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Abstract. Let G be a graph of order n and let q(G) be the largest eigenvalue
of the signless Laplacian of G. It is shown that if k > 2, n > 5k2, and q(G) >

n + 2k − 2, then G contains a cycle of length l for each l ∈ {3, 4, . . . , 2k + 2}.

This bound on q(G) is asymptotically tight, as the graph Kk ∨ Kn−k contains
no cycles longer than 2k and

q(Kk ∨ Kn−k) > n + 2k − 2 −
2k(k − 1)

n + 2k − 3
.

The main result gives an asymptotic solution to a recent conjecture about the
maximum q(G) of a graph G with forbidden cycles. The proof of the main
result and the tools used therein could serve as a guidance to the proof of the
full conjecture.

1. Introduction

Given a graph G, the Q-index of G is the largest eigenvalue q(G) of its signless
Laplacian Q(G). In this note we give an asymptotically tight upper bound on q(G)
of a graph G of a given order, with no cycle of specified length. Let us start by
recalling a general problem in spectral extremal graph theory:

How large can q(G) be if G is a graph of order n, with no subgraph isomorphic
to some forbidden graph F?

This problem has been solved for several classes of forbidden subgraphs; in
particular, in [9] it has been solved for forbidden cycles C4 and C5. In addition, it
seems a folklore result that q(G) > n implies the existence of C3, and this bound
is exact in view of the star of order n. For longer cycles, a general conjecture has
been stated in [9], which we reiterate next to clarify the contribution of the present
note.
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Let Sn,k be the graph obtained by joining each vertex of a complete graph
of order k to each vertex of an independent set of order n − k; in other words,
Sn,k = Kk ∨Kn−k. Also, let S+

n,k be the graph obtained by adding an edge to Sn,k.

Conjecture 1. Let k > 2 and let G be a graph of sufficiently large order n.
If G has no C2k+1, then q(G) < q(Sn,k), unless G = Sn,k. If G has no C2k+2, then
q(G) < q(S+

n,k), unless G = S+
n,k.

Conjecture 1 seems difficult, but not hopeless. It is very likely that it will be
solved completely in the next couple of years. Thus, one of the goals of this note
is to make some suggestions for such a solution and to emphasize the relevance of
some supporting results.

The starting point of our work is the observation that both q(Sn,k) and q(S+
n,k)

are very close to n + 2k − 2 whenever n is large. In fact, the difference between
these values is Ω(1/n), as can be seen from the following proposition.

Proposition 2. If k > 2 and n > 5k2, then

n + 2k − 2 −
2(k2 − k)

n + 2k + 2
> q(S+

n,k) > q(Sn,k) > n + 2k − 2 −
2(k2 − k)

n + 2k − 3
.

These bounds prompt a weaker, yet asymptotically tight version of Conjec-
ture 1, which we shall prove in this note.

Theorem 3. Let k > 2, n > 6k2, and let G be a graph of order n. If q(G) >

n + 2k − 2, then G contains cycles of length 2k + 1 and 2k + 2.

Before going further, let us note a corollary of Theorem 3.

Corollary 4. Let k > 2, n > 6k2, and let G be a graph of order n. If
q(G) > n+2k−2, then G contains a cycle of length l for each l ∈ {3, 4, . . . , 2k+2}.

Indeed, if l > 5, the conclusion follows immediately from Theorem 3. For
l ∈ {3, 4}, recall the bound q(G) 6 max{du + dv : {u, v} ∈ E(G)}. In view of
q(G) > n + 2, there must be an edge {u, v} belonging to two triangles; hence G
contains both C3 and C4.

Even though Theorem 3 is weaker than Conjecture 1, our proof is not too short.
To emphasize its structure, we have extracted a few important points into separate
statements, which we give next.

Lemma 5. If G is a graph with no P2k+1, then for each component H of G,
either v(H) = 2k or e(H) 6 (k − 1)v(H).

Write K2k + v for the graph obtained by joining a vertex v to a single vertex
of the complete graph K2k.

