UNIT GROUPS OF FINITE RINGS WITH PRODUCTS OF ZERO DIVISORS IN THEIR COEFFICIENT SUBRINGS

Chiteng’a John Chikunji

Communicated by Siniša Crvenković

Abstract

Let R be a completely primary finite ring with identity $1 \neq 0$ in which the product of any two zero divisors lies in its coefficient subring. We determine the structure of the group of units G_{R} of these rings in the case when R is commutative and in some particular cases, obtain the structure and linearly independent generators of G_{R}.

1. Introduction

All rings considered in this paper are associative (but not necessarily commutative) with identity element $1 \neq 0$. Let R be a completely primary finite ring with unique maximal ideal \mathcal{J}. It is easy to see (cf. [3]) that $|R|=p^{n r},|\mathcal{J}|=p^{(n-1) r}$, and the characteristic of R is p^{k}, for some prime p and positive integers n, k and r with $1 \leqslant k \leqslant n$. If $k=n$, then R is of the form $\mathbb{Z}_{p^{n}}[x] /(f)$ and $R=\mathbb{Z}_{p^{n}}[b]$, where $\mathbb{Z}_{p^{n}}$ is the ring of integers modulo $p^{n}, f(x)$ is a monic polynomial over $\mathbb{Z}_{p^{n}}$ and irreducible modulo p, and b is an element of R of multiplicative order $p^{r}-1$. These rings are uniquely determined by the integers p, n, r; they are called Galois rings and we shall denote them by $G R\left(p^{n}, p^{n r}\right)$.

Let R be a commutative completely primary finite ring. It is well known that any two coefficient subrings of R are conjugate (cf. [2]). Also if R_{0} is a coefficient subring of R, then there exist u_{1}, \ldots, u_{h} in \mathcal{J} such that

$$
R=R_{0} \oplus R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h} \quad\left(\text { as } R_{0} \text {-modules }\right)
$$

and $u_{i} r=r u_{i}$, for all r in R_{0} and for all $i=1, \ldots, h$. (This is a direct consequence of Theorems 2-2 and 2-4 in [4]).

Throughout this paper, for a given commutative completely primary finite ring R with maximal ideal \mathcal{J}, let $\mathbb{F}=R / \mathcal{J}$, and let \mathbb{F}^{*} and G_{R} denote the multiplicative group of units of \mathbb{F} and R, respectively.

2010 Mathematics Subject Classification: Primary 16P10, 16U60; Secondary 20K01, 20 K 25.
Key words and phrases: Completely primary finite rings, Galois rings.

Let $R_{0}=G R\left(p^{n}, p^{n r}\right), R$ be a commutative completely primary finite ring with \mathcal{J}^{2} contained in R_{0} and let u_{1}, \ldots, u_{h} be elements in \mathcal{J}. Since $R_{0} \cap R_{0} u_{i}=0$ and the product of any two zero divisors is in R_{0}, we have that $p u_{i}=0$ for all $i=1, \ldots, h$. But $u_{i} u_{j}$ is an element of $p R_{0}$; thus $u_{i} u_{j}$ is an element of $p^{n-1} R_{0}$, for all $i=1, \ldots, h$. Suppose that $u_{i} u_{j}, u_{i} u_{k}$ are non-zero elements of $p R_{0}$ with $j \neq k$. Then $u_{i} u_{j} R_{0}=u_{i} u_{k} R_{0}=p^{n-1} R_{0}$ and we get $u_{i} u_{j}=u_{i} u_{k} \alpha$, where α is an element of $\langle b\rangle$. Thus, $u_{j}-u_{k} \alpha$ is an element of $\operatorname{ann}\left(u_{i}\right)$, the annihilator of u_{i}, and subsequently it is contained in $p R_{0} \oplus R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}(j \neq k)$. This implies that u_{j} is an element of $p R_{0} \oplus R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}$, which is a contradiction. Therefore, for all $i=1, \ldots, h$, either $u_{i} u_{j}$ is zero for all $j=1, \ldots, h$ or $u_{i} u_{j}$ is non-zero for only one $j=1, \ldots, h$. We assume w is the number of u_{i} such that $u_{i} u_{j}$ is zero for all $j=1, \ldots, h$ and λ is the number of the other u_{i}. Let us reindex u_{1}, \ldots, u_{h} in such way that for each $i=1, \ldots, \lambda$, there exists only one $j=1, \ldots, h$ with $u_{i} u_{j}=p^{n-1} \alpha_{i j}$, where $\alpha_{i j}$ is an element of $\langle b\rangle$, and let θ be the function from $\{1, \ldots, \lambda\}$ to $\{1, \ldots, h\}$ determined by $\theta(i)=j$. Clearly, θ is injective.

