ON WEAK α-SKEW MCCOY RINGS

Mohammad Javad Nikmehr, Ali Nejati and Mansoureh Deldar

Communicated by Žarko Mijajlović

Abstract

Let α be an endomorphism of a ring R. We introduce the notion of weak α-skew McCoy rings which are a generalization of the α-skew McCoy rings and the weak McCo rings. Some properties of this generalization are established, and connections of properties of a weak α-skew McCoy ring R with $n \times n$ upper triangular $T_{n}(R)$ are investigated. We study relationship between the weak skew McCoy property of a ring R and its polynomial ring, $R[x]$. Among applications, we show a number of interesting properties of a weak α-skew McCoy ring R such as weak skew McCoy property in a ring R.

1. Introduction

Throughout this note, R denotes an associative ring with unity and α is a ring endomorphism. We denote $R[x ; \alpha]$ the Ore extension whose elements are the polynomials $\sum_{i=0}^{n} a_{i} x^{i}, a_{i} \in R$, where the addition is defined as usual and the multiplication subject to the relation $x a=\alpha(a) x$ for any $a \in R$. $\operatorname{nil}(R)$ denotes the set of all the nilpotent elements of R. Rege and Chhawchharia $\mathbf{7}$ introduced the notion of an Armendariz ring. They defined a ring R to be an Armendariz ring if whenever polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in$ $R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. The name "Armendariz ring" was chosen because Armendariz had showed that a reduced ring (i.e., a ring without nonzero nilpotent elements) satisfies this condition. Hong, Kim, and Kwak [3] called R an α-skew Armendariz ring if whenever polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, $g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x ; \alpha]$ satisfy $f(x) g(x)=0$, then $a_{i} \alpha^{i}\left(b_{j}\right)=0$ for each i, j, which is a generalization of the Armendariz rings. Liu and Zhao 4 called a ring R weak Armendariz if whenever polynomials $f(x)=a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}$ is nilpotent element of R for each i and j. Motivated by the above results, Zhang and Chen [8 called a ring R weak α-skew Armendariz if whenever polynomials

[^0]$f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x ; \alpha]$ satisfy $f(x) g(x)=0$, then $a_{i} \alpha^{i}\left(b_{j}\right) \in \operatorname{nil}(R)$ for each i and j. It is obvious that a weak α-skew Armendariz ring is a generalization of the α-skew Armendariz rings and the weak Armendariz rings. Recall that a ring R is called reversible if $a b=0$ implies $b a=0$, for all $a, b \in R . \quad R$ is called semicommutative if for all $a, b \in R, a b=0$ implies $a R b=\{0\}$. Reduced rings are clearly reversible and reversible rings are semicommutative, but the converse is not true in general 6]. According to Nielson [6, a ring R is called right $M c C o y$ (resp., left $M c C o y$) if, for any polynomials $f(x), g(x) \in R[x] \backslash\{0\}, f(x) g(x)=0$ implies $f(x) r=0$ (resp., $s g(x)=0$) for some $0 \neq r \in R$ (resp., for some $0 \neq s \in R$). A ring is called McCoy if it is both left and right McCoy. By McCoy [5], commutative rings are McCoy rings. Reduced rings are Armendariz and Armendariz rings are McCoy. A ring R is right weak McCoy whenever, $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x] \backslash\{0\}$ satisfy $f(x) g(x)=0$, then $a_{i} s \in \operatorname{nil}(R)$ for some $0 \neq s \in R$, and every i. Left weak McCoy rings are defined similarly. If a ring is both left and right weak McCoy we say that the ring is weak McCoy ring. Also in [2] investigated this generalization of McCoy rings and their properties.

A ring R is called α-skew McCoy ring with respect to α if for any nonzero polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x ; \alpha]$ satisfy $f(x) g(x)=0$, implies $f(x) s=0$ for some nonzero $s \in R$. It is clear that a ring R is right McCoy if R is $i d_{R}$-skew McCoy, where $i d_{R}$ is the identity endomorphism of R. In [1, Basser, Kwak, Lee showed that every domain with an endomorphism α is α-skew McCoy, and R is α-skew McCoy if and only if the factor ring $R[x] /\left(x^{n}\right)$ is ŕ $\bar{\alpha}$-skew McCoy, where $\bar{\alpha}: R[x] \rightarrow R[x]$ defined by $\bar{\alpha}(f(x))=$ $\sum_{i=0}^{m} \alpha\left(a_{i}\right) x^{i}$ for any $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is an endomorphism of $R[x]$. Also they proved that for a ring isomorphism $\sigma: R \rightarrow S, R$ is a α-skew McCoy ring if and only if S is an $\sigma \alpha \sigma^{-1}$-skew McCoy ring.