Lemma 6. Let v be a vertex of a graph G of order n. If G contains no P2k+1

with both endvertices different from v, then 2e(G) − dv 6 (2k − 1)(n − 1), unless G
is a union of several copies of K2k and one K2k + v.

We also need bounds on q(G) for some special classes of graphs. Since the
known upper bounds did not work in these cases, we came up with a few technical
results giving the required bounds.
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Lemma 7. Let the integers k, p, m, and n satisfy

k > 2, m > 1, p > 0, n = 2kp + m, n > 6k + 13.

Let H be a graph of order m and let F be the union of p disjoint graphs of order
2k, which are also disjoint from H. Let G be the graph obtained by taking F ∪ H
and joining some vertices of F to a single vertex w of H. If

(1) q(H) 6 m + 2k − 2 +
6pk

n + 3
,

then q(G) 6 n + 2k − 2, with equality holding if and only if equality holds in (1).

The reason for Lemma 7 being so technical is that it must support the proof
of the following two quite different corollaries.

Corollary 8. Let k, p, and n be integers such that k > 2, p > 0, and n =
2(p+1)k+2. Let G = K1∨((pK2k)∪K2k+1). If n > 6k+13, then q(G) < n+2k−2.

Given a graph G and u ∈ V (G), write G−u for the graph obtained by removing
the vertex u.

Corollary 9. Let k > 2, G be a graph of order n, and w ∈ V (G). Suppose
that for each component C of G − w, either v(C) = 2k or e(C) 6 (k − 1)v(C). If
n > 6k + 13, then q(G) < n + 2k − 2.

In the next section we outline some notation and results needed in our proofs.
The proofs themselves are given in Section 3.

2. Notation and supporting results

For graph notation and concepts undefined here we refer the reader to [2].
For introductory and reference material on the signless Laplacian see the survey of
Cvetković [5] and its references. In particular, let G be a graph, and X and Y be
disjoint sets of vertices of G. We write:

- V (G) for the set of vertices of G, E(G) for the set of edges of G, and e(G)
for |E(G)|;

- G[X ] for the graph induced by X , and e(X) for e(G[X ]);
- e(X, Y ) for the number of edges joining vertices in X to vertices in Y ;
- Γu for the set of neighbors of a vertex u, and du for |Γu|.

We write Pk, Ck, and Kk for the path, cycle, and complete graph of order k.

Given a graph G and a vertex u ∈ V (G), note that

∑

v∈Γu

dv = 2e(Γu) + e(Γu, V (G) r Γu).

Below we shall use this fact without reference.
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2.1. Some useful theorems. Here we state several known results, all of
which are used in the proof of Theorem 3. We start with two classical theorems of
Erdős and Gallai [7].

Theorem 10. Let k > 1. If G is a graph of order n, with no Pk+2, then
e(G) 6 kn/2, with equality holding if and only if G is a union of disjoint copies of
Kk+1.

Theorem 11. Let k > 2. If G is a graph of order n, with no Ck+1, then
e(G) 6 k(n − 1)/2, with equality holding if and only if G is a union of copies of
Kk, all sharing a single vertex.

For connected graphs Kopylov [10] has enhanced Theorem 10 as follows.

Theorem 12. Let k > 1, and let G be a connected graph of order n.
(i) If n > 2k + 2 and G contains no P2k+2, then

e(G) 6 max

{

kn − k(k + 1)/2,

(

2k

2

)

+ (n − 2k)

}

;

(ii) If n > 2k + 3 and G contains no P2k+3, then

e(G) 6 max

{

kn − k(k + 1)/2 + 1,

(

2k + 1

2

)

+ (n − 2k − 1)

}

.

We refer the reader to the more recent paper [1], where the conditions for
equality in Kopylov’s bounds are determined as well.

We shall use the following sufficient condition for Hamiltonian cycles, proved
by Ore [13].

Theorem 13. If G is a graph of order n > 3 and e(G) >
(

n−1
2

)

+ 1, then G
has a Hamiltonian cycle.

