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Abstract. Let α be an endomorphism of a ring R. We introduce the notion
of weak α-skew McCoy rings which are a generalization of the α-skew McCoy
rings and the weak McCo rings. Some properties of this generalization are
established, and connections of properties of a weak α-skew McCoy ring R

with n × n upper triangular Tn(R) are investigated. We study relationship
between the weak skew McCoy property of a ring R and its polynomial ring,
R[x]. Among applications, we show a number of interesting properties of a
weak α-skew McCoy ring R such as weak skew McCoy property in a ring R.

1. Introduction

Throughout this note, R denotes an associative ring with unity and α is a
ring endomorphism. We denote R[x; α] the Ore extension whose elements are the
polynomials

∑n

i=0 aix
i, ai ∈ R, where the addition is defined as usual and the

multiplication subject to the relation xa = α(a)x for any a ∈ R. nil(R) denotes
the set of all the nilpotent elements of R. Rege and Chhawchharia [7] introduced
the notion of an Armendariz ring. They defined a ring R to be an Armendariz ring

if whenever polynomials f(x) = a0 +a1x+· · ·+anxn, g(x) = b0+b1x+· · ·+bmxm ∈
R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i, j. The name “Armendariz ring"
was chosen because Armendariz had showed that a reduced ring (i.e., a ring without
nonzero nilpotent elements) satisfies this condition. Hong, Kim, and Kwak [3] called
R an α-skew Armendariz ring if whenever polynomials f(x) = a0 +a1x+· · ·+anxn,
g(x) = b0 + b1x + · · · + bmxm ∈ R[x; α] satisfy f(x)g(x) = 0, then aiα

i(bj) = 0
for each i, j, which is a generalization of the Armendariz rings. Liu and Zhao [4]
called a ring R weak Armendariz if whenever polynomials f(x) = a0 + a1x + · · · +
anxn, g(x) = b0 + b1x + · · · + bmxm ∈ R[x] satisfy f(x)g(x) = 0, then aibj is
nilpotent element of R for each i and j. Motivated by the above results, Zhang
and Chen [8] called a ring R weak α-skew Armendariz if whenever polynomials
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f(x) = a0 + a1x + · · · + anxn, g(x) = b0 + b1x + · · · + bmxm ∈ R[x; α] satisfy
f(x)g(x) = 0, then aiα

i(bj) ∈ nil(R) for each i and j. It is obvious that a weak
α-skew Armendariz ring is a generalization of the α-skew Armendariz rings and the
weak Armendariz rings. Recall that a ring R is called reversible if ab = 0 implies
ba = 0, for all a, b ∈ R. R is called semicommutative if for all a, b ∈ R, ab = 0
implies aRb = {0}. Reduced rings are clearly reversible and reversible rings are
semicommutative, but the converse is not true in general [6]. According to Nielson
[6], a ring R is called right McCoy (resp., left McCoy) if, for any polynomials
f(x), g(x) ∈ R[x]r {0}, f(x)g(x) = 0 implies f(x)r = 0 (resp., sg(x) = 0) for some
0 6= r ∈ R (resp., for some 0 6= s ∈ R). A ring is called McCoy if it is both left and
right McCoy. By McCoy [5], commutative rings are McCoy rings. Reduced rings
are Armendariz and Armendariz rings are McCoy. A ring R is right weak McCoy

whenever, f(x) = a0 + a1x + · · · + anxn, g(x) = b0 + b1x + · · · + bmxm ∈ R[x]r {0}
satisfy f(x)g(x) = 0, then ais ∈ nil(R) for some 0 6= s ∈ R, and every i. Left weak

McCoy rings are defined similarly. If a ring is both left and right weak McCoy we
say that the ring is weak McCoy ring. Also in [2] investigated this generalization
of McCoy rings and their properties.