Motivated by the above results, for an endomorphism α of a ring R, we investigate a generalization of the α-skew McCoy rings and the weak McCoy rings which we call a weak α-skew McCoy ring and study several results.

2. Weak α-Skew McCoy rings

We begin this section by the following definition and also we study properties of weak α-skew McCoy rings.

Definition 2.1. Let α be an endomorphism of a ring R. The ring R is called weak α-skew McCoy with respect to α if for any nonzero polynomials $p(x)=$ $\sum_{i=0}^{n} a_{i} x^{i}$ and $q(x)=\sum_{j=0}^{m} b_{j} x^{j}$ in $R[x ; \alpha]$ with $p(x) q(x)=0$, there exists $s \in$ $R-\{0\}$ such that $a_{i} \alpha^{i}(s) \in \operatorname{nil}(R)$ for $0 \leqslant i \leqslant n$.

It can be easily checked that if R is a weak McCoy ring then it is a weak $i d_{R}$-skew McCoy ring, where $i d_{R}$ is an identity endomorphism of R. Also every weak Armendariz ring is weak McCoy and therefore is weak $i d_{R}$-skew McCoy. If $\operatorname{nil}(R) \unlhd R$, then R is weak Armendariz and so R will be weak McCoy ring and so R is weak $i d_{R^{-}}$-skew McCoy.

Proposition 2.1. Let α be an endomorphism of a ring R. Then every weak α-skew Armendariz ring is a weak α-skew McCoy ring.

Proof. Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in R[x ; \alpha] \backslash\{0\}$ and assume that $f(x) g(x)=0$. Since R is weak α-skew Armendariz, $a_{i} \alpha^{i}\left(b_{j}\right) \in \operatorname{nil}(R)$ for all i, j. Let $r=b_{t}$ for $0 \leqslant t \leqslant m$, and hence $a_{i} \alpha^{i}(r) \in \operatorname{nil}(R)$ for all i. Therefore R is weak α-skew McCoy.

Let I be an ideal of R. If $\alpha(I) \subseteq I$, then defined $\bar{\alpha}: R / I \rightarrow R / I$ by $\bar{\alpha}(a+I)=$ $\alpha(a)+I$ for $a \in R$, is an endomorphism of the factor ring R / I. Now we have the following proposition.

Proposition 2.2. Let α be an endomorphism of a ring R and I be an ideal of R with $\alpha(I) \subseteq I$. If $I \subseteq \operatorname{nil}(R)$ and R / I is weak $\bar{\alpha}$-skew McCoy, then R is weak α-skew McCoy.

Proof. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in$ $R[x ; \alpha] \backslash\{0\}$ such that $f(x) g(x)=0$. Then $\left(\sum_{i=0}^{m} \bar{a}_{i} x^{i}\right)\left(\sum_{j=0}^{n} \bar{b}_{j} x^{j}\right)=0$ in R / I. Thus there exists n_{i} such that $\left(\bar{a}_{i} \bar{\alpha}^{i}(\bar{s})\right)^{n_{i}}=0$ for some $s \in R \backslash I$. Hence $a_{i} \alpha^{i}(s) \in \operatorname{nil}(R)$ and so R is weak α-skew McCoy.

Let R be a ring, α an automorphism of R and Δ a multiplicatively closed subset of R consisting of central regular elements. The ring $\Delta^{-1} R$ is called the ring of fractions of R with respect to Δ. We define $\Delta^{-1} \alpha: \Delta^{-1} R \rightarrow \Delta^{-1} R$ by $\Delta^{-1} \alpha\left(b^{-1} a\right)=(\alpha(b))^{-1} \alpha(a)$ for any $b^{-1} a \in \Delta^{-1} R$. Then $\Delta^{-1} \alpha$ is an automorphism of $\Delta^{-1} R$.

Proposition 2.3. Let R be weak α-skew McCoy. Then $\Delta^{-1} R$ is weak $\Delta^{-1} \alpha$ skew McCoy.

