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A NUMERICAL STUDY OF ENERGETIC

BEM-FEM APPLIED TO WAVE PROPAGATION

IN 2D MULTIDOMAINS

A. Aimi, L. Desiderio,

M. Diligenti, and C. Guardasoni

Abstract. Starting from a recently developed energetic space-time weak for-
mulation of boundary integral equations related to wave propagation prob-
lems defined on single and multidomains, a coupling algorithm is presented,
which allows a flexible use of finite and boundary element methods as local
discretization techniques, in order to efficiently treat unbounded multilayered
media. Partial differential equations associated to boundary integral equations
will be weakly reformulated by the energetic approach and a particular em-
phasis will be given to theoretical and experimental analysis of the stability of
the proposed method.

1. Introduction

The coupling of finite and boundary element methods (FEM and BEM) for the
solution of time-dependent problems is attractive because it allows for an optimal
exploitation of the respective advantages of both methods. A mathematical survey
of the coupling of FEM and BEM is given in [16, 22, 28]. The BEM, also when
formulated directly in the space-time domain, has attracted particular interest for
its accuracy, the simplicity of imposing the interface conditions in problems defined
on multidomains, the implicit fulfillment of the infinity radiation conditions and
the low cost of discretization when problems are defined over unbounded domains
and the classical numerical methods as finite difference or finite element cannot
efficiently determine the solution.

When one deals with regions having different material properties (e.g., layered
soils [11, 25]) or even different physics (e.g., in solid-fluid coupling [17] or wave-
soil-structure interaction [27]) domain decomposition is needed.

The idea of subdividing the computational domain into subregions where the
most appropriate solution technique is applied, is computationally very actractive.
Therefore this approach has been addressed in many publications, mainly in the
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context of BEM-FEM coupling. In fact the use of boundary integral equations
(BIEs) and BEMs is complex and not particularly efficient in presence of nonlin-
earities localized in small parts of the domain. In this case, the classical differential
models and numerical techniques, such as the Finite Difference Method (FDM) and
FEM help efficiently deal with the nonlinear part of the problem, but require, in
general a fine discretization of the entire domain with a significant increase in com-
putational cost, even if, when using fully unstructured grids, local mesh refinement
is in principle feasible, at least in absence of strong inhomogeneities. Anyway, in
this context, BEM and FEM methods for the approximation of boundary integral
equations systems and systems of partial differential equations are complementary
and a suitable coupling of these two techniques can take advantage of what both
offer.

Within engineering calculations, the BEM and the FEM are well established
tools for the numerical approximation of problems for which analytical solutions are
mostly unknown or available under unrealistic modeling only. Applications occur
in elasticity problems, elastodynamics, electromagnetics, wave scattering. In these
problems we have to solve a given differential equation in two adjacent domains
with specified interface conditions. In the last decades, contributions to BEM-FEM
coupling, in the context of hyperbolic problems, started to appear [1, 21, 23, 29],
especially analyzing stability issues. In this work, taking advantage of a recently de-
veloped energetic space-time weak formulation of BIEs related to wave propagation
problems defined on single and multidomains (see in particular [3,4] and references
therein), a coupling algorithm is presented, which allows a flexible use of FEM and
BEM as local discretization techniques, in order to efficiently treat unbounded mul-
tilayered media. In principle, both the frequency-domain and time-domain BEM
can be used for hyperbolic boundary value problems. Most earlier contributions
concerned direct formulations of BEM in the frequency domain, often using the
Laplace or Fourier transforms and addressing wave propagation problems. Con-
versely, time-domain BEM yields directly the unknown time-dependent quantities.
In this last approach, the construction of the BIEs uses the fundamental solution
of the hyperbolic partial differential equation and jump relations. In this direction
the most interesting results are given by the weak formulation due to Bamberger
and Ha Duong [13,14].

Partial differential equations associated to BIEs will be weakly reformulated by
the energetic approach and a particular emphasis will be given to theoretical and
experimental analysis of the stability of the proposed method.

The paper is structured as follow: in Sections 2 and 3 the model problem
and its energetic weak formulation are introduced; Section 4 is dedicated to the
Galerkin BEM-FEM discretization phase; in Section 5 we obtain theoretical stabil-
ity results using energy arguments. Al last, in Section 6, several numerical results
are presented and discussed.
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2. Model problem

Let Ω ⊂ R
2 be an open bounded domain, with a sufficiently smooth boundary

∂Ω with inward normal n. Let Ω1∪Ω2 = R
2
rΩ be a decomposition of R2

r Ω, with
Ω1 unbounded and Ω2 bounded nonoverlapping subdomains such that Ω̄1 ∩ Ω̄2 = Γ,
Ω̄ ∩ Ω̄1 = ∅ as depicted in Figure 1. Note that the boundary of the unbounded
subdomain Ω1 is just the interface Γ.

Figure 1. Spatial domain for the model problem.

