ON PARA-SASAKIAN MANIFOLDS ADMITTING SEMI-SYMMETRIC METRIC CONNECTION

Ajit Barman

Communicated by Stevan Pilipović

Abstract

We study a Para-Sasakian manifold admitting a semi-symmetric metric connection whose projective curvature tensor satisfies certain curvature conditions.

1. Introduction

In 19, Takahashi introduced the notion of locally ϕ-symmetric Sasakian manifolds as a weaker version of local symmetry of such manifolds. In respect of contact geometry, the notion of ϕ-symmetric was introduced and studied by Boeckx, Buecken and Vanhecke (4) with several examples. In [5, De studied the notion of ϕ-symmetry with several examples for Kenmotsu manifolds. In 1977, Adati and Matsumoto defined para-Sasakian and special para-Sasakian manifolds [2], which are special classes of an almost paracontact manifold introduced by Sato [17]. ParaSasakian manifolds have been studied by Tarafdar and De [20, De and Pathak 11, Matsumoto, Ianus and Mihai [15, Matsumoto [14 and many others.

Hayden 13 introduced semi-symmetric linear connections on a Riemannian manifold. Let M be an n-dimensional Riemannian manifold of class C^{∞} endowed with the Riemannian metric g and ∇ be the Levi-Civita connection on $\left(M^{n}, g\right)$.

A linear connection ∇ defined on $\left(M^{n}, g\right)$ is said to be semi-symmetric 12 if its torsion tensor T is of the form $T(X, Y)=\eta(Y) X-\eta(X) Y$, where η is a 1-form and ξ is a vector field defined by $\eta(X)=g(X, \xi)$, for all vector fields $X \in \chi\left(M^{n}\right), \chi\left(M^{n}\right)$ is the set of all differentiable vector fields on M^{n}. A semi-symmetric connection $\bar{\nabla}$ is called a semi-symmetric metric connection 13 if it further satisfies $\nabla g=0$. A relation between the semi-symmetric metric connection $\bar{\nabla}$ and the Levi-Civita connection ∇ on $\left(M^{n}, g\right)$ has been obtained by Yano [21] which is given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) X-g(X, Y) \xi . \tag{1.1}
\end{equation*}
$$

[^0]Key words and phrases: para-Sasakian manifold, semi-symmetric metric connection, recurrent, η-Einstein, ξ-projectively flat, locally ϕ-projectively symmetric manifold.

We also have $\left(\bar{\nabla}_{X} \eta\right)(Y)=\left(\nabla_{X} \eta\right) Y-\eta(X) \eta(Y)+\eta(\xi) g(X, Y)$. Further, a relation between the curvature tensor \bar{R} of the semi-symmetric metric connection $\bar{\nabla}$ and the curvature tensor R of the Levi-Civita connection ∇ is given by
(1.2) $\bar{R}(X, Y) Z=R(X, Y) Z+\alpha(X, Z) Y-\alpha(Y, Z) X+g(X, Z) Q Y-g(Y, Z) Q X$,
where α is a tensor field of type $(0,2)$ and Q is a tensor field of type $(1,1)$ which is given by

$$
\begin{equation*}
\alpha(Y, Z)=g(Q Y, Z)=\left(D_{Y} \eta\right)(Z)-\eta(Y) \eta(Z)+\frac{1}{2} \eta(\xi) g(Y, Z) \tag{1.3}
\end{equation*}
$$

From (1.2) and (1.3), we obtain

$$
\begin{aligned}
\tilde{\bar{R}}(X, Y, Z, W)=\tilde{R}(X, Y, Z, W) & -\alpha(Y, Z) g(X, W)+\alpha(X, Z) g(Y, W) \\
& -g(Y, Z) \alpha(X, W)+g(X, Z) \alpha(Y, W)
\end{aligned}
$$

where $\tilde{\bar{R}}(X, Y, Z, W)=g(\bar{R}(X, Y) Z, W), \quad \tilde{R}(X, Y, Z, W)=g(R(X, Y) Z, W)$.
The semi-symmetric metric connections have been studied by several authors such as Yano [21, Amur and Pujar [1], Prvanović 16], De and Biswas 10], Sharfuddin and Hussain [18], Binh [3, De [6, [7] De and De [8, 9] and many others.

