p}=\sup _{\left|h_{i}\right| \leqslant \delta_{i}}\left\|\Delta_{h_{i}}^{k} f\right\|_{p}
$$

where

$$
\| \Delta_{h_{i}}^{k} f=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} f\left(x_{1}, \ldots, x_{i-1}, x_{i}+j h_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

The derivative of a function f is denoted by

$$
f^{\left(\nu_{1}, \ldots, \nu_{n}\right)}=\frac{\partial^{r_{1}+\cdots+r_{n}} f}{\partial x_{1}^{r_{1}} \ldots \partial x_{n}^{r_{n}}}
$$

Lemma 1.1. If $A_{i} \downarrow 0$ as $i \rightarrow \infty$, then for $\lambda=1,2, \ldots$ and $s \geqslant 1$ the following inequalities hold

$$
\begin{align*}
& 2^{(\lambda-1) s} A_{2^{\lambda}} \leqslant \sum_{i=2^{\lambda-1}+1}^{2^{\lambda}} i^{s-1} A_{i} \tag{1.1}\\
& 2^{(\lambda+1) s} A_{2^{\lambda}} \leqslant 2^{2 s} \sum_{i=2^{\lambda-1}+1}^{2^{\lambda}} i^{s-1} A_{i} \tag{1.2}
\end{align*}
$$

Proof. We have

$$
\sum_{i=2^{\lambda-1}+1}^{2^{\lambda}} i^{s-1}=\left(2^{\lambda-1}+1\right)^{s-1}+\cdots+\left(2^{\lambda}\right)^{s-1} \geqslant\left(2^{\lambda-1}+1\right)^{s-1} \cdot 2^{\lambda-1} \geqslant\left(2^{\lambda-1}\right)^{s} .
$$

Therefore

$$
\begin{equation*}
2^{(\lambda-1) s} \leqslant \sum_{i=2^{\lambda-1}+1}^{2^{\lambda}} i^{s-1} \tag{1.3}
\end{equation*}
$$

Since the sequence A_{i} is monotonic, (1.1) follows from (1.3). Multiplying inequality (1.1) by $2^{2 s}$, we get inequality (1.2).

Lemma 1.2. If $A_{i} \downarrow 0$ as $i \rightarrow \infty$, and $s \geqslant 1$, then the following inequality holds

$$
\begin{equation*}
\sum_{i=2^{m-1}+1}^{2^{m}} i^{s-1} A_{i} \leqslant 2^{2 s-1} \sum_{i=2^{m-2}+1}^{2^{m-1}} i^{s-1} A_{i}, \quad m=2,3, \ldots \tag{1.4}
\end{equation*}
$$

Proof. The following inequalities hold because the sequence A_{i} is monotonic

$$
\begin{align*}
& \sum_{i=2^{m} m-1+1}^{2^{m}} i^{s-1} A_{i} \leqslant A_{2^{m-1}} \sum_{i=2^{m-1} m-1}^{2^{m}} i^{s-1}, \tag{1.5}\\
& \sum_{i=2^{m-2}+1} i^{s-1} A_{i} \geqslant A_{2^{m-1}} \sum_{i=2^{m-2}+1} i^{s-1},
\end{align*}
$$

We have

$$
\begin{gathered}
\sum_{i=2^{m-1}+1}^{2^{m}} i^{s-1} \leqslant\left(2^{m}\right)^{s-1} \cdot 2^{m-1} \\
\sum_{i=2^{m-2}+1}^{2^{m-1}} i^{s-1} \geqslant\left(2^{m-2}\right)^{s-1} \cdot 2^{m-2}=2^{1-2 s} \cdot\left(2^{m}\right)^{s-1} \cdot 2^{m-1}
\end{gathered}
$$

From the above two inequalities it follows

$$
\begin{equation*}
\sum_{i=2^{m-1}+1}^{2^{m}} i^{s-1} \leqslant 2^{2 s-1} \sum_{i=2^{m-2}+1}^{2^{m-1}} i^{s-1} \tag{1.7}
\end{equation*}
$$

Multiplying (1.7) by $A_{2^{m-1}}$ and in view of (1.5) and (1.6), we get (1.2).
Remark 1.1. Lemmas 1.1 and 1.2 are valid for $0<s<1$ also, with different constants $C=C(s)$. So inequality (1.1) becomes

$$
2^{(\lambda-1) s} A_{2^{\lambda}} \leqslant 2^{s-1} \sum_{i=2^{\lambda-1}+1}^{2^{\lambda}} i^{s-1} A_{i} \quad(0<s<1)
$$

2. Theorem of representation

Let $g_{\nu}=g_{\nu_{1} \ldots \nu_{n}}\left(x_{1}, \ldots, x_{n}\right), \nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$, be an entire L_{p} function of exponential type ν_{i} with respect to the variable $x_{i}(i=1,2, \ldots, n)$, by which the best approximation $E_{\nu_{1}, \ldots, \nu_{n}}(f)_{p}$ is achieved, i.e., let

$$
\begin{equation*}
E_{\nu_{1}, \ldots, \nu_{n}}(f)_{p}=\left\|f-g_{\nu_{1} \ldots \nu_{n}}\right\|_{p} \tag{2.1}
\end{equation*}
$$

From these entire functions $g_{\nu_{1} \ldots \nu_{n}}\left(x_{1}, \ldots, x_{n}\right)$ we create entire functions
for given natural numbers $l_{j}(j=1,2, \ldots, n)$ where $l_{i}=1$ for a chosen number $i \in\{1,2, \ldots, n\}$. The function ξ_{λ} is entire of exponential type $2^{(\lambda+1) l_{j}}$ with respect to x_{j}.