Having denoted with ui(x, t) the unknown function in the i-th subdomain, which
depends on space and time, and with pi(x, t) := µi∂ui(x, t)/∂nx, which depends
on a unitary (outward) normal vector and on µi, a typical constant related to the
material constituting Ωi, we want to solve the following wave propagation model
problem

∆ui(x, t) − (1/c2
i )üi(x, t) = fi(x, t), x ∈ Ωi, t ∈ [0, T ], i = 1, 2(2.1)

ui(x, t) = 0, x ∈ Ωi, i = 1, 2(2.2)

u̇i(x, 0) = 0, x ∈ Ωi, i = 1, 2(2.3)

p2(x, t) = p̄(x, t), x ∈ ΓN := ∂Ω, t ∈ [0, T ],(2.4)

where overhead dots indicate derivatives with respect to time, ci is the propagation
velocity of a perturbation in the i-th subdomain, p̄(x, t) is a given function, the
assigned PDE right-hand sides f1(x, t) ≡ 0 and f2(x, t) are suitably connected.
Moreover on the common boundary or interface Γ the matching conditions read

(2.5) u1(x, t) = u2(x, t), p1(x, t) = −p2(x, t), x ∈ Γ, t ∈ [0, T ].

where ui ∈ H1([0, T ];H1(Ω)), i.e., the unknown functions ui are understood in a
weak sense.

Since the goal of this work is to approximate u1 using a BEM approach and
u2 using a FEM technique, we have to obtain a boundary integral reformulation of
the problem (2.1) in Ω1.

As it is well known, following [19, 24], problem (2.1)–(2.3) in the subdomain
Ω1 can be rewritten as a strong system of two BIEs in the boundary unknowns the
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functions p1(x, t) and u1(x, t) on Γ

1

2
u1(x, t) =

1

µ1
(Vp1)(x, t) − (Ku1)(x, t),

1

2
p1(x, t) = (K∗p1)(x, t) − µ1(Du1)(x, t).

(2.6)

where

(Vp1)(x, t) =

∫

Γ

∫ t

0
G(r; t− τ)p1(ξ, τ)dτdγξ ,

(Ku1)(x, t) =

∫

Γ

∫ t

0

∂G

∂nξ

(r; t− τ)u1(ξ, τ)dτdγξ ,

(K∗p1)(x, t) =

∫

Γ

∫ t

0

∂G

∂nx

(r; t − τ)p1(ξ, τ)dτdγξ

(Du1)(x, t) =

∫

Γ

∫ t

0

∂2G

∂nx∂nξ

(r; t − τ)u1(ξ, τ)dτdγξ

and

G(r; t − τ) =
c1

2π

H [c1(t− τ) − r]
√

c2
1(t− τ)2 − r2

,

is the fundamental solution of the two dimensional wave operator, with H [·] the
Heaviside function and r = ‖r‖2 = ‖x − ξ‖2. Note that in (2.6) the operator K∗ is
the adjoint of the Cauchy singular operator K.

Of course, problem (2.6) has to be coupled with the differential one specified
for Ω2, under coupling conditions (2.5) at the interface. In particular, we are here
interested in a direct space-time weak formulation for the coupling of the integro-
differential problem on Ω1 ∪ Ω2, and this will be done in the next Section.

3. Energetic weak formulation for the coupling

We start remarking that the solution of (2.1) in Ω1 satisfies the following energy
identity

EΩ1
(u1, T ) : =

1

2

∫

Ω1

[ 1

c2
1
u̇2

1(x, T ) + |∇u1(x, T )|2
]

dxdt(3.1)

=
1

µ1

∫

Γ

∫ T

0
u̇1(x, t)p1(x, t)dtdγx

which can be obtained multiplying by u̇1 equation (2.1) specified for i = 1 and
integrating by parts over Ω1 × [0, T ]. Then, the energetic weak formulation of
system (2.6) consists in:

finding u1 ∈ H1([0, T ];H
1

2 (Γ)) and p1 ∈ H0([0, T ];H− 1

2 (Γ)) such that
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1

2
〈u̇1, q1〉 =

1

µ1
〈 ˙(Vp1), q1〉 − 〈 ˙(Ku1), q1〉,

−
1

2
〈p1, v̇1〉 = −〈K∗p1, v̇1〉 + µ1〈Du1, v̇1〉,

(3.2)

where 〈·, ·〉 = 〈·, ·〉L2([0,T ]×Γ) and q1(x, t), v1(x, t) are suitable test functions, be-

longing to the same functional space of p1(x, t) and u1(x, t), respectively.
In particular, the first equation in (2.6) has been differentiated with respect to

time and projected with the L2([0, T ] × Γ) scalar product by means of functions

belonging to H0([0, T ];H− 1

2 (Γ)), while the second equation in (2.6) has been pro-
jected with the L2([0, T ] × Γ) scalar product by means of functions belonging to

H1([0, T ];H
1

2 (Γ)), derived with respect to time.
For the energetic weak formulation in Ω2, let us multiply differential equation