A ring R is called α-skew McCoy ring with respect to α if for any nonzero
polynomials f(x) = a0 + a1x + · · · + anxn, g(x) = b0 + b1x + · · · + bmxm ∈ R[x; α]
satisfy f(x)g(x) = 0, implies f(x)s = 0 for some nonzero s ∈ R. It is clear
that a ring R is right McCoy if R is idR-skew McCoy, where idR is the identity
endomorphism of R. In [1], Basser, Kwak, Lee showed that every domain with an
endomorphism α is α-skew McCoy, and R is α-skew McCoy if and only if the factor
ring R[x]/(xn) is ŕᾱ-skew McCoy, where ᾱ : R[x] → R[x] defined by ᾱ(f(x)) =
∑m

i=0 α(ai)x
i for any f(x) = a0 + a1x + · · · + anxn is an endomorphism of R[x].

Also they proved that for a ring isomorphism σ : R → S, R is a α-skew McCoy
ring if and only if S is an σασ−1-skew McCoy ring.

Motivated by the above results, for an endomorphism α of a ring R, we investi-
gate a generalization of the α-skew McCoy rings and the weak McCoy rings which
we call a weak α-skew McCoy ring and study several results.

2. Weak α-Skew McCoy rings

We begin this section by the following definition and also we study properties
of weak α-skew McCoy rings.

Definition 2.1. Let α be an endomorphism of a ring R. The ring R is called
weak α-skew McCoy with respect to α if for any nonzero polynomials p(x) =
∑n

i=0 aix
i and q(x) =

∑m

j=0 bjxj in R[x; α] with p(x)q(x) = 0, there exists s ∈

R − {0} such that aiα
i(s) ∈ nil(R) for 0 6 i 6 n.

It can be easily checked that if R is a weak McCoy ring then it is a weak
idR-skew McCoy ring, where idR is an identity endomorphism of R. Also every
weak Armendariz ring is weak McCoy and therefore is weak idR-skew McCoy. If
nil(R) E R, then R is weak Armendariz and so R will be weak McCoy ring and so
R is weak idR-skew McCoy.
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Proposition 2.1. Let α be an endomorphism of a ring R. Then every weak

α-skew Armendariz ring is a weak α-skew McCoy ring.

Proof. Let f(x) =
∑n

i=0 aix
i, g(x) =

∑m

j=0 bjxj ∈ R[x; α] r {0} and assume

that f(x)g(x) = 0. Since R is weak α-skew Armendariz, aiα
i(bj) ∈ nil(R) for all i,

j. Let r = bt for 0 6 t 6 m, and hence aiα
i(r) ∈ nil(R) for all i. Therefore R is

weak α-skew McCoy. �

Let I be an ideal of R. If α(I) ⊆ I, then defined ᾱ : R/I → R/I by ᾱ(a + I) =
α(a) + I for a ∈ R, is an endomorphism of the factor ring R/I. Now we have the
following proposition.

Proposition 2.2. Let α be an endomorphism of a ring R and I be an ideal of

R with α(I) ⊆ I. If I ⊆ nil(R) and R/I is weak ᾱ-skew McCoy, then R is weak

α-skew McCoy.

Proof. Let f(x) = a0 + a1x + · · · + amxm and g(x) = b0 + b1x + · · · + bnxn ∈

R[x; α] r {0} such that f(x)g(x) = 0. Then
(

∑m

i=0 āix
i
)(

∑n

j=0 b̄jxj
)

= 0 in

R/I. Thus there exists ni such that (āiᾱ
i(s̄))ni = 0 for some s ∈ R r I. Hence

aiα
i(s) ∈ nil(R) and so R is weak α-skew McCoy. �

Let R be a ring, α an automorphism of R and ∆ a multiplicatively closed
subset of R consisting of central regular elements. The ring ∆−1R is called the
ring of fractions of R with respect to ∆. We define ∆−1α : ∆−1R → ∆−1R by
∆−1α(b−1a) = (α(b))−1α(a) for any b−1a ∈ ∆−1R. Then ∆−1α is an automor-
phism of ∆−1R.

Proposition 2.3. Let R be weak α-skew McCoy. Then ∆−1R is weak ∆−1α-

skew McCoy.