Let s be the number of i in $\{1, \ldots, \lambda\}$ such that $\theta(i)=i$ and t be $\lambda-s$. We reindex $u_{1}, \ldots, u_{\lambda}$ such that $\theta(i)=i$ for all $i=1, \ldots, s$ and suppose $\alpha_{i \theta(i)}=\beta_{i}$ for all $i=1, \ldots, s$. Put $v_{e}=u_{e}$ for all $i=1, \ldots, s$ and $v_{e}=u_{e} \alpha_{e}$ for all $i=s+1, \ldots, h$, where if e is in the image of θ, say $e=\theta(i)$, then $\alpha_{e}=1$. Thus, $u_{i} u_{\theta(i)}=p^{n-1}$ for all $i=s+1, \ldots, \lambda$. Hence, either $u_{i}^{2}=0, u_{i}^{2}=p^{n-1}$ or $u_{i}^{2}=\alpha p^{n-1}, \alpha \in\langle b\rangle-\{0,1\} ;$ and $u_{i} u_{j}=0$ for all $i \neq j$.

2. Construction A

Let R_{0} be a Galois ring of the form $G R\left(p^{n}, p^{n r}\right)$ and \mathbb{F} be $R_{0} / p R_{0}$. Let U be an \mathbb{F}-space which when considered as an R_{0}-module has a generating set $\left\{u_{1}, \ldots, u_{h}\right\}$ such that $p u_{i}=0$ for all $i=1, \ldots, u_{h}$. Also assume that s, t, w are non-negative integers such that $h=s+t+w$ and suppose that θ is an injective function from $\{s+1, \ldots, s+t\}$ to $\{s+1, \ldots, h\}$. On the additive group

$$
R=R_{0} \oplus R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}
$$

define the multiplication as follows:

$$
\begin{aligned}
u_{i} u_{j} & =0, \text { for } i \neq j \quad(1 \leqslant i, j \leqslant h) \\
u_{i}^{2} & =\alpha_{i} p^{n-1}, \text { for } i=1, \ldots, s ; \\
u_{i}^{2} & =p^{n-1}, \text { for } i=s+1, \ldots, s+t ; \\
u_{i}^{2} & =0, \text { for } i=s+t+1, \ldots, h ; \\
u_{i} r^{*} & =r^{*} u_{i}, \text { for all } i=1, \ldots, h ;
\end{aligned}
$$

where α_{i} are non-trivial elements of \mathbb{F}^{*} and r^{*} is the image of r under the canonical homomorphism from R_{0} to $\mathbb{F} \cong R_{0} / p R_{0}$.

It can easily be verified that R is an associative ring with identity $1 \neq 0$.
THEOREM 2.1. Let R be a commutative completely primary finite ring. Then the product of any two zero divisors is an element of its coefficient subring R_{0} if and only if R is one of the rings given by Construction A.

The proof follows from the discussion before Construction A; the converse that \mathcal{J}^{2} lies in R_{0} is easy to check.

These rings were studied by Alkhamees [1], who gave their complete general construction for both commutative and non-commutative cases.