THEOREM 2.1. Let $f \in L_{p}\left(R^{n}\right)$ and r_{j} be nonnegative integers, and $l_{j} \quad(j=$ $1, \ldots, n$) be natural numbers, where $l_{i}=1$ for some $i \in\{1,2, \ldots, n\}$. If the following inequality holds for the best approximation of the function

$$
\begin{equation*}
\sum_{\lambda=1}^{\infty} \lambda^{q \sigma-1} E_{\lambda^{l_{1}} \ldots \lambda \ldots \lambda^{l_{n}}}(f)_{p}<\infty \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\sum_{j=1}^{n} l_{j}\left(r_{j}+\frac{1}{p}-\frac{1}{q}\right), \quad 1 \leqslant p \leqslant q<\infty \tag{2.4}
\end{equation*}
$$

TOMIĆ
then the function f has a derivative $f^{\left(r_{1} \ldots r_{n}\right)}$ belonging to L_{q} and in the sense of L_{q} the equality

$$
\begin{equation*}
f^{\left(r_{1}, \ldots, r_{n}\right)} \stackrel{(q)}{=} g_{1 \ldots 1}^{\left(\nu_{1} \ldots \nu_{n}\right)}+\sum_{\lambda=0}^{\infty} \xi_{\lambda}^{r_{1}, \ldots, r_{n}} \tag{2.5}
\end{equation*}
$$

holds.
Proof. For the sum

$$
\begin{equation*}
G_{m}=g_{1 \ldots 1}+\sum_{\lambda=0}^{m} \xi_{\lambda}, \quad m=0,1,2 \ldots \tag{2.6}
\end{equation*}
$$

the equality

$$
\begin{equation*}
G_{m}=g_{2^{(m+1) l_{1}} \ldots 2^{m+1} \ldots 2^{(m+1) l_{n}}} \tag{2.7}
\end{equation*}
$$

holds. In view of (2.1) and (2.7) we conclude that

$$
\left\|f-G_{m}\right\|_{p}=E_{2^{(m+1) l_{1}} \ldots 2^{m+1} \ldots 2^{(m+1) l_{n}}}(f)_{p}
$$

hence, it follows that

$$
\begin{equation*}
\left\|f-G_{m}\right\|_{p} \rightarrow 0 \text { as } m \rightarrow \infty \tag{2.8}
\end{equation*}
$$

This means that the equality

$$
\begin{equation*}
f \stackrel{(p)}{=} g_{1 \ldots 1}+\sum_{\lambda=0}^{\infty} \xi_{\lambda} \tag{2.9}
\end{equation*}
$$

holds in L_{p}.
In the next step we prove (2.9) holds in L_{q}. For ξ_{λ} we have

$$
\begin{equation*}
\left\|\xi_{\lambda}\right\|_{p} \leqslant 2 E_{2^{\lambda l_{1}} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}(f)_{p} \tag{2.10}
\end{equation*}
$$

Applying the inequality of various metrics of Nikolsky [2, 3.3.5] we obtain

$$
\left\|\xi_{\lambda}\right\|_{q} \leqslant 2^{n}\left(\prod_{j=1}^{n} 2^{(\lambda+1) l_{j}}\right)^{1 / p-1 / q}\left\|\xi_{\lambda}\right\|_{p}
$$

hence, in view of (2.10), it follows

$$
\begin{equation*}
\left\|\xi_{\lambda}\right\|_{q} \ll 2^{n}\left(\prod_{j=1}^{n} 2^{(\lambda+1) l_{j}}\right)^{1 / p-1 / q} E_{2^{\lambda l_{1} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}(f)_{p} .} \tag{2.11}
\end{equation*}
$$

We will estimate the sum

$$
\begin{equation*}
G_{t}-G_{m}=\sum_{\lambda=m+1}^{t} \xi_{\lambda}, \quad m<t \tag{2.12}
\end{equation*}
$$

in the norm L_{q}. With the aim of estimating the quantity $A=\left\|G_{t}-G_{m}\right\|_{q}^{q}$ we will apply a method which has been used in several papers. For example, the method was applied in [3] and (see the estimate of A in Lemma 1). The method was
also applied in $[\mathbf{6}$ to estimate quantity A from (2.6) to (2.45). Therefore, taking into account (2.11), from (2.12), we get

$$
\begin{equation*}
\left\|G_{t}-G_{m}\right\|_{q} \ll\left\{\sum_{\lambda=m+1}^{t} \exp _{2}\left(\lambda q\left(\frac{1}{p}-\frac{1}{q}\right) \sum_{j=1}^{n} l_{j}\right) E_{2^{\lambda l_{1} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}}^{q}(f)_{p}\right\}^{1 / q} \tag{2.13}
\end{equation*}
$$