Proof. Let f(x) =
∑m

i=0 cix
i and g(x) =

∑n

j=0 djxj be nonzero polynomials

in ∆−1R[x; ∆−1α] such that ci, dj are in ∆−1R for all i, j. Then we can assume
that ci = aiu

−1 and dj = bjv−1 for some ai, bj ∈ R and u, v ∈ ∆. Let f1(x) =
∑m

i=0 aix
i, g1(x) =

∑n

j=0 bjxj . Thus f1(x)g1(x) = 0 inR[x; α]. Thus aiα
i(s) ∈

nil(R) for some 0 6= s ∈ R for 0 6 i 6 m. So ci(∆
−1α)i(s) ∈ nil(∆−1R) for

0 6 i 6 m. Thus ∆−1R is a weak ∆−1α-skew McCoy ring. �

Let R[x; x−1] be the ring of Laurent polynomials, i.e., the formal sums
∑n

i=k aix
i,

where k, n are (possibly negative) integers. For an automorphism α of R, ᾱ :
R[x; x−1] → R[x; x−1] defined by ᾱ

(
∑n

i=k aix
i
)

=
∑n

i=k α(ai)x
i is an automorphism

of R[x; x−1]. The restriction of ᾱ to R[x], we also denote by ᾱ.

Corollary 2.1. Let R[x] be weak ᾱ-skew McCoy ring. Then R[x; x−1] is a

weak ᾱ-skew McCoy ring.

Proof. It is clear that ∆ = {1, x, x2, . . .} is multiplicatively closed subset of
R[x]. Since R[x; x−1] = ∆−1R[x], it follows that R[x; x−1] is a weak ᾱ-skew McCoy
ring. �
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Let α be an endomorphism of a ring R and Mn(R) be the n×n matrix over R,
and ᾱ : Mn(R) → Mn(R) defined by ᾱ((aij)) = (α(aij)). Then ᾱ is an endomor-
phism of Mn(R). It is obvious that the restriction of ᾱ to Tn(R) is an endomorphism
of Tn(R), where Tn(R) is the n × n upper triangular matrix ring over R. We also
denote ᾱ|Tn(R) by ᾱ.

For a ring R, Tn(R) (n > 2) is a weak McCoy ring. Now we have the following
proposition.

Proposition 2.4. Let α be an endomorphism of a ring R. Then, for any n,

Tn(R) is a weak ᾱ-skew McCoy ring if R is a weak α-skew McCoy ring.

Proof. Let f(x) = A0 + A1x + · · · + Apxp and g(x) = B0 + B1x + · · · + Bqxq

be elements of Tn(R)[x; ᾱ] satisfying f(x)g(x) = 0, where

Ai =













a
(i)
11 a

(i)
12 · · · a

(i)
1n

0 a
(i)
22 · · · a

(i)
2n

...
...

. . .
...

0 0 · · · a
(i)
nn













, Bj =













b
(j)
11 b

(j)
12 · · · b

(j)
1n

0 b
(j)
22 · · · b

(j)
2n

...
...

. . .
...

0 0 · · · b
(j)
nn













.

Then from f(x)g(x) = 0, it follows that
(
∑p

i=0 a
(i)
ss xi

)(
∑q

j=0 b
(j)
ss xj

)

= 0 in R[x; α]
for each s with 1 6 s 6 n. Since R is a weak α-skew McCoy ring, there exists

sk 6= 0 such that a
(i)
ss αi(sk) ∈ nil(R) for 1 6 k 6 n. Therefore

(

a
(i)
ss αi(sk)

)mk = 0
for some mk ∈ Z. Let m = max{m1, m2, . . . , mn}. We define

S =











s1 ∗ · · · ∗
0 s2 · · · ∗
...

...
. . .

...
0 0 · · · sn











,

where ∗ stands for any element of R. Then

(

Aiᾱ
i(S)

)m
=













a
(i)
11 αi(s1) ∗ · · · ∗

0 a
(i)
22 αi(s2) · · · ∗

...
...

. . .
...

0 0 · · · a
(i)
nnαi(sn)













m

=











0 ∗ · · · ∗
0 0 · · · ∗
...

...
. . .

...
0 0 · · · 0











.