We notice that char $R=p^{n} ; \mathcal{J}=p R_{0} \oplus R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}, \mathcal{J}^{2}=p R_{0}$, and $\mathcal{J}^{n}=0$. Also, notice that $|R|=p^{(n+h) r},|\mathcal{J}|=p^{(n+h-1) r}$ and hence, $R / \mathcal{J} \cong \mathbb{F}_{p^{r}}$.

3. The group of units of R

There are many important results on the group of units of certain finite rings. For example, it is well known that the multiplicative group of the finite field $G F\left(p^{r}\right)$ is a cyclic group of order $p^{r}-1$, and the multiplicative group of the finite ring $\mathbb{Z} / p^{k} \mathbb{Z}$, the ring of integers modulo p^{k}, for p a prime number, and k a positive integer, is a cyclic group of order $p^{k-1}(p-1)$.

Let $G_{R_{0}}$ denote the group of units of the Galois ring $R_{0}=G R\left(p^{n}, p^{n r}\right)$. Then $G_{R_{0}}$ has the following structure [3]:

THEOREM 3.1. $G_{R_{0}}=\langle b\rangle \times\left(1+p R_{0}\right)$, where $\langle b\rangle$ is the cyclic group of order $p^{r}-1$ and $1+p R_{0}$ is of order $p^{(n-1) r}$ whose structure is described below.
(i) If (a) p is odd, or (b) $p=2$ and $n \leqslant 2$, then $1+p R_{0}$ is the direct product of r cyclic groups each of order $p^{(n-1)}$.
(ii) When $p=2$ and $n \geqslant 3$, the group $1+p R_{0}$ is the direct product of a cyclic group of order 2, a cyclic group of order $2^{(n-2)}$ and $r-1$ cyclic groups each of order $2^{(n-1)}$.

We now determine the structure of the group of units of this paper. We first recall that

$$
G_{R}=\langle b\rangle \times(1+\mathcal{J}), \quad\left|G_{R}\right|=|R|-|\mathcal{J}|=p^{(n+h) r}-p^{(n+h-1) r}
$$

and in fact $|1+\mathcal{J}|=p^{(n+h-1) r}$.
To simplify the problem, we split our study into two cases, namely,
(1) the case when $u_{j}^{2}=0$ for every $j=1, \ldots, h$; and
(2) the case when $u_{j}^{2}=\alpha_{j} p^{n-1}$, where $\alpha_{j} \in \mathbb{F}^{*}$ for every $j=1, \ldots, h$.

We shall use the information from the two cases in order to obtain the general structure of G_{R} (see Theorem 4.1). We treat the cases separately.

Let $\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{r}$ be elements of R_{0} with $\varepsilon_{1}=1$ so that $\overline{\varepsilon_{1}}, \overline{\varepsilon_{2}}, \ldots, \overline{\varepsilon_{r}} \in R_{0} / p R_{0} \cong$ $G F\left(p^{r}\right)$ form a basis of $G F\left(p^{r}\right)$ over its prime subfield $G F(p)$.
3.1. The case when $u_{i}^{2}=0$ for every $i=1, \ldots, h$. In this subsection, we determine the structure of the group of units G_{R} of the ring R in the case when $u_{i}^{2}=0$ for every $i=1, \ldots, h$.

Proposition 3.1. Let R be a ring given by construction A and suppose that $u_{j}^{2}=0$ for every $j=1, \ldots, h$. Then

$$
G_{R} \cong \begin{cases}\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_{2^{n-1}}^{r-1} \times \underbrace{\mathbb{Z}_{2}^{r} \times \cdots \times \mathbb{Z}_{2}^{r}}_{h} & \text { if } p=2 \\ \mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{n-1}}^{r} \times \underbrace{\mathbb{Z}_{p}^{r} \times \cdots \times \mathbb{Z}_{p}^{r}}_{h} & \text { if } p \text { is odd }\end{cases}
$$

Proof. We know that

$$
R=R_{0} \oplus R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}, \quad \mathcal{J}=p R_{0} \oplus \mathbb{F} u_{1} \oplus \cdots \oplus \mathbb{F} u_{h}
$$

where $u_{i} \in \mathcal{J}, \mathbb{F} \cong R_{0} / p R_{0}, \mathcal{J}^{n-1} \neq(0)$, and $\mathcal{J}^{n}=(0)$. Moreover,

$$
G_{R} \cong(\langle b\rangle) \times(1+\mathcal{J}),
$$

where $\langle b\rangle$ is a cyclic group of order $p^{r}-1$, for every prime number p. We need to determine the structure and linearly independent generators of $1+\mathcal{J}$ in order to complete the proof.