Following the proof in 6 and starting from equality (2.12), we will now prove inequality (2.13). Denote

$$
\begin{equation*}
A=\left\|G_{t}-G_{m}\right\|_{q}^{q}=\left\|\sum_{\lambda=m+1}^{t} \xi_{\lambda}\right\|_{q}^{q}, \quad m<t \tag{2.14}
\end{equation*}
$$

For a given number q denote $[q]+1=k$. This means that $k \in\{2,3, \ldots\}$ and that $q / k<1$. From (2.14) it follows that

$$
\begin{equation*}
A=\int\left|\sum_{\lambda=m+1}^{t} \xi_{\lambda}\right|^{q} d x=\int\left|\sum_{\lambda=m+1}^{t} \xi_{\lambda}\right|^{\frac{q}{k} k} d x \leqslant \int\left(\sum_{\lambda=m+1}^{t}\left|\xi_{\lambda}\right|^{\frac{q}{k}}\right)^{k} d x, \quad \int=\int_{R^{n}} \tag{2.15}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\delta_{\lambda}=\left|\xi_{\lambda}\right|^{q / k} \tag{2.16}
\end{equation*}
$$

We get

$$
\begin{equation*}
A \leqslant \int\left(\sum_{\lambda=m+1}^{t} \delta_{\lambda}\right)^{k} d x \tag{2.17}
\end{equation*}
$$

As $k=k(q)$ is an integer, then

$$
\begin{equation*}
\left(\sum_{\lambda=m+1}^{t} \delta_{\lambda}\right)^{k} \sum_{\lambda_{1}=m+1}^{t} \cdots \sum_{\lambda_{k}=m+1}^{t} \prod_{j=1}^{k} \delta_{\lambda_{j}} \tag{2.18}
\end{equation*}
$$

Now from (2.17), based on (2.18), we get

$$
\begin{equation*}
A \leqslant \sum_{\lambda_{1}=m+1}^{t} \ldots \sum_{\lambda_{k}=m+1}^{t} \int \prod_{j=1}^{k} \delta_{\lambda_{j}} d x \tag{2.19}
\end{equation*}
$$

Using the equality

$$
\begin{equation*}
\prod_{j=1}^{k} D_{j}=\left(\prod_{r, s=1, r<s}^{k} D_{r} D_{s}\right)^{1 /(k-1)} \tag{2.20}
\end{equation*}
$$

for $D_{j}=\delta_{\lambda_{j}}$ from (2.19) we obtain

$$
\begin{equation*}
A \leqslant \sum_{\lambda_{1}=m+1}^{t} \ldots \sum_{\lambda_{k}=m+1}^{t} \int\left(\prod_{r, s=1, r<s}^{k} \delta_{\lambda_{r}} \delta_{\lambda_{s}}\right)^{1 /(k-1)} d x \tag{2.21}
\end{equation*}
$$

Applying Hölder's integral inequality to a product of $\frac{1}{2} k(k-1)$ factors, from (2.21) we get that

$$
\begin{equation*}
A \leqslant \sum_{\lambda_{1}=m+1}^{t} \ldots \sum_{\lambda_{k}=m+1}^{t} \prod_{r, s=1, r<s}^{k}\left[\int\left(\delta_{\lambda_{r}} \delta_{\lambda_{s}}\right)^{k / 2} d x\right]^{2 / k(k-1)} . \tag{2.22}
\end{equation*}
$$

Based on (2.16) we get

$$
\begin{equation*}
\Gamma_{r s}=\int\left(\delta_{\lambda_{r}} \delta_{\lambda_{s}}\right)^{k / 2} d x=\int\left(\left|\xi_{\lambda_{r}}\right|^{q / 2}\left|\xi_{\lambda_{s}}\right|^{q / 2}\right) d x \tag{2.23}
\end{equation*}
$$

For $\alpha=\frac{p+q}{p}, \alpha^{\prime}=\frac{p+q}{q}$, we have $\frac{1}{\alpha}+\frac{1}{\alpha^{\prime}}=1$. Therefore by applying Hölder's inequality, we get

$$
\begin{equation*}
\Gamma_{r s} \leqslant\left(\left\|\xi_{\lambda_{r}}\right\|_{q \alpha / 2}\right)^{q / 2}\left(\left\|\xi_{\lambda_{s}}\right\|_{q \alpha^{\prime} / 2}\right)^{q / 2} \tag{2.24}
\end{equation*}
$$

The function ξ_{λ} is entire of exponential type $2^{(\lambda+1) l_{j}}$ with respect to $x_{j}, j=$ $1,2, \ldots, n$. Therefore applying the inequality of Nikolsky [2, 3.3.5] we get

$$
\begin{align*}
& \left(\left\|\xi_{\lambda_{r}}\right\|_{q \alpha / 2}\right)^{q / 2} \ll\left(\left\|\xi_{\lambda_{r}}\right\|_{p}\right)^{q / 2} \exp _{2}\left(\left(\sum_{j=1}^{n} \lambda_{r} l_{j}\right)\left(\frac{q}{2 p}-\frac{1}{\alpha}\right)\right) \tag{2.25}\\
& \left(\left\|\xi_{\lambda_{s}}\right\|_{q \alpha^{\prime} / 2}\right)^{q / 2} \ll\left(\left\|\xi_{\lambda_{s}}\right\|_{p}\right)^{q / 2} \exp _{2}\left(\left(\sum_{j=1}^{n} \lambda_{s} l_{j}\right)\left(\frac{q}{2 p}-\frac{1}{\alpha^{\prime}}\right)\right) \tag{2.26}
\end{align*}
$$