It implies that Tn(R) is a weak ᾱ-skew McCoy ring. �

Example 2.1. [1] Let α be an endomorphism on the 2 × 2 matrices ring R =
M2(Z3) over Z3 defined by α

((

a b
c d

))

=
(

a −b
−c d

)

. For p(x) =
(

1 0
0 0

)

+
(

1 1
0 0

)

x,

q(x) =
(

0 0
0 −1

)

+
(

0 1
0 1

)

x ∈ R[x; α], one has p(x)q(x) = 0. It can be easily checked
that p(x)c 6= 0 for any nonzero c ∈ R. Therefore R is not α-skew McCoy. This also
shows that the 2 × 2 upper triangular matrix ring

{(

a b
0 c

)

| a, b, c ∈ Z3
}

over Z3 is
not α-skew McCoy.

We note that the α-skew McCoy ring is weak α-skew McCoy, but the converse
is not always true by the following example.
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Example 2.2. Since R = Z3 is a domain, it is α-skew Armndariz ring for any
endomorphism α of R by [3, Proposition 10]. Hence R is α-skew McCoy. Thus R is
weak α-skew McCoy, therefore T2(Z3) is weak ᾱ-skew McCoy ring by Propositin 2.4.
But T2(Z3) is not α-skew McCoy ring the Example 2.1.

In the following, we provide a connection between abelian and weak α-skew
McCoy rings.

Proposition 2.5. Let R be an abelian ring and α be an endomorphism with

α(e) = e for every e2 = e ∈ R. Then R is a weak α-skew McCoy ring if eR and

(1 − e)R are weak α-skew McCoy for some e2 = e ∈ R.

Proof. Let f(x) = a0 + a1x + · · · + amxm, g(x) = b0 + b1x + · · · + bnxn in
R[x; α] with f(x)g(x) = 0. Let f1(x) = ef(x), f2(x) = (1 − e)f(x), g1(x) = eg(x),
g2(x) = (1−e)g(x). Then f1g1(x) = 0, f2g2(x) = 0. Since eR and (1−e)R are weak
α-skew McCoy, there exist mi, ni such that e(aiα

i(s))mi = ((eai)α
i(es))mi = 0 and

(1 − e)(aiα
i(t))ni =

(

((1 − e)ai) αi((1 − e)t)
)

ni

= 0 for some s ∈ eR, t ∈ (1 − e)R.

Let ki = max{mi, ni}. Then (aiα
i(st))ki = 0. This means that R is weak α-skew

McCoy. �

Let Ri be a ring and αi an endomorphism of Ri for each i ∈ I. Then, for the
product

∏

i∈I Ri of Ri and the endomorphism ᾱ :
∏

i∈I Ri →
∏

i∈I Ri defined by
ᾱ((ai)) = (αi(ai)),

∏

i∈I Ri is weak ᾱ-skew McCoy if and only if each Ri is weak
αi-skew McCoy.

Every homomorphism σ of rings R and S can be extended to the homomor-
phism of rings R[x] and S[x] defined by

∑m

i=0 aix
i 7→

∑m

i=0 σ(ai)x
i, which we also

denote by σ.

Proposition 2.6. Let σ : R → S be a ring isomorphism. If R is weak α-skew

McCoy, then S is weak σασ−1-skew McCoy.

Proof. Assume that f(x) =
∑m

i=0 aix
i and g(x) =

∑m

j=0 bjxj are polynomials

in S[x, σασ−1]. Since σ is an isomorphism, there exist f1(x) =
∑m

i=0 a′

ix
i and

g(x) =
∑m

j=0 b′

jxj in R[x, α] such that f(x) = σ(f1(x)) =
∑m

i=0 σ(a′

i)x
i and g(x) =

σ(g1(x)) =
∑m

j=0 σ(b′

j)xj . First we show that f(x)g(x) = 0 implies f1(x)g1(x) = 0.
We have

a0bk + a1(σασ−1)(bk−1) + · · · + ak(σασ−1)k(b0) = 0 for any 0 6 k 6 m.