Proof. Let $f(x)=\sum_{i=0}^{m} c_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} d_{j} x^{j}$ be nonzero polynomials in $\Delta^{-1} R\left[x ; \Delta^{-1} \alpha\right]$ such that c_{i}, d_{j} are in $\Delta^{-1} R$ for all i, j. Then we can assume that $c_{i}=a_{i} u^{-1}$ and $d_{j}=b_{j} v^{-1}$ for some $a_{i}, b_{j} \in R$ and $u, v \in \Delta$. Let $f_{1}(x)=$ $\sum_{i=0}^{m} a_{i} x^{i}, g_{1}(x)=\sum_{j=0}^{n} b_{j} x^{j}$. Thus $f_{1}(x) g_{1}(x)=0 \operatorname{in} R[x ; \alpha]$. Thus $a_{i} \alpha^{i}(s) \in$ $\operatorname{nil}(R)$ for some $0 \neq s \in R$ for $0 \leqslant i \leqslant m$. So $c_{i}\left(\Delta^{-1} \alpha\right)^{i}(s) \in \operatorname{nil}\left(\Delta^{-1} R\right)$ for $0 \leqslant i \leqslant m$. Thus $\Delta^{-1} R$ is a weak $\Delta^{-1} \alpha$-skew McCoy ring.

Let $R\left[x ; x^{-1}\right]$ be the ring of Laurent polynomials, i.e., the formal sums $\sum_{i=k}^{n} a_{i} x^{i}$, where k, n are (possibly negative) integers. For an automorphism α of $R, \bar{\alpha}$: $R\left[x ; x^{-1}\right] \rightarrow R\left[x ; x^{-1}\right]$ defined by $\bar{\alpha}\left(\sum_{i=k}^{n} a_{i} x^{i}\right)=\sum_{i=k}^{n} \alpha\left(a_{i}\right) x^{i}$ is an automorphism of $R\left[x ; x^{-1}\right]$. The restriction of $\bar{\alpha}$ to $R[x]$, we also denote by $\bar{\alpha}$.

Corollary 2.1. Let $R[x]$ be weak $\bar{\alpha}$-skew McCoy ring. Then $R\left[x ; x^{-1}\right]$ is a weak $\bar{\alpha}$-skew McCoy ring.

Proof. It is clear that $\Delta=\left\{1, x, x^{2}, \ldots\right\}$ is multiplicatively closed subset of $R[x]$. Since $R\left[x ; x^{-1}\right]=\Delta^{-1} R[x]$, it follows that $R\left[x ; x^{-1}\right]$ is a weak $\bar{\alpha}$-skew McCoy ring.

Let α be an endomorphism of a ring R and $M_{n}(R)$ be the $n \times n$ matrix over R, and $\bar{\alpha}: M_{n}(R) \rightarrow M_{n}(R)$ defined by $\bar{\alpha}\left(\left(a_{i j}\right)\right)=\left(\alpha\left(a_{i j}\right)\right)$. Then $\bar{\alpha}$ is an endomorphism of $M_{n}(R)$. It is obvious that the restriction of $\bar{\alpha}$ to $T_{n}(R)$ is an endomorphism of $T_{n}(R)$, where $T_{n}(R)$ is the $n \times n$ upper triangular matrix ring over R. We also denote $\left.\bar{\alpha}\right|_{T_{n}(R)}$ by $\bar{\alpha}$.

For a ring $R, T_{n}(R)(n \geqslant 2)$ is a weak McCoy ring. Now we have the following proposition.

Proposition 2.4. Let α be an endomorphism of a ring R. Then, for any n, $T_{n}(R)$ is a weak $\bar{\alpha}$-skew McCoy ring if R is a weak α-skew McCoy ring.

Proof. Let $f(x)=A_{0}+A_{1} x+\cdots+A_{p} x^{p}$ and $g(x)=B_{0}+B_{1} x+\cdots+B_{q} x^{q}$ be elements of $T_{n}(R)[x ; \bar{\alpha}]$ satisfying $f(x) g(x)=0$, where

$$
A_{i}=\left(\begin{array}{cccc}
a_{11}^{(i)} & a_{12}^{(i)} & \cdots & a_{1 n}^{(i)} \\
0 & a_{22}^{(i)} & \cdots & a_{2 n}^{(i)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}^{(i)}
\end{array}\right), \quad B_{j}=\left(\begin{array}{cccc}
b_{11}^{(j)} & b_{12}^{(j)} & \cdots & b_{1 n}^{(j)} \\
0 & b_{22}^{(j)} & \cdots & b_{2 n}^{(j)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & b_{n n}^{(j)}
\end{array}\right)
$$