Using the equality

$$
\begin{equation*}
\frac{q}{2 p}-\frac{1}{\beta}=\frac{q}{2}\left(\frac{1}{p}-\frac{1}{q}\right)+\frac{1}{2}-\frac{1}{\beta}, \quad \beta \in\left\{\alpha, \alpha^{\prime}\right\} \tag{2.27}
\end{equation*}
$$

from (2.24), based on (2.25), (2.26) and (2.10), we get

$$
\begin{equation*}
\times\left\{\exp _{2}\left(\left[\left(\lambda_{r}+\lambda_{s}\right) q\left(\frac{1}{p}-\frac{1}{q}\right)\right] \sum_{j=1}^{n} l_{j}\right) E_{2^{\lambda_{r} l_{1} \ldots 2^{\lambda_{r}} \ldots 2^{\lambda_{r} l_{n}}}}^{q}(f)_{p} E_{2^{\lambda_{s} l_{1} \ldots 2^{\lambda_{s}} \ldots 2^{\lambda_{s} l_{n}}}}^{q}(f)_{p}\right\}^{1 / 2} \tag{2.28}
\end{equation*}
$$

Denote

$$
\begin{equation*}
H_{i}=\exp _{2}\left(i q\left(\frac{1}{p}-\frac{1}{q}\right) \sum_{j=1}^{n} l_{j}\right) E_{2^{i l_{1} \ldots 2^{i} \ldots 2^{2 l_{n}}}}^{q}(f)_{p} \tag{2.29}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Gamma_{r s} \ll \exp _{2}\left(\left[\lambda_{r}\left(\frac{1}{2}-\frac{1}{\alpha}\right)+\lambda_{s}\left(\frac{1}{2}-\frac{1}{\alpha^{\prime}}\right)\right] \sum_{j=1}^{n} l_{j}\right) H_{\lambda_{r}}^{1 / 2} H_{\lambda_{s}}^{1 / 2} \tag{2.30}
\end{equation*}
$$

Since $\frac{1}{\alpha^{\prime}}=1-\frac{1}{\alpha}$, it holds that

$$
\lambda_{r}\left(\frac{1}{2}-\frac{1}{\alpha}\right)+\lambda_{s}\left(\frac{1}{2}-\frac{1}{\alpha^{\prime}}\right)=-\left(\lambda_{s}-\lambda_{r}\right)\left(\frac{1}{2}-\frac{1}{\alpha}\right) .
$$

Therefore from (2.30) it follows

$$
\begin{equation*}
\Gamma_{r s} \ll \exp _{2}\left(-\left(\lambda_{s}-\lambda_{r}\right)\left(\frac{1}{2}-\frac{1}{\alpha}\right) \sum_{j=1}^{n} l_{j}\right) H_{\lambda_{r}}^{1 / 2} H_{\lambda_{s}}^{1 / 2} \tag{2.31}
\end{equation*}
$$

If we apply Hölder's inequality so that α^{\prime} relates to the first factor, and α to the second one, then in the same way we conclude that

$$
\begin{equation*}
\Gamma_{r s} \ll \exp _{2}\left(-\left(\lambda_{r}-\lambda_{s}\right)\left(\frac{1}{2}-\frac{1}{\alpha}\right) \sum_{j=1}^{n} l_{j}\right) H_{\lambda_{r}}^{1 / 2} H_{\lambda_{s}}^{1 / 2} \tag{2.32}
\end{equation*}
$$

Based on (2.31) and (2.32) we conclude that

$$
\begin{equation*}
\Gamma_{r s} \ll \exp _{2}\left(-\left|\lambda_{r}-\lambda_{s}\right|\left(\frac{1}{2}-\frac{1}{\alpha}\right) \sum_{j=1}^{n} l_{j}\right) H_{\lambda_{r}}^{1 / 2} H_{\lambda_{s}}^{1 / 2} \tag{2.33}
\end{equation*}
$$

Denote

$$
\begin{gather*}
a\left(\lambda_{s}, \lambda_{r}\right)=\exp _{2}\left(-\left|\lambda_{r}-\lambda_{s}\right|\left(\frac{1}{2}-\frac{1}{\alpha}\right) \sum_{j=1}^{n} l_{j}\right), \tag{2.34}\\
Q=\prod_{r, s=1, r<s}^{k}\left\{a\left(\lambda_{s}, \lambda_{r}\right) H_{\lambda_{r}}^{1 / 2} H_{\lambda_{s}}^{1 / 2}\right\}^{2 / k(k-1)} \tag{2.35}
\end{gather*}
$$

From (2.22), based on (2.23), (2.33), (2.34) and (2.35), it follows

$$
\begin{equation*}
A \leqslant \sum_{\lambda_{1}=m+1}^{t} \cdots \sum_{\lambda_{k}=m+1}^{t} Q \tag{2.36}
\end{equation*}
$$