The projective curvature tensor is an important tensor from the differential geometric point of view. Let M be a n-dimensional Riemannian manifold. If there exists a one-to-one correspondence between each coordinate neighbourhood of M and a domain in Euclidian space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geqslant 1, M$ is locally projectively flat if and only if the projective curvature tensor P vanishes. Here the projective curvature tensor P with respect to the semi-symmetric metric connection is defined by

$$
\begin{equation*}
\bar{P}(X, Y) Z=\bar{R}(X, Y) Z-\frac{1}{2 n}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y] \tag{1.4}
\end{equation*}
$$

From (1.4), it follows that

$$
\begin{aligned}
& \tilde{\bar{P}}(X, Y, Z, W)=\tilde{\bar{R}}(X, Y, Z, W)-\frac{1}{2 n}[\bar{S}(Y, Z) g(X, W)-\bar{S}(X, Z) g(Y, W)] \\
& \tilde{\bar{P}}(X, Y, Z, W)=g(\bar{P}(X, Y) Z, W)
\end{aligned}
$$

for $X, Y, Z, W \in \chi(M)$, where \bar{S} is the Ricci tensor with respect to the semisymmetric metric connection. In fact M is projectively flat if and only if it is of constant curvature [22. Thus the projective curvature tensor is the measure of the failure of a Riemannian manifold to be of constant curvature.

The paper is organized as follows: Section 2 is equipped with some prerequisites about P-Sasakian manifolds. In section 3, we establish the relation of the curvature tensor between the Levi-Civita connection and the semi-symmetric metric connection of a P-Sasakian manifold. A P-Sasakian manifold whose curvature tensor of manifold is covariant constant with respect to the semi-symmetric metric connection and manifold if recurrent with respect to the Levi-Civita connection is studied in Section 4. Section 5 is devoted to study ξ-projectively flat P-Sasakian
manifolds with respect to the semi-symmetric metric connection. Finally, we investigate locally ϕ-projectively symmetric P-Sasakian manifolds with respect to the semi-symmetric metric connection.

2. P-Sasakian manifolds

An n-dimensional differentiable manifold M is said to admit an almost paracontact Riemannian structure (ϕ, ξ, η, g), where ϕ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1 -form and g is the Riemannian metric on M such that

$$
\begin{gather*}
\phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1, \quad g(X, \xi)=\eta(X) \tag{2.1}\\
\phi^{2}(X)=X-\eta(X) \xi \tag{2.2}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.3}\\
\left(\nabla_{X} \eta\right) Y=g(X, \phi Y)=\left(\nabla_{Y} \eta\right) X \tag{2.4}
\end{gather*}
$$

for any vector fields X, Y on M. In addition, if (ϕ, ξ, η, g), satisfy the equations

$$
\begin{gather*}
d \eta=0, \quad \nabla_{X} \xi=\phi X \tag{2.5}\\
\left(\nabla_{X} \phi\right) Y=-g(X, Y) \xi-\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.6}
\end{gather*}
$$

then M is called a para-Sasakian manifold or briefly a P-Sasakian manifold.
It is known [2, 17] that in a P-Sasakian manifold the following relations hold:

$$
\begin{gather*}
\eta(R(X, Y) Z)=g(X, Z) \eta(Y)-g(Y, Z) \eta(X), \tag{2.7}\\
R(\xi, X) Y=\eta(Y) X-g(X, Y) \xi, \tag{2.8}\\
R(\xi, X) \xi=X-\eta(X) \xi \tag{2.9}\\
R(X, Y) \xi=\eta(X) Y-\eta(Y) X, \tag{2.10}\\
S(X, \xi)=-(n-1) \eta(X), \tag{2.11}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y), \tag{2.12}
\end{gather*}
$$

where R and S are the curvature tensor and the Ricci tensor of the Levi-Civita connection respectively.