The following structural extension of Theorem 10 has been established in [12].

Theorem 14. Let k > 1 and let the vertices of a graph G be partitioned into
two sets A and B. If 2e(A) + e(A, B) > (2k − 1)|A| + k|B|, then there exists a path
of order 2k + 1 with both endvertices in A.

We finish this subsection with two known upper bounds on q(G). The proof
of Theorem 3 will be based on a careful analysis of the following bound on q(G),
which can be traced back to Merris [11]. The case of equality was established in [8].

Theorem 15. For every graph G,

q(G) 6 max

{

du +
1

du

∑

v∈Γu

dv : u ∈ V (G)

}

.

If G is connected, equality holds if and only if G is regular or semiregular bipartite.

Finally, let us mention the following corollary, due to Das [6].
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Theorem 16. If G is a graph with n vertices and m edges, then

q(G) 6
2m

n − 1
+ n − 2,

with equality holding if and only if G is either complete, or is a star, or is a complete
graph with one isolated vertex.

In the next section we prove our main results.

3. Proofs

In the proofs given below there are several instances where the bounds can be
somewhat improved at the price of more involved arguments and calculations. Such
improvements seem not too worthy unless geared towards the complete solution of
Conjecture 1. Instead, we tried to keep the exposition concise, so that the main
points are more visible.

Proof of Proposition 2. It is known that

q(Sn,k) =
1

2

(

n + 2k − 2 +
√

(n + 2k − 2)2 − 8(k2 − k)
)

.

Hence, we see that

q(Sn,k) − (n + 2k − 2) = −
4(k2 − k)

n + 2k − 2 +
√

(n + 2k − 2)2 − 8(k2 − k)

> −
2(k2 − k)

n + 2k − 3
,

and also

q(Sn,k) − (n + 2k − 2) < −
2(k2 − k)

n + 2k − 2
.

To bound q(S+
n,k) let x = (x1, . . . , xn) be a unit eigenvector to q(S+

n,k) and let

x1, . . . , xk be the entries corresponding to the vertices of degree n − 1 in S+
n,k. Let

k+1 and k+2 be the vertices of the extra edge of S+
n,k. By symmetry, x1 = · · · = xk

and xk+1 = xk+2. Using the eigenequations for Q(G) and the fact that

q(S+
n,k) > q(Sn,k) > n + 2k − 2 −

2(k2 − k)

n + 2k − 3
> n + k − 1,

we see that

x2
k+1 =

k2x2
1

(q(S+
n,k) − k − 2)2

<
k

(q(Sn,k) − k − 2)2 <
k

(n − 3)2 .

Next, comparing the quadratic forms 〈Q(S+
n,k)x, x〉 and 〈Q(Sn,k)x, x〉 of the ma-

trices Q(S+
n,k) and Q(Sn,k), we see that

q(S+
n,k) − (xk+1 + xk+2)2 = 〈Q(S+

n,k)x, x〉 − (xk+1 + xk+2)2

= 〈Q(Sn,k)x, x〉 6 q(Sn,k).
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Thus, after some algebra, we get

q(S+
n,k) < q(Sn,k) +

4k

(n − 3)2 < n + 2k − 2 −
2(k2 − k)

n + 2k − 2
+

4k

(n − 3)2

< n + 2k − 2 −
2(k2 − k)

n + 2k + 2
,

completing the proof of Proposition 2. �

Proof of Lemma 5. Let H be a component of G. Set m = v(H) and assume
that m 6= 2k. We shall show that e(H) < (k − 1)m. If m 6 2k − 1, then

e(H) 6

(

m

2

)

=
m(m − 1)

2
6 (k − 1)m,

as claimed. If m > 2k + 1, then clause (ii) of Theorem 12 implies that e(H) is at
most

max

{

(k − 1)m − ((k − 1)2 + (k − 1))/2 + 1,

(

2k − 1

2

)

+ (m − 2k − 1)

}

.