We will now estimate the product Q. Based on (2.20) it holds that

$$
\prod_{r, s=1, r<s}^{k}\left\{H_{\lambda_{r}}^{1 / 2} H_{\lambda_{s}}^{1 / 2}\right\}^{1 /(k-1)}=\prod_{j=1}^{k} H_{\lambda_{j}}^{1 / 2}
$$

and then, using (2.35), we get

$$
\begin{equation*}
Q=\prod_{j=1}^{k} H_{\lambda_{j}}^{1 / k} \prod_{r, s=1, r<s}^{k}\left\{a\left(\lambda_{s}, \lambda_{r}\right)\right\}^{2 / k(k-1)} \tag{2.37}
\end{equation*}
$$

It holds $a\left(\lambda_{s}, \lambda_{r}\right)=a\left(\lambda_{r}, \lambda_{s}\right)$ and $a\left(\lambda_{r}, \lambda_{r}\right)=1$. Therefore

$$
\begin{equation*}
\prod_{r, s=1, r<s}^{k} a\left(\lambda_{r}, \lambda_{s}\right)=\prod_{r=1}^{k} \prod_{s=1}^{k} a^{1 / 2}\left(\lambda_{r}, \lambda_{s}\right) \tag{2.38}
\end{equation*}
$$

From (2.37) based on (2.38) it follows

$$
\begin{equation*}
Q=\prod_{r=1}^{k} H_{\lambda_{r}}^{1 / k}\left\{\prod_{s=1}^{k}\left[a\left(\lambda_{s}, \lambda_{r}\right)\right]^{1 /(k-1)}\right\}^{1 / k} \tag{2.39}
\end{equation*}
$$

Now from (2.36) based on (2.39) we get

$$
\begin{equation*}
A \ll \sum_{\lambda_{1}=m+1}^{t} \ldots \sum_{\lambda_{k}=m+1}^{t} \prod_{r=1}^{k} H_{\lambda_{r}}^{1 / k}\left\{\prod_{s=1}^{k}\left[a\left(\lambda_{r}, \lambda_{s}\right)\right]^{1 /(k-1)}\right\}^{1 / k} \tag{2.40}
\end{equation*}
$$

In the inequality (2.40) the product has k factors

$$
L_{r}=H_{\lambda_{r}}^{1 / k}\left\{\prod_{s=1}^{k}\left[a\left(\lambda_{r}, \lambda_{s}\right)\right]^{1 /(k-1)}\right\}^{1 / k}
$$

with the exponent $1 / k$. The sum of these exponents is 1 . Therefore we can apply Hölder's inequality and get

$$
\begin{equation*}
A \ll \prod_{r=1}^{k}\left\{\sum_{\lambda_{1}=m+1}^{t} \ldots \sum_{\lambda_{k}=m+1}^{t} H_{\lambda_{r}} \prod_{s=1}^{k}\left[a\left(\lambda_{r}, \lambda_{s}\right)\right]^{1 /(k-1)}\right\}^{1 / k} \tag{2.41}
\end{equation*}
$$

Denote

$$
\begin{equation*}
M_{r}=\sum_{\lambda_{1}=m+1}^{t} \ldots \sum_{\lambda_{k}=m+1}^{t} H_{\lambda_{r}} \prod_{s=1}^{k}\left[a\left(\lambda_{r}, \lambda_{s}\right)\right]^{1 /(k-1)}, \quad r=1, \ldots, k \tag{2.42}
\end{equation*}
$$

Since $\lambda_{r}=m+1, \ldots, t$ for every $r=1, \ldots, k$, then

$$
\begin{equation*}
M_{1}=M_{2}=\cdots=M_{k}=M \tag{2.43}
\end{equation*}
$$

We will estimate, for example, $M_{1}=M$. Since $a\left(\lambda_{1}, \lambda_{1}\right)=1$, then from (2.42) after some calculation we get

$$
\begin{equation*}
M=M_{1}=\sum_{\lambda_{1}=m+1}^{t} H_{\lambda_{1}} \sum_{\lambda_{2}=m+1}^{t}\left[a\left(\lambda_{1}, \lambda_{2}\right)\right]^{1 /(k-1)} \cdots \sum_{\lambda_{k}=m+1}^{t}\left[a\left(\lambda_{1}, \lambda_{k}\right)\right]^{1 /(k-1)} . \tag{2.44}
\end{equation*}
$$

Based on (2.34) we conclude that

$$
\begin{equation*}
\sum_{\lambda_{r}=m+1}^{t}\left[a\left(\lambda_{1}, \lambda_{r}\right)\right]^{1 /(k-1)} \leqslant C(p, q), \quad r=2,3, \ldots, k \tag{2.45}
\end{equation*}
$$

Now from (2.44) based on (2.45) it follows

$$
\begin{equation*}
M \ll \sum_{\lambda_{1}=m+1}^{t} H_{\lambda_{1}} \tag{2.46}
\end{equation*}
$$

From (2.41), using (2.42), (2.43) and (2.46), we get

$$
\begin{equation*}
A \ll \prod_{r=1}^{k} M^{1 / k}=M \ll \sum_{i=m+1}^{t} H_{i} . \tag{2.47}
\end{equation*}
$$

Based on (2.47) and (2.29) we conclude that

$$
\begin{equation*}
A \ll \sum_{i=m+1}^{t} \exp _{2}\left(i q\left(\frac{1}{p}-\frac{1}{q}\right) \sum_{j-1}^{n} l_{j}\right) E_{2^{i l_{1} \ldots 2^{i} \ldots 2^{i l_{n}}}}^{q}(f)_{p} \tag{2.48}
\end{equation*}
$$