3. Curvature tensor of a P-Sasakian manifold

 with respect to the semi-symmetric metric connectionTheorem 3.1. For a P-Sasakian manifold M with respect to the semi-symmetric metric connection $\bar{\nabla}$
(i) The curvature tensor \bar{R} is given by (3.3),
(ii) The Ricci tensor \bar{S} is given by (3.5),
(iii) The scalar curvature \bar{r} is given by (3.6),
(iv) $\bar{R}(X, Y) Z=-\bar{R}(Y, X) Z$,
(v) $\eta(\bar{R}(X, Y) Z)=\eta(Y) g(X, Z)-\eta(X) g(Y, Z)+\eta(Y) g(X, \phi Z)-\eta(X) g(Y, \phi Z)$,
(vi) The Ricci tensor \bar{S} is symmetric,
(vii) $\bar{S}(Y, \xi)=-(n-1+\gamma) \eta(Y)$,
(viii) $\left(\bar{\nabla}_{W} \phi\right)(X)=-g(X, W) \xi-\eta(X) W+2 \eta(X) \eta(W) \xi-g(X, \phi W) \xi-\eta(X) \phi W$,
(ix) $\left(\bar{\nabla}_{W} \eta\right)(X)=g(X, \phi W)-\eta(X) \eta(W)+g(X, W)$,
$(\mathrm{x}) \bar{\nabla}_{W} \xi=\phi W+W-\eta(W) \xi$.
Proof. Using (2.4) and (2.1) in (1.3), we get

$$
\begin{equation*}
\alpha(X, Y)=g(Q X, Y)=g(X, \phi Y)-\eta(X) \eta(Y)+\frac{1}{2} g(X, Y) \tag{3.1}
\end{equation*}
$$

From (3.1) implies that

$$
\begin{equation*}
Q X=\phi X-\eta(X) \xi+\frac{1}{2} X \tag{3.2}
\end{equation*}
$$

Again using (3.1) and (3.2) in (1.2), we have

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+g(X, \phi Z) Y-\eta(X) \eta(Z) Y-g(Y, \phi Z) X \tag{3.3}\\
& +\eta(Y) \eta(Z) X+g(X, Z) Y-g(Y, Z) X+g(X, Z) \phi Y \\
& -g(Y, Z) \phi X-g(X, Z) \eta(Y) \xi+g(Y, Z) \eta(X) \xi
\end{align*}
$$

From (3.3), we obtain that the curvature tensor \bar{R} satisfies $\bar{R}(X, Y) Z=-\bar{R}(Y, X) Z$. Using (2.7) and (2.1) in (3.3), implies that

$$
\eta(\bar{R}(X, Y) Z)=\eta(Y) g(X, Z)-\eta(X) g(Y, Z)+\eta(Y) g(X, \phi Z)-\eta(X) g(Y, \phi Z)
$$

Taking the inner product of (3.3) with W, it follows that

$$
\begin{array}{r}
\tilde{\bar{R}}(X, Y, Z, W)=\tilde{R}(X, Y, Z, W)+g(X, \phi Z) g(Y, W)-\eta(X) \eta(Z) g(Y, W) \\
-g(Y, \phi Z) g(X, W)+\eta(Y) \eta(Z) g(X, W)+g(X, Z) g(Y, W) \\
-g(Y, Z) g(X, W)+g(X, Z) g(\phi Y, W)-g(Y, Z) g(\phi X, W) \tag{3.4}\\
-g(X, Z) \eta(Y) \eta(W)+g(Y, Z) \eta(X) \eta(W)
\end{array}
$$