Then from $f(x) g(x)=0$, it follows that $\left(\sum_{i=0}^{p} a_{s s}^{(i)} x^{i}\right)\left(\sum_{j=0}^{q} b_{s s}^{(j)} x^{j}\right)=0$ in $R[x ; \alpha]$ for each s with $1 \leqslant s \leqslant n$. Since R is a weak α-skew McCoy ring, there exists $s_{k} \neq 0$ such that $a_{s s}^{(i)} \alpha^{i}\left(s_{k}\right) \in \operatorname{nil}(R)$ for $1 \leqslant k \leqslant n$. Therefore $\left(a_{s s}^{(i)} \alpha^{i}\left(s_{k}\right)\right)^{m_{k}}=0$ for some $m_{k} \in \mathbb{Z}$. Let $m=\max \left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$. We define

$$
S=\left(\begin{array}{cccc}
s_{1} & * & \cdots & * \\
0 & s_{2} & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & s_{n}
\end{array}\right)
$$

where $*$ stands for any element of R. Then

$$
\left(A_{i} \bar{\alpha}^{i}(S)\right)^{m}=\left(\begin{array}{cccc}
a_{11}^{(i)} \alpha^{i}\left(s_{1}\right) & * & \cdots & * \\
0 & a_{22}^{(i)} \alpha^{i}\left(s_{2}\right) & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}^{(i)} \alpha^{i}\left(s_{n}\right)
\end{array}\right)^{m}=\left(\begin{array}{cccc}
0 & * & \cdots & * \\
0 & 0 & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right) .
$$

It implies that $T_{n}(R)$ is a weak $\bar{\alpha}$-skew McCoy ring.
Example 2.1. [1] Let α be an endomorphism on the 2×2 matrices ring $R=$ $M_{2}\left(\mathbb{Z}_{3}\right)$ over \mathbb{Z}_{3} defined by $\alpha\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{cc}a & -b \\ -c & d\end{array}\right)$. For $p(x)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right) x$, $q(x)=\left(\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right) x \in R[x ; \alpha]$, one has $p(x) q(x)=0$. It can be easily checked that $p(x) c \neq 0$ for any nonzero $c \in R$. Therefore R is not α-skew McCoy. This also shows that the 2×2 upper triangular matrix $\operatorname{ring}\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}_{3}\right\}$ over \mathbb{Z}_{3} is not α-skew McCoy.

We note that the α-skew McCoy ring is weak α-skew McCoy, but the converse is not always true by the following example.

Example 2.2. Since $R=\mathbb{Z}_{3}$ is a domain, it is α-skew Armndariz ring for any endomorphism α of R by [3, Proposition 10]. Hence R is α-skew McCoy. Thus R is weak α-skew McCoy, therefore $T_{2}\left(\mathbb{Z}_{3}\right)$ is weak $\bar{\alpha}$-skew McCoy ring by Propositin 2.4. But $T_{2}\left(\mathbb{Z}_{3}\right)$ is not α-skew McCoy ring the Example 2.1.

In the following, we provide a connection between abelian and weak α-skew McCoy rings.

Proposition 2.5. Let R be an abelian ring and α be an endomorphism with $\alpha(e)=e$ for every $e^{2}=e \in R$. Then R is a weak α-skew McCoy ring if eR and $(1-e) R$ are weak α-skew McCoy for some $e^{2}=e \in R$.

Proof. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}, g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ in $R[x ; \alpha]$ with $f(x) g(x)=0$. Let $f_{1}(x)=e f(x), f_{2}(x)=(1-e) f(x), g_{1}(x)=e g(x)$, $g_{2}(x)=(1-e) g(x)$. Then $f_{1} g_{1}(x)=0, f_{2} g_{2}(x)=0$. Since $e R$ and $(1-e) R$ are weak α-skew McCoy, there exist m_{i}, n_{i} such that $e\left(a_{i} \alpha^{i}(s)\right)^{m_{i}}=\left(\left(e a_{i}\right) \alpha^{i}(e s)\right)^{m_{i}}=0$ and $(1-e)\left(a_{i} \alpha^{i}(t)\right)^{n_{i}}=\left(\left((1-e) a_{i}\right) \alpha^{i}((1-e) t)\right)^{n_{i}}=0$ for some $s \in e R, t \in(1-e) R$. Let $k_{i}=\max \left\{m_{i}, n_{i}\right\}$. Then $\left(a_{i} \alpha^{i}(s t)\right)^{k_{i}}=0$. This means that R is weak α-skew McCoy.