Since $p u_{j}=0$ for all $j=1, \ldots, h, u_{i} u_{j}=0$ for all $1 \leqslant i, j \leqslant h$, and $u_{j}^{2}=0$ for every $j=1, \ldots, h$, one easily sees that $\left(1+R_{0} u_{i}\right) \cap\left(1+R_{0} u_{j}\right)=\{1\}$. Moreover, $\left(1+p R_{0}\right) \cap\left(1+R_{0} u_{j}\right)=\{1\}$, for all $j=1, \ldots, h$. Further, it is easy to verify that $1+R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}$ is a subgroup of $1+\mathcal{J}$ and hence,

$$
1+\mathcal{J}=\left(1+p R_{0}\right) \times\left(1+R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}\right)
$$

a direct product.
The structure of $1+p R_{0}$ is well known, for example, see Theorem 3.1. We now determine the structure of $1+R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}$. For any prime p and for each $i=1, \ldots, r$, we see that $\left(1+\varepsilon_{j} u_{1}\right)^{p}=1,\left(1+\varepsilon_{j} u_{2}\right)^{p}=1, \ldots,\left(1+\varepsilon_{j} u_{h}\right)^{p}=1$, and $g^{p}=1$ for all $g \in 1+R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}$.

For integers $l_{i j} \leqslant p$, we asset that $\prod_{i=1}^{r} \prod_{j=1}^{h}\left\{\left(1+\varepsilon_{i} u_{j}\right)^{l_{i j}}=1\right.$, will imply $l_{i j}=p$, for all $i=1, \ldots, r$ and $j=1, \ldots, h$.

If we set $E_{i j}=\left\{\left(1+\varepsilon_{i} u_{j}\right)^{l_{i j}}: l_{i j}=1, \ldots, p\right\}$ for all $i=1, \ldots, r$, then we see that $E_{i j}$ are all subgroups of $1+R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}$ and that these are all of order p as indicated in their definition.

The argument above will show that the product of the $h r$ subgroups $E_{i j}$ is direct. Thus, their product will exhaust $1+R_{0} u_{1} \oplus \cdots \oplus R_{0} u_{h}$, and this completes the proof.
3.2. The case when $u_{j}^{2}=\alpha_{j} p^{n-1}$ for every $j=1, \ldots, h$; where $\alpha_{j} \in \mathbb{F}^{*}$. We now consider the second case.

Proposition 3.2. Let R be a ring given by construction A and suppose that $u_{j}^{2}=\alpha_{j} p^{n-1}$ for every $j=1, \ldots, h$, where $\alpha_{j} \in \mathbb{F}^{*}$. Then

$$
1+\mathcal{J} \cong \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-3}} \times \mathbb{Z}_{2^{n-2}}^{r-1} \times \mathbb{Z}_{4}^{r} \times \underbrace{\mathbb{Z}_{2}^{r} \times \cdots \times \mathbb{Z}_{2}^{r}}_{h-1} & \text { if } p=2, \\ \mathbb{Z}_{p^{n-1}}^{r} \times \underbrace{\mathbb{Z}_{p}^{r} \times \cdots \times \mathbb{Z}_{p}^{r}}_{h} & \text { if } p \text { is odd } .\end{cases}
$$

Proof. The argument of the proof is similar to the proof of Proposition 3.2. Since $p u_{j}=0$ for all $j=1, \ldots, h, u_{i} u_{j}=0$ for all $1 \leqslant i, j \leqslant h$, and $u_{j}^{2}=\alpha p^{n-1}$ for every $j=1, \ldots, h$, and a fixed α, one easily verifies that if $p=2,\left(1+\varepsilon_{i} u_{j}\right)^{4}=1$, for every $i=1, \ldots, r$ and $j=1, \ldots, h$; and if p is odd, $\left(1+\varepsilon_{i} u_{j}\right)^{p}=1$, for every $i=1, \ldots, r$ and $j=1, \ldots, h$. This difference, in turn, breaks into two cases to consider.