From the definition of f1(x) and g1(x), we have,

σ(a′

0)σ(b′

k) + σ(a′

1)(σασ−1)σ(b′

k−1) + · · · + σ(a′

k)(σασ−1)kσ(b′

0) = 0,

so that (σασ−1)t = σαtσ−1 we obtain a′

0b′

k +a′

1α(b′

k−1)+ · · ·+a′

kαk(b′

0) = 0, which
means that f1(x)g1(x) in R[x; α]. From the fact that R is weak α-skew McCoy, we
have a′

iα
i(r) ∈ nil(R) for some r ∈ R. Since a′

i = σ−1(ai), r = σ−1(s) for some
s ∈ S, we have σ−1(ai)α

i(σ−1s) ∈ nil(R). Therefore we obtain ai(σασ−1)i(s) ∈
nil(R), 0 6 i, j 6 m. Hence S is weak σασ−1-skew McCoy. �
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Let Eij = (est), 1 6 s, t 6 n, denotes n × n unit matrices over ring R, in
which eij = 1 and est = 0 when s 6= i or t 6= j, 0 6 i, j 6 n for all n > 2. If

V =
∑n−1

i=1 Ei,i+1, then Vn(R) = RIn + RV + · · · + RV n−1 is the subring of upper
triangular skew matrices.

Corollary 2.2. Suppose that α is an endomorphism of a ring R. If the factor

ring
R[x]
(xn) is weak ᾱ-skew McCoy, then Vn(R) is weak ᾱ-skew McCoy.

Proof. Assume that R[x]/(xn) is weak ᾱ-skew McCoy and define the ring
isomorphism θ : Vn(R) → R[x]/(xn) defined by

θ(r0In + r1V + · · · + rn−1V n−1) = r0 + r1x + · · · + rn−1xn−1 + (xn).

Now we have that Vn(R) is weak θ−1ᾱθ-skew McCoy and that

θ−1ᾱθ(r0In + r1V + · · · + rn−1V n−1) = ᾱ(r0In + r1V + · · · + rn−1V n−1),

which means that Vn(R) is a weak ᾱ-skew McCoy ring. �

Before stating Theorem 2.1, we need the following proposition.

Proposition 2.7. [8] Let R be a reversible ring and α be an endomorphism of

R such that aα(b) = 0 whenever ab = 0 for any a, b ∈ R. Then R is weak α-skew

Armendariz.

In [4] it was shown that if a ring R is semicommutative, then R[x] is weak
Armendariz. For the case of weak α-skew McCoy, we have the following theorem.

Theorem 2.1. Let R be a reversible ring and α be an endomorphism of R such

that aα(b) = 0 whenever ab = 0 for any a, b ∈ R. If for some positive integer t,
αt = 1R, then R[x] is weak α-skew McCoy.

Proof. Let p(y) = f0(x)+f1(x)y + · · ·+fm(x)ym and q(y) = g0(x)+g1(x)y +
· · · + gn(x)yn be in (R[x])[y; α] with p(y)q(y) = 0. We also let fi(x) = ai0 + ai1x +
· · · + aiwi

xwi and gj(x) = bj0 + bj1x + · · · + bjvj
xvj for any 0 6 i 6 m and

0 6 j 6 n, where ai0, ai1, . . . , aiwi
, bj0, bj1, . . . , bjvj

∈ R. Take a positive integer k
such that k > deg(f0(x))+deg(f1(x))+· · ·+deg(fm(x))+deg(g0(x))+deg(g1(x))+
· · · + deg(gn(x)), where the degrees of fi(x) and gj(x) are as the polynomials in
R[x] and the degree of zero polynomial is taken to be 0 for all 0 6 i 6 m and
0 6 j 6 n. Let f(x) = f0(xt) + f1(xt)xtk+1 + f2(xt)x2tk+2 + · · · + fm(xt)xmtk+m

and g(x) = g0(xt) + g1(xt)xtk+1 + g2(xt)x2tk+2 + · · · + gn(xt)xntk+n ∈ R[x]. Then
the set of coefficients of the fi(x) (respectively, gj(x)) equals the set of coefficients
of f(x) (respectively, g(x)). Since p(y)q(y) = 0, x commutes with elements of R
in the polynomial ring R[x], and αt = 1R, we have f(x)g(x) = 0 in R[x; α]. By
Proposition 2.7, R is weak α-skew Armendariz, and so R weak α-skew McCoy by
Proposition 2.1. Thus there exists b 6= 0 in R such that ailα

i(b) ∈ nil(R) for any
0 6 i 6 m, l ∈ {0, 1, . . . , w0, . . . , wm}. Since R is reversible,