This bound splits into

e(H) 6 (k − 1)m − ((k − 1)2 + (k − 1))/2 + 1 6 (k − 1)m,

and

e(H) 6

(

2k − 1

2

)

+ (m − 2k + 1) = (2k − 1)(k − 2) + m 6 (k − 1)m.

Thus, in all cases we see that e(H) 6 (k − 1)m, completing the proof of Lemma 5.
�

Proof of Lemma 6. Assume for a contradiction that

2e(G) − dv > (2k − 1)(n − 1) + 1,

and that G has no path of order 2k+1 with both endvertices different from v. Write
H for the component containing v and let F be the union of the other components
of G. Since P2k+1 * F , Theorem 10 implies that

(2) 2e(F ) 6 (2k − 1)v(F ),

and so
2e(H) − dv > (2k − 1)(v(H) − 1) + 1.

Noting that

2e(H) − dv =
∑

u∈V (H)r{v}

du 6 (v(H) − 1)2,

we find that v(H) > 2k + 1. Assume that v(H) > 2k + 2. Since

2e(H) > (2k − 1)(v(H) − 1) + 1 + dv > (2k − 1)(v(H) − 1),

Theorem 11 implies that H contains a cycle C of order m > 2k. If m > 2k+1, then
obviously there is a P2k+1 with both endvertices different from v, so let m = 2k.
Choose a vertex w ∈ V (H) such that w 6= v and w /∈ C. There exists a shortest
path P joining w to a vertex u ∈ C. By symmetry, we can index the vertices of C
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as u = u1, u2, . . . , u2k. Take u0 in P at distance 1 from C. Then the sequences
u0, u1, u2, . . . , u2k and u0, u1, u2k, . . . , u2 induce paths of order 2k +1. Since v must
be an endvertex to each of them, we see that u0 = v. But w 6= v, hence P contains
a vertex u−1 at distance 2 from C. Now the sequence u−1, u0, u1, u2, . . . , u2k−1

induces a path of order 2k+1 with both endvertices different from v, a contradiction
completing the proof whenever v(H) > 2k + 2. It remains to consider the case
v(H) = 2k + 1. In this case H is not Hamiltonian, as otherwise there is a path
of order 2k + 1 with both endvertices different from v; hence, Theorem 13 implies
that e(H) 6 k(2k − 1) + 1 and so

2k(2k − 1) + 2 − dv > e(H) − dv > (2k − 1)2k + 1.

This is possible only if du = 1 and e(H) = k(2k − 1) + 1. Since H − v is complete,
obviously, H = K2k + v. In addition, in (2) we have 2e(F ) = (2k − 1)v(F ), and so
the condition for equality in Theorem 10 implies that G is a union of several copies
of K2k and one copy of K2k + v, completing the proof of Lemma 6. �

Proof of Lemma 7. Let q := q(G); assume for a contradiction that q > n +
2k − 2, and let x = (x1, . . . , xn) be a unit eigenvector to q. From the eigenequation
for Q(G) and the vertex w we see that

(q − n + 1)xw 6 (q − dw)xw 6
∑

i∈V (G)r{w}

xi 6
√

(n − 1)(1 − x2
w),

and in view of q > n + 2k − 2, it follows that

(3) x2
w 6

n − 1

(q − n + 1)2 + n − 1
<

n − 1

n − 1 + (2k − 1)2 6 1 −
9

n + 8
.

On the other hand, let u ∈ V (F ) be such that xu = max{xv : v ∈ V (F )}. Set
x := xu and note that the eigenequation for u implies that

qx = dux +
∑

i∼u

xi = dux + xw +
∑

{i,u}∈E(F )

xi

6 2kx + xw + (2k − 1)x = (4k − 1)x + xw.