Finally, from (2.48), based on (2.14), the inequality (2.13) follows. If $r_{j}=0$, then $\sigma=\left(\frac{1}{p}-\frac{1}{q}\right) \sum_{j=1}^{n} l_{j}$, therefore in view of (2.3) and (2.13) we deduce that the sequence $\left\{G_{m}\right\}$ is a Cauchy sequence in the space L_{q} and therefore it tends to a function f in L_{q} [2, 1.3.9]. Thus, we have

$$
\begin{equation*}
f \stackrel{(q)}{=} g_{1 \ldots 1}+\sum_{\lambda=0}^{\infty} \xi_{\lambda} \tag{2.49}
\end{equation*}
$$

In the next step we prove equality (2.5). To do it we estimate the quantity

$$
\begin{equation*}
B=\left\|G_{t}^{\left(r_{1}, \ldots, r_{n}\right)}-G_{m}^{\left(r_{1}, \ldots, r_{n}\right)}\right\|_{q}^{q}=\left\|\sum_{\lambda=m+1}^{t} \xi_{\lambda}^{\left(r_{1}, \ldots, r_{n}\right)}\right\|_{q}^{q} \tag{2.50}
\end{equation*}
$$

Applying the inequality of the Bernstein type [2, 3.2.2], we get

$$
\left\|\xi_{\lambda}^{\left(r_{1}, \ldots, r_{n}\right)}\right\|_{q} \leqslant\left(\prod_{j=1}^{n} 2^{l_{j} r_{j}}\right) 2^{\lambda\left(l_{1} r_{1}+\cdots+l_{n} r_{n}\right)}\left\|\xi_{\lambda}\right\|_{q}
$$

hence, in view of (2.11), it follows

$$
\begin{equation*}
\left\|\xi_{\lambda}^{\left(r_{1}, \ldots, r_{n}\right)}\right\| \ll 2^{\lambda \sigma} E_{2^{\lambda l_{1}} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}(f)_{p} \tag{2.51}
\end{equation*}
$$

Now, using for B the same procedure by which we estimated A, we get (see the estimation of B in [6, (2.50)-(2.65)]

$$
\begin{equation*}
\left\|G_{t}^{\left(r_{1}, \ldots, r_{n}\right)}-G_{m}^{\left(r_{1}, \ldots, r_{n}\right)}\right\|_{q} \ll\left\{\sum_{\lambda=m+1}^{t} 2^{\lambda q \sigma} E_{2^{\lambda l_{1} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}} \boldsymbol{q}}(f)_{p}\right\}^{1 / q} \tag{2.52}
\end{equation*}
$$

In view of condition (2.3) and inequality (2.52) we conclude that the sequence $\left\{G_{m}^{\left(r_{1}, \ldots, r_{n}\right)}\right\}$ is a Cauchy sequence in L_{q}. If we denote $G_{m}^{\left(r_{1}, \ldots, r_{n}\right)} \rightarrow h, m \rightarrow \infty$, then we conclude (see [2, 4.4.7] or [4, 6.3.31]) that $h=f^{\left(r_{1}, \ldots, r_{n}\right)}$. This means that equality (2.5) holds.

3. The converse theorem of approximation

Now we are going to prove a converse theorem of approximation, analogously to the result in [5] and give some consequences.

Theorem 3.1. Let the conditions of Theorem 2.1 be satisfied (the condition (2.3) where σ is given by (2.4)), and let k and m_{i} be given natural numbers. Then the inequality

$$
\begin{align*}
& \omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; 0, \ldots, 0, \frac{1}{m_{i}}, 0, \ldots, 0\right)_{q} \tag{3.1}\\
& \leqslant C\left\{\frac { 1 } { m _ { i } ^ { k } } \left[\|f\|_{p}^{q}\right.\right.\left.+\sum_{\lambda=1}^{m_{i}} \lambda^{q(\sigma+k)-1} E_{\lambda^{l_{1} \ldots \lambda . \ldots \lambda^{l_{n}}}}^{q}(f)_{p}\right]^{1 / q} \\
&\left.+\left[\sum_{\lambda=m_{i}+1}^{\infty} \lambda^{q \sigma-1} E_{\lambda^{l_{1}} \ldots \lambda \ldots \lambda^{l_{n}}}^{q}(f)_{p}\right]^{1 / q}\right\}
\end{align*}
$$

holds, where the constant C does not depend either on f or $m_{i}=1,2, \ldots$.
Proof. For the modulus of smoothness ω_{k} of the derivative $f^{\left(r_{1}, \ldots, r_{n}\right)}$ of the function f we have

$$
\begin{align*}
& \omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; 1 / m_{i}\right)_{q} \leqslant \omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)}-G_{m}^{\left(r_{1}, \ldots, r_{n}\right)} ; 1 / m_{i}\right)_{q} \tag{3.2}\\
&+\omega_{k}\left(G_{m}^{\left(r_{1}, \ldots, r_{n}\right)}\right.\left.; 1 / m_{i}\right)_{q}=I_{1}+I_{2}
\end{align*}
$$