∑

l ailα
i(b) ∈ nil(R),

by [4, Lemma 3.1]. Therefore fi(x)αi(b) ∈ nil(R[x]) by [4, Lemma 3.7] for all i,
and hence R[x] is weak ᾱ-skew McCoy. �

Also, for the weak α-skew McCoy, the following result holds.
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Theorem 2.2. Let R be a reversible ring and α be an endomorphism of R such

that aα(b) = 0 whenever ab = 0 for any a, b ∈ R. If, for some positive integer t,
αt = 1R, then R[x; α] is weak α-skew McCoy.

Proof. Let p(y), q(y) and k be the same as in the proof of Theorem 2.1. We
claim that fi(x)gj(x) ∈ nil(R[x; α]) for all 0 6 i 6 m, 0 6 j 6 n. Let p(xtk) =
f0(x)+f1(x)xtk + · · ·+fm(x)xmtk and q(xtk) = g0(x)+g1(x)xtk + · · ·+gn(x)xntk ∈
R[x; α]. Then the set of coefficients of fi(x) (respectively, gj(x)) equals the set of
coefficients of p(xtk) (respectively, q(xtk)). Since p(y)q(y) = 0 and αt = 1R, we
have p(xtk)q(xtk) = 0 in R[x; α]. Since R is weak α-skew McCoy, by Propositions
2.1 and 2.7, there exists b 6= 0 such that ailα

i(b) ∈ nil(R) for any 0 6 i 6 m,
0 6 l 6 wi. Thus fi(x)b ∈ nil(R[x; α]). Hence R[x; α] is weak McCoy. �

Let α be an automorphism of a ring R. Suppose that there exists the classical
left quotient Q of R. Then for any b−1a ∈ Q, where a, b ∈ R with b regular, the
induced map ᾱ : Q(R) → Q(R) defined by ᾱ(b−1a) = (α(b))−1α(a) is also an
automorphism.

Proposition 2.8. Assume that there exists the classical left quotient Q of a

ring R. If R is reversible, then Q is weak α-skew McCoy if R is weak α-skew

McCoy.

Proof. Let f(x) = s−1
0 a0 + s−1

1 a1x + · · · + s−1
m amxm and g(x) = t−1

0 b0 +

t−1
1 b1x+· · ·+t−1

n bnxn ∈ Q[x; ᾱ] such that f(x)g(x) = 0. Let C be a left denominator
set. There exist s, t ∈ C and a′

i, b′

j ∈ R such that s−1
i ai = s−1a′

i and t−1
j bj = t−1b′

j

for 0 6 i 6 m, 0 6 j 6 n. Then s−1(a′

0+a′

1x+· · ·+a′

mxm)t−1(b′

0+b′

1x+· · ·+b′

nxn) =
0. It follows that (a′

0+a′

1x+· · ·+a′

mxm)t−1(b′

0+b′

1x+· · ·+b′

nxn) = 0. Thus (a′

0t−1+
a′

1(α(t))−1x + · · · + a′

m(αm(t))−1xm)(b′

0 + b′

1x + · · · + b′

nxn) = 0. For (a′

iα
i(t))−1,

there exist t′ ∈ C, a′′

i ∈ R such that (a′

iα
i(t))−1 = t′a′′

i . Hence t′−1(a′′

0 +a′′

1x+ · · ·+
a′′

mxm)(b′

0+b′

1x+· · ·+b′

nxn) = 0. We have that (a′′

0 +a′′

1x+· · ·+a′′

mxm)(b′

0+b′

1x+· · ·+
b′

nxn) = 0. Since R is weak α-skew McCoy, there exists b′ 6= 0 such that a′′

i αi(b′) ∈
nil(R). Suppose that (a′′

i αi(b′))ni = 0. Since R is reversible, Q is semicommutative.
Then (t′−1(a′′

i αi(b′)))ni = 0. So (a′

iᾱ
i(t−1b′))ni = ((t′−1a′′

i )αi(b′))ni = 0. Similarly
(s−1a′

i)(ᾱ
i(t−1b′

j))ni = 0. Therefore Q is weak α-skew McCoy. �
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