Hence, the inequality q > n + 2k − 2 implies that x 6 xw

q−4k−1 6 xw

n−2k−1 . Next,

expanding the quadratic form 〈Q(G)x, x〉, we find that

q =
∑

{i,j}∈E(G)

(xi + xj)2 6
∑

{i,j}∈E(G0)

(xi + xj)2 + 2kp(x + xw)2 + 4p

(

2k

2

)

x2

6 q(G0) + 2kp(x + xw)2 + 4pk(2k − 1)x2

= q(G0) + 2pkx2
w + 4pkxxw + 2pk(4k − 1)x2

6 q(G0) + 2pk

(

1 +
2

n − 2k − 1
+

4k − 1

(n − 2k − 1)2

)

x2
w.

Now, plugging here the bound (3), we get

q 6 q(G0) + 2pk

(

1 +
3

n − 2k − 1

) (

1 −
9

n + 8

)

(4)
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6 q(G0) + 2pk + 6pk

(

1

n − 2k − 1
−

3

n + 8

)

= q(G0) + 2pk − 6pk

(

2n − 6k − 13

(n − 2k − 1)(n + 8)

)

.

Note that, in view of n > 6k + 13 and k > 2, we have

2n − 6k − 13

(n − 2k − 1)(n + 8)
>

n

(n − 2k − 1)(n + 8)
>

n

(n − 5)(n + 8)
>

1

n + 3
.

Plugging this inequality back in (4) and using (1), we obtain

n + 2k − 2 6 q 6 q(G0) + 2pk −
6pk

n + 3

6 m + 2k − 2 +
6pk

n + 3
+ 2pk −

6pk

n + 3
= n + 2k − 2.

Hence q 6 n + 2k − 2, with equality holding if and only if equality holds in (1).
The proof of Lemma 7 is completed. �

Proof of Corollary 8. We shall apply Lemma 7 with H = K2k+2 and
F = pK2k. Clearly 2pk = n − 2k − 2 and so

q(H) = q(K2k+2) = 4k + 2 < v(H) + 2k − 2 +
3(n − 2k − 2)

n + 3

= v(H) + 2k − 2 +
6kp

n + 3
.

In the derivation above we use that the inequality n > 6k + 13 implies that 3n −
6k − 6 > 2(n + 3). The conditions for Lemma 7 are met and so q(G) < n + 2k − 2,
completing the proof of Corollary 8. �

Proof of Corollary 9. Let F be the union of all components of G − w
having order exactly 2k, and let p be their number, possibly zero. Let H be
the graph induced by the vertices in V (G) r V (F ). Note that the hypothesis of
Corollary 9 implies that e(H − w) 6 (k − 1)(m − 1) and so

e(H) 6 e(H − w) + m − 1 6 (k − 1)(m − 1) + m − 1 = k(m − 1).

Now, from Theorem 16 we get

q(H) 6
2e(H)

m − 1
+ m − 2 6

2k(m − 1)

m − 1
+ m − 2(5)

= v(H) + 2k − 2 6 v(H) + 2k − 2 +
6kp

n + 3
.

Since n > 6k + 13, we can apply Lemma 7, obtaining

q(G) < n + 2k − 2,

unless equality holds in (5). Equality in (5) implies that p = 0, that is to say
G = H . Also, by the condition for equality in Theorem 16, we see that G is
either complete, or is a star, or is a complete graph with one isolated vertex. Since
q(G) = n+2k−2, G cannot be a star. If G is complete, then n+2k−2 = 2n−2 and
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so n = 2k, contradicting that n > 6k + 13. For the same reason n + 2k − 2 < 2n − 4
and so G cannot be a complete graph with one isolated vertex either. Corollary 9
is proved. �

Proof of Theorem 3. For short, set q := q(G) and V := V (G). Assume
for a contradiction that G is a graph of order n > 6k2, with q > n + 2k − 2, and
suppose that C2k+1 * G or C2k+2 * G. We may and shall suppose that G is edge
maximal, because edge addition does not decrease the Q-index. In particular, this
assumption implies that G is connected.

Let w be a vertex for which the expression

dw +
1

dw

∑

i∼w

di

is maximal. We shall show that

(6) dw +
1

dw

∑

i∼w

di 6 n + 2k − 2.

This is enough to prove Theorem 3, unless

q = dw +
1

dw

∑

i∼w

di.