Let R_{i} be a ring and α_{i} an endomorphism of R_{i} for each $i \in I$. Then, for the product $\prod_{i \in I} R_{i}$ of R_{i} and the endomorphism $\bar{\alpha}: \prod_{i \in I} R_{i} \rightarrow \prod_{i \in I} R_{i}$ defined by $\bar{\alpha}\left(\left(a_{i}\right)\right)=\left(\alpha_{i}\left(a_{i}\right)\right), \prod_{i \in I} R_{i}$ is weak $\bar{\alpha}$-skew McCoy if and only if each R_{i} is weak α_{i}-skew McCoy.

Every homomorphism σ of rings R and S can be extended to the homomorphism of rings $R[x]$ and $S[x]$ defined by $\sum_{i=0}^{m} a_{i} x^{i} \mapsto \sum_{i=0}^{m} \sigma\left(a_{i}\right) x^{i}$, which we also denote by σ.

Proposition 2.6. Let $\sigma: R \rightarrow S$ be a ring isomorphism. If R is weak α-skew McCoy, then S is weak $\sigma \alpha \sigma^{-1}$-skew McCoy.

Proof. Assume that $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{m} b_{j} x^{j}$ are polynomials in $S\left[x, \sigma \alpha \sigma^{-1}\right]$. Since σ is an isomorphism, there exist $f_{1}(x)=\sum_{i=0}^{m} a_{i}^{\prime} x^{i}$ and $g(x)=\sum_{j=0}^{m} b_{j}^{\prime} x^{j}$ in $R[x, \alpha]$ such that $f(x)=\sigma\left(f_{1}(x)\right)=\sum_{i=0}^{m} \sigma\left(a_{i}^{\prime}\right) x^{i}$ and $g(x)=$ $\sigma\left(g_{1}(x)\right)=\sum_{j=0}^{m} \sigma\left(b_{j}^{\prime}\right) x^{j}$. First we show that $f(x) g(x)=0$ implies $f_{1}(x) g_{1}(x)=0$. We have

$$
a_{0} b_{k}+a_{1}\left(\sigma \alpha \sigma^{-1}\right)\left(b_{k-1}\right)+\cdots+a_{k}\left(\sigma \alpha \sigma^{-1}\right)^{k}\left(b_{0}\right)=0 \text { for any } 0 \leqslant k \leqslant m
$$

From the definition of $f_{1}(x)$ and $g_{1}(x)$, we have,

$$
\sigma\left(a_{0}^{\prime}\right) \sigma\left(b_{k}^{\prime}\right)+\sigma\left(a_{1}^{\prime}\right)\left(\sigma \alpha \sigma^{-1}\right) \sigma\left(b_{k-1}^{\prime}\right)+\cdots+\sigma\left(a_{k}^{\prime}\right)\left(\sigma \alpha \sigma^{-1}\right)^{k} \sigma\left(b_{0}^{\prime}\right)=0
$$

so that $\left(\sigma \alpha \sigma^{-1}\right)^{t}=\sigma \alpha^{t} \sigma^{-1}$ we obtain $a_{0}^{\prime} b_{k}^{\prime}+a_{1}^{\prime} \alpha\left(b_{k-1}^{\prime}\right)+\cdots+a_{k}^{\prime} \alpha^{k}\left(b_{0}^{\prime}\right)=0$, which means that $f_{1}(x) g_{1}(x)$ in $R[x ; \alpha]$. From the fact that R is weak α-skew McCoy, we have $a_{i}^{\prime} \alpha^{i}(r) \in \operatorname{nil}(R)$ for some $r \in R$. Since $a_{i}^{\prime}=\sigma^{-1}\left(a_{i}\right), r=\sigma^{-1}(s)$ for some $s \in S$, we have $\sigma^{-1}\left(a_{i}\right) \alpha^{i}\left(\sigma^{-1} s\right) \in \operatorname{nil}(R)$. Therefore we obtain $a_{i}\left(\sigma \alpha \sigma^{-1}\right)^{i}(s) \in$ $\operatorname{nil}(R), 0 \leqslant i, j \leqslant m$. Hence S is weak $\sigma \alpha \sigma^{-1}$-skew McCoy.

Let $E_{i j}=\left(e_{s t}\right), 1 \leqslant s, t \leqslant n$, denotes $n \times n$ unit matrices over ring R, in which $e_{i j}=1$ and $e_{s t}=0$ when $s \neq i$ or $t \neq j, 0 \leqslant i, j \leqslant n$ for all $n \geqslant 2$. If $V=\sum_{i=1}^{n-1} E_{i, i+1}$, then $V_{n}(R)=R I_{n}+R V+\cdots+R V^{n-1}$ is the subring of upper triangular skew matrices.