Suppose first that p is an odd prime number. For each $i=1, \ldots, r$ and $j=$ $1, \ldots, h$, we see that for elements $1+p \varepsilon_{i}, 1+\varepsilon_{i} u_{j}$ in $1+\mathcal{J},\left(1+p \varepsilon_{i}\right)^{p^{n-1}}=1$ and $\left(1+\varepsilon_{i} u_{j}\right)^{p}=1$.

For positive integers $m_{i} \leqslant p^{n-1}$ and $l_{i j} \leqslant p$, we assert that the equation

$$
\prod_{i=1}^{r}\left\{\left(1+p \varepsilon_{i}\right)^{m_{i}}\right\} \cdot \prod_{i=1}^{r} \prod_{j=1}^{h}\left\{\left(1+\varepsilon_{i} u_{j}\right)^{l_{i j}}\right\}=1
$$

will imply $m_{i}=p^{n-1}$, for all $i=1, \ldots, r$, and $l_{i j}=p$, for all $i=1, \ldots, r$ and $j=1, \ldots, h$.

If we set

$$
\begin{aligned}
E_{i} & =\left\{\left(1+p \varepsilon_{i}\right)^{m_{i}}: m_{i}=1,2, \ldots, p^{n-1}\right\} \\
F_{i j} & =\left\{\left(1+\varepsilon_{i} u_{j}\right)^{l_{i j}}: l_{i j}=1, \ldots, p\right\}
\end{aligned}
$$

we see that E_{i}, and $F_{i j}$, are all cyclic subgroups of $1+\mathcal{J}$ and that these are all of the precise orders indicated by their definition.

The argument above shows that the product of the $(1+h) r$ subgroups $E_{i}, F_{i j}$ is direct. So, their product will exhaust $1+\mathcal{J}$; and we see that the proof for the case when p is odd is complete.

We now assume that $p=2$. We remark that there exists at least one element β in R_{0} such that the equation $x^{2}+x+\bar{\beta}=\overline{0}$ over $R_{0} / p R_{0}$ has no solution in $R_{0} / p R_{0}$. We then note that for elements $\left(-1+2^{n-1} \varepsilon_{1}\right),(1+4 \beta)^{2}=\left(1+8 \beta+16 \beta^{2}\right),\left(1+\varepsilon_{i} u_{j}\right)$ and $\left(1+\varepsilon_{i} u_{j}+\varepsilon_{i} u_{j+1}\right)$ in $1+\mathcal{J},\left(-1+2^{n-1} \varepsilon_{1}\right)^{2}=1,\left(1+8 \beta+16 \beta^{2}\right)^{2^{n-3}}=1$, $\left(1+\varepsilon_{i} u_{j}\right)^{4}=1$ for all $i=1, \ldots, r$; and $j=1, \ldots, h$; and for a $u_{j}^{2}=\alpha 2^{n-1}$ with α fixed for every $j=1, \ldots, h ;\left(1+\varepsilon_{i} u_{j}+\varepsilon_{i} u_{j+1}\right)^{2}=1$, for all $i=1, \ldots, r$ and $j=1, \ldots, h-1$.