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a local orthonormal basis of vector fields in M. Then by putting $X=W=e_{i}$ in (3.4), summing over $i, 1 \leqslant i \leqslant n$, and using (2.1), we obtain

$$
\begin{equation*}
\bar{S}(Y, Z)=S(Y, Z)-(n-2) g(Y, \phi Z)+(n-2) \eta(Y) \eta(Z)-(n-2+\gamma) g(Y, Z) \tag{3.5}
\end{equation*}
$$

where trace of $\phi=\gamma$. Again by putting $Y=Z=e_{i}$ in (3.5), summing over i, $1 \leqslant i \leqslant n$ and using (2.1), we get

$$
\begin{equation*}
\bar{r}=r-2(n-1) \gamma-(n-1)(n-2) \tag{3.6}
\end{equation*}
$$

where \bar{r} and r are the scalar curvatures with respect to the semi-symmetric metric connection and the Levi-Civita connection respectively. Again putting $Z=\xi$ in (3.5) and using (2.1) and (2.11), we get $\bar{S}(Y, \xi)=-(n-1+\gamma) \eta(Y)$. Using (1.1), (2.1) and (2.6), implies that
(3.7) $\left(\bar{\nabla}_{W} \phi\right)(X)=-g(X, W) \xi-\eta(X) W+2 \eta(X) \eta(W) \xi-g(X, \phi W) \xi-\eta(X) \phi W$.

Using (1.1), (2.1) and (2.4), it follows that

$$
\begin{equation*}
\left(\bar{\nabla}_{W} \eta\right)(X)=g(X, \phi W)-\eta(X) \eta(W)+g(X, W) \tag{3.8}
\end{equation*}
$$

Again using (1.1), (2.1) and (2.5), we get

$$
\begin{equation*}
\bar{\nabla}_{W} \xi=\phi W+W-\eta(W) \xi \tag{3.9}
\end{equation*}
$$

4. A P-Sasakian manifold $\left(M^{n}, g\right)$ whose curvature tensor of manifold is covariant constant with respect to the semi-symmetric metric connection and M is recurrent with respect to the Levi-Civita connection

Theorem 4.1. If an n-dimensional P-Sasakian manifold whose curvature tensor of manifold is covariant constant with respect to the semi-symmetric metric connection and the manifold is recurrent with respect to the Levi-Civita connection and the associated 1-form A is equal to the associated 1-form η, then the manifold is an η-Einstein manifold.

Definition 4.1. A P-Sasakian manifold M with respect to the Levi-Civita connection is called recurrent if its curvature tensor R satisfies the condition

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z=A(W) R(X, Y) Z \tag{4.1}
\end{equation*}
$$

where A is the 1 -form.
Definition 4.2. A P-Sasakian manifold M is said to be an η-Einstein manifold if its Ricci tensor S of the Levi-Civita connection is of the form

$$
S(Z, W)=a g(Z, W)+b \eta(Z) \eta(W)
$$

where a and b are smooth functions on the manifold.
Proof. Using (1.1), (2.7), (2.8) and (2.10), we obtain

$$
\begin{array}{r}
\left(\bar{\nabla}_{W} R\right)(X, Y) Z=\bar{\nabla}_{W} R(X, Y) Z-R\left(\bar{\nabla}_{W} X, Y\right) Z-R\left(X, \bar{\nabla}_{W} Y\right) Z \tag{4.2}\\
-R(X, Y) \bar{\nabla}_{W} Z=\left(\nabla_{W} R\right)(X, Y) Z-\tilde{R}(X, Y, Z, W) \xi \\
-\eta(X) R(W, Y) Z-\eta(Y) R(X, W) Z-\eta(Z) R(X, Y) W \\
+\eta(Y) g(X, Z) W-\eta(X) g(Y, Z) W+\eta(Z) g(X, W) Y \\
-g(X, W) g(Y, Z) \xi-\eta(Z) g(Y, W) X+g(X, Z) g(Y, W) \xi \\
+\eta(X) g(Z, W) Y-\eta(Y) g(Z, W) X
\end{array}
$$