Corollary 2.2. Suppose that α is an endomorphism of a ring R. If the factor ring $\frac{R[x]}{\left(x^{n}\right)}$ is weak $\bar{\alpha}$-skew McCoy, then $V_{n}(R)$ is weak $\bar{\alpha}$-skew McCoy.

Proof. Assume that $R[x] /\left(x^{n}\right)$ is weak $\bar{\alpha}$-skew McCoy and define the ring isomorphism $\theta: V_{n}(R) \rightarrow R[x] /\left(x^{n}\right)$ defined by

$$
\theta\left(r_{0} I_{n}+r_{1} V+\cdots+r_{n-1} V^{n-1}\right)=r_{0}+r_{1} x+\cdots+r_{n-1} x^{n-1}+\left(x^{n}\right)
$$

Now we have that $V_{n}(R)$ is weak $\theta^{-1} \bar{\alpha} \theta$-skew McCoy and that

$$
\theta^{-1} \bar{\alpha} \theta\left(r_{0} I_{n}+r_{1} V+\cdots+r_{n-1} V^{n-1}\right)=\bar{\alpha}\left(r_{0} I_{n}+r_{1} V+\cdots+r_{n-1} V^{n-1}\right)
$$

which means that $V_{n}(R)$ is a weak $\bar{\alpha}$-skew McCoy ring.
Before stating Theorem 2.1, we need the following proposition.
Proposition 2.7. [8 Let R be a reversible ring and α be an endomorphism of R such that $a \alpha(b)=0$ whenever $a b=0$ for any $a, b \in R$. Then R is weak α-skew Armendariz.

In [4] it was shown that if a ring R is semicommutative, then $R[x]$ is weak Armendariz. For the case of weak α-skew McCoy, we have the following theorem.

THEOREM 2.1. Let R be a reversible ring and α be an endomorphism of R such that $a \alpha(b)=0$ whenever $a b=0$ for any $a, b \in R$. If for some positive integer t, $\alpha^{t}=1_{R}$, then $R[x]$ is weak α-skew McCoy.

Proof. Let $p(y)=f_{0}(x)+f_{1}(x) y+\cdots+f_{m}(x) y^{m}$ and $q(y)=g_{0}(x)+g_{1}(x) y+$ $\cdots+g_{n}(x) y^{n}$ be in $(R[x])[y ; \alpha]$ with $p(y) q(y)=0$. We also let $f_{i}(x)=a_{i 0}+a_{i 1} x+$ $\cdots+a_{i w_{i}} x^{w_{i}}$ and $g_{j}(x)=b_{j 0}+b_{j 1} x+\cdots+b_{j v_{j}} x^{v_{j}}$ for any $0 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant n$, where $a_{i 0}, a_{i 1}, \ldots, a_{i w_{i}}, b_{j 0}, b_{j 1}, \ldots, b_{j v_{j}} \in R$. Take a positive integer k such that $k>\operatorname{deg}\left(f_{0}(x)\right)+\operatorname{deg}\left(f_{1}(x)\right)+\cdots+\operatorname{deg}\left(f_{m}(x)\right)+\operatorname{deg}\left(g_{0}(x)\right)+\operatorname{deg}\left(g_{1}(x)\right)+$ $\cdots+\operatorname{deg}\left(g_{n}(x)\right)$, where the degrees of $f_{i}(x)$ and $g_{j}(x)$ are as the polynomials in $R[x]$ and the degree of zero polynomial is taken to be 0 for all $0 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant n$. Let $f(x)=f_{0}\left(x^{t}\right)+f_{1}\left(x^{t}\right) x^{t k+1}+f_{2}\left(x^{t}\right) x^{2 t k+2}+\cdots+f_{m}\left(x^{t}\right) x^{m t k+m}$ and $g(x)=g_{0}\left(x^{t}\right)+g_{1}\left(x^{t}\right) x^{t k+1}+g_{2}\left(x^{t}\right) x^{2 t k+2}+\cdots+g_{n}\left(x^{t}\right) x^{n t k+n} \in R[x]$. Then the set of coefficients of the $f_{i}(x)$ (respectively, $\left.g_{j}(x)\right)$ equals the set of coefficients of $f(x)$ (respectively, $g(x)$). Since $p(y) q(y)=0, x$ commutes with elements of R in the polynomial ring $R[x]$, and $\alpha^{t}=1_{R}$, we have $f(x) g(x)=0$ in $R[x ; \alpha]$. By Proposition 2.7, R is weak α-skew Armendariz, and so R weak α-skew McCoy by Proposition 2.1. Thus there exists $b \neq 0$ in R such that $a_{i l} \alpha^{i}(b) \in \operatorname{nil}(R)$ for any $0 \leqslant i \leqslant m, l \in\left\{0,1, \ldots, w_{0}, \ldots, w_{m}\right\}$. Since R is reversible, $\sum_{l} a_{i l} \alpha^{i}(b) \in \operatorname{nil}(R)$, by [4, Lemma 3.1]. Therefore $f_{i}(x) \alpha^{i}(b) \in \operatorname{nil}(R[x])$ by 4, Lemma 3.7] for all i, and hence $R[x]$ is weak $\bar{\alpha}$-skew McCoy.