For positive integers $k \leqslant 2, l \leqslant 2^{n-3}, m_{i} \leqslant 4$ and $n_{i j} \leqslant 2$, we assert that the equation

$$
\begin{aligned}
& \left(-1+2^{n-1} \varepsilon_{1}\right)^{k} \cdot\left(1+8 \beta+16 \beta^{2}\right)^{l} \\
& \cdot \prod_{i=1}^{r}\left\{\left(1+\varepsilon_{i} u_{1}\right)^{m_{i}}\right\} \cdot \prod_{i=1}^{r} \prod_{j=1}^{h-1}\left\{\left(1+\varepsilon_{i} u_{j}+\varepsilon_{i} u_{j+1}\right)^{n_{i j}}\right\}=1,
\end{aligned}
$$

will imply $k=2, l=2^{n-3}, m_{i}=4$ for all $i=1, \ldots, r$; and $n_{i j}=2$ for all $i=1, \ldots, r$ and $j=1, \ldots, h-1$.

If we set

$$
\begin{aligned}
& E_{1}=\left\{\left(-1+2^{n-1} \varepsilon_{1}\right)^{k}: k=1,2\right\} \\
& E_{2}=\left\{\left(1+8 \beta+16 \beta^{2}\right)^{l}: l=1, \ldots, 2^{n-3}\right\}
\end{aligned}
$$

CHIKUNJI

$$
\begin{aligned}
E_{i 1} & =\left\{\left(1+\varepsilon_{i} u_{1}\right)^{m_{i}}: m_{i}=1, \ldots, 4\right\} \\
F_{i j} & =\left\{:\left(1+\varepsilon_{i} u_{j}+\varepsilon_{i} u_{j+1}\right)^{n_{i j}}: n_{i j}=1,2\right\},
\end{aligned}
$$

then we see that $E_{1}, E_{2}, E_{i 1}, F_{i j}$ are all cyclic subgroups of $1+\mathcal{J}$ and that these are all of the precise orders indicated by their definition.

The argument above shows that the product of the $2+h r$ subgroups E_{1}, E_{2}, $E_{i 1}, F_{i j}$ is direct. So, their product will exhaust $1+\mathcal{J}$, and we see that the proof for the case when $p=2$ is complete.

This completes the proof of the theorem.

4. Conclusion

We now state the structure of the group of units G_{R} of the ring R in general.
THEOREM 4.1. Let R be a ring given by construction A and suppose that $u_{j}^{2}=$ $\alpha_{j} p^{n-1}$, for every $j=1, \ldots, s$, where $\alpha_{j} \in \mathbb{F}^{*}$ and for $j=s+1, \ldots, h, u_{j}^{2}=0$. Then

$$
1+\mathcal{J} \cong \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-3}} \times \mathbb{Z}_{2^{n-2}}^{r-1} \times \mathbb{Z}_{4}^{r} \times \underbrace{\mathbb{Z}_{2}^{r} \times \cdots \times \mathbb{Z}_{2}^{r}}_{s-1} \times \underbrace{\mathbb{Z}_{2}^{r} \times \cdots \times \mathbb{Z}_{2}^{r}}_{h-s} & \text { if } p=2 \\ \mathbb{Z}_{p^{n-1}}^{r} \times \underbrace{\mathbb{Z}_{p}^{r} \times \cdots \times \mathbb{Z}_{p}^{r}}_{h} & \text { if } p>2\end{cases}
$$

and hence,

$$
G_{R} \cong \begin{cases}\mathbb{Z}_{2^{r}-1} \times(1+\mathcal{J}) & \text { if } p=2 \\ \mathbb{Z}_{p^{r}-1} \times(1+\mathcal{J}) & \text { if } p \text { is odd }\end{cases}
$$

Proof. Follows from Propositions 3.2 and 3.3.

References

1. Y. Alkhamees, Finite completely primary rings in which the product of any two zero divisors of a ring is in its coefficient subring, Internat. J. Math. Math. Sci. 17:3 (1994), 463-468.
2. W. E. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc. 33 (1972), 25-28.
3. R. Raghavendran, Finite associative rings, Compositio Math. 21 (1969), 195-229.
4. B. R. Wirt, Finite non-commutative rings, PhD Thesis, University of Oklahoma, 1972.

Botswana
jchikunj@bca.bw