However, G is connected, so if equality holds in (6) Theorem 15 implies that G is
regular or bipartite semiregular; it is not hard to see that neither of these conditions
can hold. Indeed, if G is bipartite, then q 6 n. If G is regular, then q = 2δ 6 n,
as otherwise, Bondy’s theorem [2] implies that G is pancyclic. So to the end of the
proof we shall focus on the proof of (6).

For short, set A = Γw, B = V (G) r (Γw ∪ {w}), and Gw = G[V r {w}].
Obviously, |A| = dw and |A| + |B| = n − 1. First we shall prove that C2k+1 ⊂ G.
Assume thus that C2k+1 * G; clearly P2k * G[A], and so Theorem 10 implies that
e(A) 6 (k − 1)|A|. Now

dw +
1

dw

∑

i∼w

di = |A| + 1 +
2e(A) + e(A, B)

|A|
6 |A| + 1 +

2(k − 1)|A| + |A||B|

|A|

6 |A| + 1 + 2k − 2 + |B| = n + 2k − 2.

This completes the proof that C2k+1 ⊂ G. The proof that C2k+2 ⊂ G is somewhat
longer. Assume that C2k+2 * G and note that if dw 6 2k − 1, then

dw +
1

dw

∑

i∼w

di = dw + ∆ 6 2k − 1 + n − 1 = n + 2k − 2,

so (6) holds. Thus, hereafter we shall assume that dw > 2k. Further, note that the
graph Gw contains no path with both endvertices in A, as otherwise C2k+2 ⊂ G.
Hence, Theorem 14 implies that

2e(A) + e(A, B) 6 (2k − 1)|A| + k|B| = (k − 1)dw + k(n − 1),
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and therefore

dw +
1

dw

∑

i∼w

di = dw + 1 +
2e(A) + e(A, B)

dw

6 dw + 1 +
(k − 1)dw + k(n − 1)

dw

= dw + k +
k(n − 1)

dw

.

The function x + k(n − 1)/x is convex for x > 0; hence, the maximum of the
expression dw +k(n − 1)/dw is attained for the minimum and maximum admissible
values for dw. Since dw > 2k, in either case we find that

dw +
1

dw

∑

i∼w

di < n + 2k − 2,

unless dw > n − 2. Therefore, to complete the proof we only need to consider the
cases dw = n − 2 and dw = n − 1. First, suppose that dw = n − 2 and let v be the
vertex of G such that v 6= w and v /∈ Γw. Note that Gw contains no path of order
2k + 1 with both endvertices different from v, as such a path would make a C2k+2

with w. Therefore, the hypothesis of Lemma 6 is satisfied, and so either

(7) 2e(A) + e(A, B) = 2e(Gw) − dv 6 (2k − 1)(n − 2)

or Gw is a union of several copies of K2k and one K2k + v. If (7) holds, we see that

dw +
1

dw

∑

i∼w

di 6 n − 2 + 1 +
2e(A) + e(A, B)

n − 2

6 n − 1 +
(2k − 1)(n − 2)

(n − 2)
= n + 2k − 2,

completing the proof of (6). On the other hand, if Gw is a union of several copies
of K2k and one K2k + v, then G is a spanning subgraph of the graph G′ = K1 ∨
((pK2k) ∪ K2k+1), with p chosen so that n = 2(p + 1)k + 2. Since n > 6k2 + 1 >

6k + 13, we can apply Corollary 8 obtaining that

q(G) < q(G′) < n + 2k − 2,

which contradicts the assumption and completes the proof of Theorem 3 if dw =
n − 2.

Finally, let dw = n − 1. Since Gw contains no P2k+1, Lemma 5 implies that
for each component C of Gw, either v(C) = 2k or e(C) 6 (k − 1)v(C). Since
n > 6k2 + 1 > 6k + 13, the graph G satisfies the hypothesis of Corollary 9, and so

q(G) < n + 2k − 2,

completing the proof of Theorem 3. �

Acknowledgement. Thanks are due to the referee for helpful suggestions.
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