For I_{1} we obtain

$$
\begin{equation*}
I_{1} \ll\left\|f^{\left(r_{1}, \ldots, r_{n}\right)}-G_{m}^{\left(r_{1}, \ldots, r_{n}\right)}\right\|_{q}=\left\|\sum_{\lambda=m+1}^{\infty} \xi_{\lambda}^{\left(r_{1}, \ldots, r_{n}\right)}\right\|_{q} \tag{3.3}
\end{equation*}
$$

In the same way by which inequality (2.17) was established, in view of (3.3), we conclude that

$$
\begin{equation*}
I_{1} \ll\left\{\sum_{\lambda=m+1}^{\infty} 2^{\lambda q \sigma} E_{2^{\lambda l_{1}} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}^{q}(f)_{p}\right\}^{1 / q} \tag{3.4}
\end{equation*}
$$

In virtue of the properties of the modulus of smoothness [2] 4.4.4(2)] we have

$$
\begin{equation*}
I_{2}=\omega_{k}\left(G_{m}^{\left(r_{1}, \ldots, r_{n}\right)} ; 1 / m_{i}\right)_{q} \leqslant \frac{1}{m_{i}^{k}}\left\|G_{m}^{\left(r_{1}, \ldots, r_{i}+k, \ldots, r_{n}\right)}\right\|_{q} \tag{3.5}
\end{equation*}
$$

In the same way by which the inequality (2.17) was established, putting $r_{i}+k$ instead of r_{i}, and since $l_{i}=1$, we get the estimate

$$
\begin{equation*}
\left\|G_{m}^{\left(r_{1}, \ldots, r_{i}+k, \ldots, r_{n}\right)}\right\|_{q} \ll\left\{\|f\|_{p}^{q}+\sum_{\lambda=0}^{\infty} 2^{\lambda q(\sigma+k)} E_{2^{\lambda l_{1}} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}^{q}(f)_{p}\right\}^{1 / q} \tag{3.6}
\end{equation*}
$$

Now, in view of (3.2), (3.4), (3.5) and (3.6), we obtain

$$
\begin{align*}
\omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; 1 / m_{i}\right)_{q} & \ll\left\{\sum_{\lambda=m_{i}+1}^{\infty} 2^{\lambda q \sigma} E_{2^{\lambda l_{1} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}}^{q}(f)_{p}\right\}^{1 / q} \tag{3.7}\\
& +\frac{1}{m_{i}^{k}}\left\{\|f\|_{p}^{q}+\sum_{\lambda=0}^{m_{i}} 2^{\lambda q(\sigma+k)} E_{2^{\lambda l_{1}} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}^{q}(f)_{p}\right\}^{1 / q}
\end{align*}
$$

Let

$$
\begin{equation*}
q(\sigma+k)=s, \quad E_{2^{\lambda l_{1}} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}^{q}(f)_{p}=A_{2^{\lambda}} \tag{3.8}
\end{equation*}
$$

Then, using inequality (1.1), (Lemma 1.1), we get

$$
\begin{aligned}
\sum_{\lambda=0}^{m} 2^{\lambda s} A_{2^{\lambda}} & =A_{1}+2^{s} A_{2}+2^{s} \sum_{\lambda=2}^{m} 2^{(\lambda-1) s} A_{2^{\lambda}} \leqslant A_{1}+2^{s} A_{2}+2^{s} \sum_{\lambda=2}^{m} \sum_{i=2^{\lambda-1}+1}^{2^{\lambda}} i^{s-1} A_{i} \\
& =A_{1}+2^{s} A_{2}+2^{s}\left\{\sum_{i=3}^{2^{m-1}} i^{s-1} A_{i}+\sum_{i=2^{m-1}+1}^{2^{m}} i^{s-1} A_{i}\right\}
\end{aligned}
$$

Using Lemma 1.2, from the previous inequality, it follows

$$
\begin{equation*}
\sum_{\lambda=0}^{m} 2^{\lambda s} A_{2^{\lambda}} \ll \sum_{i=1}^{2^{m-1}} i^{s-1} A_{i} \tag{3.9}
\end{equation*}
$$

Choosing m so that $2^{m-1} \leqslant m_{i}<2^{m}$, from (3.9) it follows $\sum_{\lambda=0}^{m} 2^{\lambda s} A_{2^{\lambda}} \ll$ $\sum_{i=1}^{m_{i}} i^{s-1} A_{i}$, i.e.,

$$
\begin{equation*}
\sum_{\lambda=0}^{m} 2^{\lambda q(\sigma+k)} A_{2^{\lambda}} \ll \sum_{i=1}^{m_{i}} i^{q(\sigma+k)-1} A_{i} . \tag{3.10}
\end{equation*}
$$