Suppose $\left(\bar{\nabla}_{W} R\right)(X, Y) Z=0$, then from (4.2), we get

$$
\begin{align*}
\left(\nabla_{W} R\right)(X, Y) Z- & \tilde{R}(X, Y, Z, W) \xi-\eta(X) R(W, Y) Z-\eta(Y) R(X, W) Z \tag{4.3}\\
& -\eta(Z) R(X, Y) W+\eta(Y) g(X, Z) W-\eta(X) g(Y, Z) W \\
& +\eta(Z) g(X, W) Y-g(X, W) g(Y, Z) \xi-\eta(Z) g(Y, W) X \\
+ & g(X, Z) g(Y, W) \xi+\eta(X) g(Z, W) Y-\eta(Y) g(Z, W) X=0
\end{align*}
$$

Using (4.1) in (4.3), we have

$$
\begin{align*}
A(W) R(X, Y) Z & -\tilde{R}(X, Y, Z, W) \xi-\eta(X) R(W, Y) Z-\eta(Y) R(X, W) Z \tag{4.4}\\
& -\eta(Z) R(X, Y) W+\eta(Y) g(X, Z) W-\eta(X) g(Y, Z) W \\
& +\eta(Z) g(X, W) Y-g(X, W) g(Y, Z) \xi-\eta(Z) g(Y, W) X \\
+ & g(X, Z) g(Y, W) \xi+\eta(X) g(Z, W) Y-\eta(Y) g(Z, W) X=0
\end{align*}
$$

Now contracting X in (4.4) and using (2.1) and (2.7), it follows that

$$
\begin{align*}
A(W) S(Y, Z) & -\eta(Y) S(Z, W)-\eta(Z) S(Y, W) \tag{4.5}\\
& -(n-1) \eta(Z) g(Y, W)-(n-1) \eta(Y) g(Z, W)=0
\end{align*}
$$

Putting $Y=\xi$ in (4.5) and using (2.1) and (2.11), we obtain

$$
\begin{equation*}
S(Z, W)=(1-n) g(Z, W)+(1-n) A(W) \eta(Z) \tag{4.6}
\end{equation*}
$$

Suppose the associated 1-form A is equal to the associated 1-form η, then from (4.6), we get $S(Z, W)=(1-n) g(Z, W)+(1-n) \eta(W) \eta(Z)$. Therefore, $S(Z, W)=a g(Z, W)+b \eta(Z) \eta(W)$, where $a=(1-n)$ and $b=(1-n)$.

5. ξ-projectively flat P-Sasakian manifolds

 with respect to the semi-symmetric metric connectionTheorem 5.1. An n-dimensional P-Sasakian manifold is ξ-projectively flat with respect to the semi-symmetric metric connection if and only if the manifold is also ξ-projectively flat with respect to the Levi-Civita connection provided the vector fields X and Y are horizontal vector fields.

Proof. Using (3.3) in (1.4), we have

$$
\begin{align*}
\bar{P}(X, Y) Z= & R(X, Y) Z+g(X, \phi Z) Y-\eta(X) \eta(Z) Y-g(Y, \phi Z) X+\eta(Y) \eta(Z) X \\
& +g(X, Z) Y-g(Y, Z) X+g(X, Z) \phi Y-g(Y, Z) \phi X-g(X, Z) \eta(Y) \xi \\
& +g(Y, Z) \eta(X) \xi-\frac{1}{n-1}[\bar{S}(Y, Z) X-\bar{S}(X, Z) Y] . \tag{5.1}
\end{align*}
$$