Also, for the weak α-skew McCoy, the following result holds.

THEOREM 2.2. Let R be a reversible ring and α be an endomorphism of R such that $a \alpha(b)=0$ whenever $a b=0$ for any $a, b \in R$. If, for some positive integer t, $\alpha^{t}=1_{R}$, then $R[x ; \alpha]$ is weak α-skew McCoy.

Proof. Let $p(y), q(y)$ and k be the same as in the proof of Theorem 2.1 We claim that $f_{i}(x) g_{j}(x) \in \operatorname{nil}(R[x ; \alpha])$ for all $0 \leqslant i \leqslant m, 0 \leqslant j \leqslant n$. Let $p\left(x^{t k}\right)=$ $f_{0}(x)+f_{1}(x) x^{t k}+\cdots+f_{m}(x) x^{m t k}$ and $q\left(x^{t k}\right)=g_{0}(x)+g_{1}(x) x^{t k}+\cdots+g_{n}(x) x^{n t k} \in$ $R[x ; \alpha]$. Then the set of coefficients of $f_{i}(x)$ (respectively, $\left.g_{j}(x)\right)$ equals the set of coefficients of $p\left(x^{t k}\right)$ (respectively, $q\left(x^{t k}\right)$). Since $p(y) q(y)=0$ and $\alpha^{t}=1_{R}$, we have $p\left(x^{t k}\right) q\left(x^{t k}\right)=0$ in $R[x ; \alpha]$. Since R is weak α-skew McCoy, by Propositions 2.1 and 2.7 there exists $b \neq 0$ such that $a_{i l} \alpha^{i}(b) \in \operatorname{nil}(R)$ for any $0 \leqslant i \leqslant m$, $0 \leqslant l \leqslant w_{i}$. Thus $f_{i}(x) b \in \operatorname{nil}(R[x ; \alpha])$. Hence $R[x ; \alpha]$ is weak McCoy.

Let α be an automorphism of a ring R. Suppose that there exists the classical left quotient Q of R. Then for any $b^{-1} a \in Q$, where $a, b \in R$ with b regular, the induced map $\bar{\alpha}: Q(R) \rightarrow Q(R)$ defined by $\bar{\alpha}\left(b^{-1} a\right)=(\alpha(b))^{-1} \alpha(a)$ is also an automorphism.

Proposition 2.8. Assume that there exists the classical left quotient Q of a ring R. If R is reversible, then Q is weak α-skew McCoy if R is weak α-skew McCoy.