To estimate the first sum in (3.7) we use (1.2), (Lemma 1.1.), and get

$$
\begin{aligned}
\sum_{\lambda=m+1}^{\infty} 2^{\lambda q \sigma} A_{2^{\lambda}} & =2^{-q \sigma} \sum_{\lambda=m+1}^{\infty} 2^{(\lambda+1) q \sigma} A_{2^{\lambda}} \leqslant 2^{-q \sigma} 2^{2 q \sigma} \sum_{\lambda=m+1}^{\infty} \sum_{i=2^{\lambda-1}+1}^{2^{\lambda}} i^{q \sigma-1} A_{i} \\
& =2^{q \sigma}\left\{\left(2^{m}+1\right)^{q \sigma-1} A_{2^{m}+1}+\cdots+\left(2^{m+1}\right)^{q \sigma-1} A_{2^{m+1}}+\cdots\right\},
\end{aligned}
$$

hence, using that $m_{i}<2^{m}$, it follows

$$
\begin{equation*}
\sum_{\lambda=m+1}^{\infty} 2^{\lambda q \sigma} A_{2^{\lambda}} \leqslant 2^{q \sigma} \sum_{\lambda=m_{i}+1}^{\infty} i^{q \sigma-1} A_{i} \tag{3.11}
\end{equation*}
$$

Putting $A_{i}=E_{i}^{q}$ (equality (3.8), from (3.7) and (3.11), it follows (3.1).
Corollary 3.1. For $n=1$ it holds that $l_{j}=1, r_{j}=r, \sigma=r+\frac{1}{p}-\frac{1}{q}$ and we get the corresponding theorems and inequalities for a function of one variable.

Corollary 3.2. If $l_{j}=1, j=1,2, \ldots, n$ and $r_{j}=0, j \neq i, r_{i}=r$, then $\sigma=n\left(\frac{1}{p}-\frac{1}{q}\right)+r$. Therefore, the condition

$$
\sum_{\lambda=1}^{\infty} \lambda^{q[r+n(1 / p-1 / q)]-1} E_{\lambda \ldots \lambda \ldots \lambda}^{q}(f)_{p}<\infty
$$

implies that the function f has a derivative $\partial^{r} f / \partial x^{r}$ with respect to any variable x_{i} belonging to L_{q}. For the modulus of smoothness the corresponding inequality holds.

Corollary 3.3. Applying the inequality $\left(\sum a_{k}\right)^{s} \leqslant \sum\left(a_{k}\right)^{s}, a_{k} \geqslant 0,0<s \leqslant$ 1, for $s=1 / q$, from (3.7) it follows

$$
\begin{aligned}
\omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; 1 / m_{i}\right)_{q} \ll & \sum_{\lambda=m_{i}+1}^{\infty} 2^{\lambda \sigma} E_{2^{\lambda l_{1}} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}(f)_{p} \\
& +\frac{1}{m_{i}^{k}}\left\{\|f\|_{p}^{q}+\sum_{\lambda=0}^{m_{i}} 2^{\lambda(\sigma+k)} E_{2^{\lambda l_{1}} \ldots 2^{\lambda} \ldots 2^{\lambda l_{n}}}(f)_{p}\right\}
\end{aligned}
$$

wherefrom

$$
\begin{align*}
\omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; 1 / m_{i}\right)_{q} \ll & \sum_{\lambda=m_{i}+1}^{\infty} \lambda^{\sigma-1} E_{\lambda^{l_{1}} \ldots \lambda \ldots \lambda^{l_{n}}}(f)_{p} \tag{3.12}\\
& +\frac{1}{m_{i}^{k}}\left\{\|f\|_{p}+\sum_{\lambda=1}^{m_{i}} \lambda^{\sigma+k-1} E_{\lambda^{l_{1}} \ldots \lambda \ldots \lambda^{l_{n}}}(f)_{p}\right\}
\end{align*}
$$

For $n=1$ inequality (3.12) implies inequality 6.4.1(3) in 4]. For $r_{j}=0, j \neq i$, $r_{i}=r(j=1, \ldots, n)$ it holds that $\sigma=r+\left(\frac{1}{p}-\frac{1}{q}\right) \sum_{j=1}^{n} l_{j}$, and from (3.12) it follows inequality 6.4.3(8) in [4].

Corollary 3.4. For $p=q$ it holds that $\sigma=\sum_{j=1}^{n} l_{j} r_{j}$, and from (3.12) we get the corresponding result in L_{p}.

Remark 3.1. Some results of this paper were presented at the First Mathematical Conference of the Republic of Srpska (Pale, May 21-22, 2011).

References

1. N. A. Il'yasov, An inverse theorem of approximation theory in different metrics, Mat. Zametki 50:6 (1991), 57-65, 158 (in Russian); translated in Math. Notes 50:5-6 (1991), 1253-1260
2. S. M. Nikol'skiŭ, Approximation of Functions of Several Variables and Imbedding Theorems, Second edition, revised and supplemented, Nauka, Moscow, 1977 (in Russian).
3. M. K. Potapov, Imbedding theorems in the mixed metric, Trudy Mat. inst. AN SSSR 156 (1980), 143-156 (in Russian)
4. A. F. Timan, Theory of Approximation of Functions of Real Variable, Gos. Izdat. FM, Moscow, 1960 (in Russian).
5. M. Tomić, On converse theorem of approximation in various metrics for periodic functions of several variables, Facta Univ., Ser. Math. Inform. 15 (2000), 49-56.
6. _O_ On representation of derivatives of functions in L_{p}, Mat. Vesn. 62(3) (2010), 235-250.

University of East Sarajevo	(Received 1208 2010)
East Sarajevo	(Revised 3009 2013)
Republic of Srpska	

[^0]: 2010 Mathematics Subject Classification: Primary 42B99.
 Key words and phrases: modulus of smoothness, the converse theorem of approximation.