Using (3.5) in (5.1), it follows that

$$
\begin{array}{r}
\bar{P}(X, Y) Z= \\
+\quad P(X, Y) Z+\frac{1}{n-1}[g(X, \phi Z) Y-g(Y, \phi Z) X-\eta(X) \eta(Z) Y \\
+g(X, Z) \phi Y-g(Y, Z) \phi X-g(X, Z) \eta(Y) \xi+g(Y, Z) \eta(X) \xi \tag{5.2}
\end{array}
$$

where

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y] \tag{5.3}
\end{equation*}
$$

is the projective curvature tensor with respect to the Levi-Civita connection.
Putting $Z=\xi$ in (5.2) and using (2.1), we obtain

$$
\begin{equation*}
\bar{P}(X, Y) \xi=P(X, Y) \xi+\frac{1}{n-1}[\gamma \eta(Y) X-\gamma \eta(X) Y]+\eta(X) \phi Y-\eta(Y) \phi X \tag{5.4}
\end{equation*}
$$

Suppose X and Y are orthogonal to ξ; then from (5.4), we get

$$
\bar{P}(X, Y) \xi=P(X, Y) \xi
$$

concluding the proof.

6. Locally ϕ-projectively symmetric P-Sasakian manifolds with respect to the semi-symmetric metric connection

Theorem 6.1. An n-dimensional P-Sasakian manifold is locally ϕ-projectively symmetric with respect to the semi-symmetric metric connection if and only if the manifold is also locally ϕ-projectively symmetric with respect to the Levi-Civita connection.

Definition 6.1. A P-Sasakian manifold M with respect to the semi-symmetric metric connection is said to be locally ϕ-projectively symmetric if

$$
\phi^{2}\left(\left(\bar{\nabla}_{W} \bar{P}\right)(X, Y) Z\right)=0
$$

for all vector fields X, Y, Z, W are orthogonal to ξ.

Proof. Using (1.1), we get
$\left(\bar{\nabla}_{W} P\right)(X, Y) Z=\bar{\nabla}_{W} P(X, Y) Z-P\left(\bar{\nabla}_{W} X, Y\right) Z-P\left(X, \bar{\nabla}_{W} Y\right) Z-P(X, Y) \bar{\nabla}_{W} Z$ $=\left(\nabla_{W} P\right)(X, Y) Z+\eta(P(X, Y) Z) W-\eta(X) P(W, Y) Z-\eta(Y) P(X, W) Z$ $-\eta(Z) P(X, Y) W-\tilde{P}(X, Y, Z, W) \xi+g(X, W) P(\xi, Y) Z$ $+g(Y, W) P(X, \xi) Z+g(Z, W) P(X, Y) \xi$.

Putting $X=\xi$ in (5.3) and using (2.8) and (2.11), we have

$$
\begin{equation*}
P(\xi, Y) Z=-g(Y, Z) \xi-\frac{1}{n-1} S(Y, Z) \xi \tag{6.2}
\end{equation*}
$$

Putting $Y=\xi$ in (5.3) and using (2.8) and (2.11), it follows that

$$
\begin{equation*}
P(X, \xi) Z=g(X, Z) \xi+\frac{1}{n-1} S(X, Z) \xi \tag{6.3}
\end{equation*}
$$

Again putting $Z=\xi$ in (5.3) and using (2.10) and (2.11),

$$
\begin{equation*}
P(X, Y) \xi=0 \tag{6.4}
\end{equation*}
$$

Using (2.7), (5.3), (6.2), (6.3), (6.4) in (6.1), we obtain

$$
\left.\begin{array}{r}
\left(\bar{\nabla}_{W} P\right)(X, Y) Z=\left(\nabla_{W} P\right)(X, Y) Z-\eta(X) P(W, Y) Z-\eta(Y) P(X, W) Z \\
-\eta(Z) P(X, Y) W
\end{array}\right)+\eta(Y) g(X, Z) W-\eta(X) g(Y, Z) W, ~ \begin{aligned}
-\frac{1}{n-1}[\eta(X) S(Y, Z) W & -\eta(Y) S(X, Z) W]-\tilde{P}(X, Y, Z, W) \xi \\
& -g(X, W)\left[g(Y, Z) \xi+\frac{1}{n-1} S(Y, Z) \xi\right] \\
& +g(Y, W)\left[g(X, Z) \xi+\frac{1}{n-1} S(X, Z) \xi\right] .
\end{aligned}
$$