Proof. Let $f(x)=s_{0}^{-1} a_{0}+s_{1}^{-1} a_{1} x+\cdots+s_{m}^{-1} a_{m} x^{m}$ and $g(x)=t_{0}^{-1} b_{0}+$ $t_{1}^{-1} b_{1} x+\cdots+t_{n}^{-1} b_{n} x^{n} \in Q[x ; \bar{\alpha}]$ such that $f(x) g(x)=0$. Let C be a left denominator set. There exist $s, t \in C$ and $a_{i}^{\prime}, b_{j}^{\prime} \in R$ such that $s_{i}^{-1} a_{i}=s^{-1} a_{i}^{\prime}$ and $t_{j}^{-1} b_{j}=t^{-1} b_{j}^{\prime}$ for $0 \leqslant i \leqslant m, 0 \leqslant j \leqslant n$. Then $s^{-1}\left(a_{0}^{\prime}+a_{1}^{\prime} x+\cdots+a_{m}^{\prime} x^{m}\right) t^{-1}\left(b_{0}^{\prime}+b_{1}^{\prime} x+\cdots+b_{n}^{\prime} x^{n}\right)=$ 0. It follows that $\left(a_{0}^{\prime}+a_{1}^{\prime} x+\cdots+a_{m}^{\prime} x^{m}\right) t^{-1}\left(b_{0}^{\prime}+b_{1}^{\prime} x+\cdots+b_{n}^{\prime} x^{n}\right)=0$. Thus $\left(a_{0}^{\prime} t^{-1}+\right.$ $\left.a_{1}^{\prime}(\alpha(t))^{-1} x+\cdots+a_{m}^{\prime}\left(\alpha^{m}(t)\right)^{-1} x^{m}\right)\left(b_{0}^{\prime}+b_{1}^{\prime} x+\cdots+b_{n}^{\prime} x^{n}\right)=0$. For $\left(a_{i}^{\prime} \alpha^{i}(t)\right)^{-1}$, there exist $t^{\prime} \in C, a_{i}^{\prime \prime} \in R$ such that $\left(a_{i}^{\prime} \alpha^{i}(t)\right)^{-1}=t^{\prime} a_{i}^{\prime \prime}$. Hence $t^{\prime-1}\left(a_{0}^{\prime \prime}+a_{1}^{\prime \prime} x+\cdots+\right.$ $\left.a_{m}^{\prime \prime} x^{m}\right)\left(b_{0}^{\prime}+b_{1}^{\prime} x+\cdots+b_{n}^{\prime} x^{n}\right)=0$. We have that $\left(a_{0}^{\prime \prime}+a_{1}^{\prime \prime} x+\cdots+a_{m}^{\prime \prime} x^{m}\right)\left(b_{0}^{\prime}+b_{1}^{\prime} x+\cdots+\right.$ $\left.b_{n}^{\prime} x^{n}\right)=0$. Since R is weak α-skew McCoy, there exists $b^{\prime} \neq 0$ such that $a_{i}^{\prime \prime} \alpha^{i}\left(b^{\prime}\right) \in$ $\operatorname{nil}(R)$. Suppose that $\left(a_{i}^{\prime \prime} \alpha^{i}\left(b^{\prime}\right)\right)^{n_{i}}=0$. Since R is reversible, Q is semicommutative. Then $\left(t^{\prime-1}\left(a_{i}^{\prime \prime} \alpha^{i}\left(b^{\prime}\right)\right)\right)^{n_{i}}=0$. So $\left(a_{i}^{\prime} \bar{\alpha}^{i}\left(t^{-1} b^{\prime}\right)\right)^{n_{i}}=\left(\left(t^{\prime-1} a_{i}^{\prime \prime}\right) \alpha^{i}\left(b^{\prime}\right)\right)^{n_{i}}=0$. Similarly $\left(s^{-1} a_{i}^{\prime}\right)\left(\bar{\alpha}^{i}\left(t^{-1} b_{j}^{\prime}\right)\right)^{n_{i}}=0$. Therefore Q is weak α-skew McCoy.

Acknowledgments. The authors would like to thank the anonymous referee for his/her helpful comments that have improved the presentation of results in this article.

References

1. M. Baser, T. K. Kwak, Yang Lee, The McCoy Condition on Skew Polynomial Rings, Comm. Algebra 37(11) (2009), 4026-4037.
2. Sh. Ghalandarzadeh, M. Khoramdel, On Weak McCoy rings, Thai. J. Math. 6(2) (2008), 337342.
3. C. Y. Hong, N. K. Kim, T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31(1) (2003), 103-122.
4. Z. K. Liu, R. Y. Zhao, On weak Armendariz rings, Comm. Algebra 34(7) (2006), 2607-2616.
5. N. H. McCoy, Remarks on divisors of zero, Am. Math. Monthly. 49 (1942), 286-295.
6. P. P. Nielsen, Semicommutativity and the McCoy condition, J. Algebra 298 (2006), 134-141.
7. M. B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73(1) (1997), 14-17.
8. C. Zhang, J. Chen, Weak α-skew armendariz rings, J. Korean Math. Soc. 47(3) (2010), 455466.

Department of Mathematics
K. N. Toosi University of Technology
(Revised 2602 2013)
P.O. Box 16315 - 1618

Tehran, Iran
nikmehr@kntu.ac.ir
Department of Mathematics
Karaj Branch, Islamic Azad university
Karaj, Iran
algebra56.tau56@yahoo.com
Department of Mathematics
Islamic Azad university, Central Tehran Branch
P.O. Box 14168-94351, Tehran, Iran
man.deldar@iauctb.ac.ir

[^0]: 2010 Mathematics Subject Classification: Primary 16S36; Secondary 16S50.
 Key words and phrases: McCoy rings, skew polynomial rings, reduced rings.