Taking covariant differentiation of (5.2) with respect to W and using (3.7), (3.8), (3.9) and (6.5), we get

$$
\begin{array}{r}
\left(\bar{\nabla}_{W} \bar{P}\right)(X, Y) Z=\left(\nabla_{W} P\right)(X, Y) Z-\eta(X) P(W, Y) Z-\eta(Y) P(X, W) Z \\
\quad-\eta(Z) P(X, Y) W-\tilde{P}(X, Y, Z, W) \xi \\
+\frac{1}{n-1}[\eta(Y) S(X, Z) W-\eta(X) S(Y, Z) W-g(X, W) S(Y, Z) \xi+g(Y, W) S(X, Z) \xi \\
-\eta(Z) g(X, \phi W) Y+\eta(Z) g(Y, \phi W) X+2 \eta(X) \eta(Z) \eta(W) Y \\
(6.6) \quad-2 \eta(Y) \eta(Z) \eta(W) X+(n-2) \eta(Z) g(X, W) Y-(n-2) \eta(Z) g(Y, W) X \tag{6.6}\\
-\eta(X) g(Z, \phi W) Y+\eta(Y) g(Z, \phi W) X-\eta(X) g(Z, W) Y+\eta(Y) g(Z, W) X] \\
-\eta(Z) g(X, W) Y+\eta(Z) g(Y, W) X-g(X, Z) g(Y, W) \xi+g(X, W) g(Y, Z) \xi \\
-\eta(Y) g(X, Z) W+\eta(X) g(Y, Z) W+4 \eta(Y) \eta(W) g(X, Z) \xi-4 \eta(X) \eta(W) g(Y, Z) \xi \\
-2 g(X, Z) g(Y, \phi W) \xi+2 g(X, \phi W) g(Y, Z) \xi-2 \eta(Y) g(X, Z) \phi W+2 \eta(X) g(Y, Z) \phi W .
\end{array}
$$

Now applying ϕ^{2} on both sides of (6.6) and using (2.1) and (2.2), it follows that

$$
\begin{array}{r}
\phi^{2}\left(\left(\bar{\nabla}_{W} \bar{P}\right)(X, Y) Z\right)=\phi^{2}\left(\left(\nabla_{W} P\right)(X, Y) Z\right)-\eta(X) P(W, Y) Z+\eta(X) \eta(P(W, Y) Z) \xi \\
-\eta(Y) P(X, W) Z+\eta(Y) \eta(P(X, W) Z) \xi-\eta(Z) P(X, Y) W+\eta(Z) \eta(P(X, Y) W) \xi \\
+\frac{1}{n-1}[\eta(Y) S(X, Z) W-\eta(Y) \eta(W) S(X, Z) \xi-\eta(X) S(Y, Z) W+\eta(X) \eta(W) S(Y, Z) \xi \\
-\eta(Z) g(X, \phi W) Y+\eta(Z) \eta(Y) g(X, \phi W) \xi+\eta(Z) g(Y, \phi W) X-\eta(Z) \eta(X) g(Y, \phi W) \xi \\
\quad+2 \eta(X) \eta(Z) \eta(W) Y-2 \eta(Y) \eta(Z) \eta(W) X+(n-2) \eta(Z) g(X, W) Y \\
\quad+\eta(Z) \eta(Y) g(X, W) \xi-(n-2) \eta(Z) g(Y, W) X-\eta(Z) \eta(X) g(Y, W) \xi \tag{6.7}\\
\quad-\eta(X) g(Z, \phi W) Y+\eta(Y) g(Z, \phi W) X-\eta(X) g(Z, W) Y+\eta(Y) g(Z, W) X] \\
\quad-\eta(Z) g(X, W) Y+\eta(Z) g(Y, W) X-\eta(Y) g(X, Z) W+\eta(Y) \eta(W) g(X, Z) \xi \\
+\eta(X) g(Y, Z) W-\eta(X) \eta(W) g(Y, Z) \xi-2 \eta(Y) g(X, Z) \phi W+2 \eta(X) g(Y, Z) \phi W
\end{array}
$$

Taking X, Y, Z and W are orthogonal to ξ, then from (6.7), we have

$$
\phi^{2}\left(\left(\bar{\nabla}_{W} \bar{P}\right)(X, Y) Z\right)=\phi^{2}\left(\left(\nabla_{W} P\right)(X, Y) Z\right)
$$

This completes the proof.

References

1. K. Amur, S. S. Pujar, On submanifolds of a Riemannian manifold admitting a metric semisymmetric connection, Tensor, N.S. 32 (1978), 35-38.
2. T. Adati, K. Matsumoto, On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math. 13 (1977), 25-32.
3. T. Q. Binh, On semi-symmetric connection, Period. Math. Hung. 21(2), (1990), 101-107.
4. E. Boeckx, P. Buecken, L. Vanhecke, ϕ-symmetric contact metric spaces, Glasg. Math. J. 41 (1999), 409-416.
5. U. C. De, On ϕ-symmetric Kenmotsu manifolds, Int. Electon. J. Geom. 1(1) (2008), 33-38.
6. \qquad , On a type of semi-symmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 21 (4) (1990), 334-338.
7. On a type of semi-symmetric metric connection on a Riemannian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 38(1) (1991), 105-108.
8. U. C. De, B. K. De, On a type of semi-symmetric connection on a Riemannian manifold, Ganita 47(2) (1996), 11-14.
\qquad , Some properties of a semi-symmetric metric connection on a Riemannian manifold, Istanb. Üniv. Fen Fak. Mat. Derg. 54 (1995), 111-117.
9. U. C. De, S. C. Biswas, On a type of semi-symmetric metric connection on a Riemannian manifold, Publ. Inst. Math., Nouv. Sér. 61(75) (1997), 90-96.
10. U. C. De, G. Pathak, On P-Sasakian manifolds satisfying certain conditions, J. Indian Acad. Math. 16 (1994), 72-77.
11. A. Friedmann, J.A. Schouten, Über die Geometric der halbsymmetrischen Übertragung, Math. Zs. 21 (1924), 211-223.
12. H. A. Hayden, Subspaces of space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
13. K. Matsumoto, Conformal Killing vector fields in a P-Sasakian manifolds, J. Korean Math. Soc. 14(1) (1977), 135-142.
14. K. Matsumoto, S. Ianus, I. Mihai, On a P-Sasakian manifolds which admit certain tensor fields, Publ. Math. Debrecen 33 (1986), 61-65.
15. M. Prvanović, On pseudo metric semi-symmetric connections, Pub. Inst. Math., Nouv. Sér. 18(32) (1975), 157-164.
16. I. Sato, On a structure similar to the almost contact structure, Tensor, N.S. $\mathbf{3 0}$ (1976), 219224.
17. A. Sharfuddin, S. I. Hussain, Semi-symmetric metric connexions in almost contact manifolds, Tensor, New Ser. 30 (1976), 133-139.
18. T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J. 29 (1977), 91-113.
19. D. Tarafdar, U. C. De, On a type of P-Sasakian Manifold, Extr. Math. 8(1) (1993), 31-36.
20. K. Yano, On semi-symmetric connection, Rev. Roum. Math. Pure Appl. 15 (1970), 15701586.
21. K. Yano, S. Bochner, Curvature and Betti Numbers, Ann. Math. Stud. 32, Princeton University Press, 1953.

Department of Mathematics
Kabi-Nazrul Mahavidyalaya
Sonamura-799181, Dist-Sepahijala
Tripura, India
ajitbarmanaw@yahoo.in

[^0]: 2010 Mathematics Subject Classification: 53C15, 53C25.