(2.1) for the time derivative of the test function v2(x, t) ∈ H1([0, T ];H1(Ω2)) and
integrate by parts in space obtaining, after a multiplication by the coefficient µ2

(3.3) − µ2A(u2, v2) + 〈v̇2|Γ
, p2|Γ

〉 = µ2F(v2) − 〈v̇2|ΓN

, p̄〉L2([0,T ]×ΓN ),

where

A(u2, v2) :=

∫ T

0

∫

Ω2

[

∇v̇2(x, t) · ∇u2(x, t) +
1

c2
2
v̇2(x, t)ü2(x, t)

]

dxdt(3.4)

F(v2) :=

∫ T

0

∫

Ω2

v̇2(x, t)f2(x, t)dxdt .(3.5)

Now, remembering interface condition (2.5) and using the further coupling condi-
tion at interface for test functions v1(x, t) = v2|Γ

(x, t), combining (3.3) with the
second weak BIE in (3.2), we finally obtain the following energetic weak formulation
of the coupled problem

1

µ1
〈 ˙(Vp1), q1〉 − 〈 ˙(Ku2|Γ

), q1〉 −
1

2
〈u̇2|Γ

, q1〉 = 0

−
1

2
〈p1, v̇2|Γ

〉 − 〈K∗p1, v̇2|Γ
〉 + µ1〈Du2|Γ

, v̇2|Γ
〉 − µ2A(u2, v2)

= µ2F(v2) − 〈v̇2|ΓN

, p̄〉L2([0,T ]×ΓN ).

(3.6)

At every time instant, the unknowns are p1 over the interface Γ and u2 in Ω2. Note
that, integrating in the sense of distributions the scalar products in the first weak
equation of (3.6), we can write also:

−
1

µ1
〈Vp1, q̇1〉 + 〈Ku2|Γ

, q̇1〉 +
1

2
〈u2|Γ

, q̇1〉 = 0

−
1

2
〈p1, v̇2|Γ

〉 − 〈K∗p1, v̇2|Γ
〉 + µ1〈Du2|Γ

, v̇2|Γ
〉 − µ2A(u2, v2)

= µ2F(v2) − 〈v̇2|ΓN

, p̄〉L2([0,T ]×ΓN ).

(3.7)

Let us conclude this Section with some energy considerations. At first, let us
consider system (3.2) with q1 = p1 and v1 = u1 and change the sign in the second
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equation; then, summing up the two equation and remembering (3.1) one obtains

〈u̇1, p1〉 =
1

µ1
〈 ˙(Vp1), p1〉 − µ1〈Du1, u1〉 = µ1EΩ1

(u1, T ).

On the other side, considering v2 = u2 in (3.4), one gets

A(u2, u2) = EΩ2
(u2, T ).

Following similar arguments, starting from (3.6) the following relation appears

µ1EΩ1
(u1, T ) + µ2EΩ2

(u2, T ) = −µ2F(u2) + 〈u̇2|ΓN

, p̄〉L2([0,T ]×ΓN ),

from which one can deduce a-priori stability estimates for regular solutions u1 and
u2 bounding from above the related energies by means of the problem data [8].

4. Space-time Galerkin discretization

For time discretization we consider a uniform decomposition of the time in-
terval [0, T ] with time step ∆t = T/N∆t, N∆t ∈ N

+, generated by the N∆t + 1
time-knots: tk = k∆t, k = 0, . . . , N∆t, and we choose piecewise constant shape
function for the time approximation of p1 and piecewise linear shape functions for
the time approximation of u2, although higher degree shape functions can be used.
In particular, time shape functions, for k = 0, . . . , N∆t − 1, will be defined by

ψ̄k(t) = H [t− tk] −H [t− tk+1], for the approximation of p1,

ψ̂k(t) = R(t− tk) −R(t− tk+1), for the approximation of u2,

where R(t− tk) = t−tk

∆t
H [t− tk] is the ramp function.

For the space discretization we consider the bounded subdomain Ω2 suitably
approximated by a polygonal domain and a mesh T∆x

= {e1, . . . , eM∆x
} consti-

tuted by M∆x
triangles, with diam(ei) 6 ∆x, ei ∩ ej = ∅ if i 6= j and such that

⋃M∆x

i=1 ēi = Ω̄2. The restriction of the mesh T∆x
defines on the polygonal approxi-

mation of Γ a mesh TΓ,∆x
formed by M1 nonoverlapping segments.

The functional background compels one to choose spatially shape functions be-
longing to L2(Γ) for the approximation of p1 and to C0(Ω2) for the approximation of
u2. Hence, we will choose piece-wise constant basis functions ϕ̄j(x), j = 1, . . . ,M1

related to TΓ,∆x
for the approximation of p1 over the interface and piecewise linear

continuous functions ϕ̂j(x), j = 1, . . . ,M2 related to T∆x
for the approximation of

u2 in Ω2. The approximate solutions of the problem at hand will be expressed as

p1(x, t) ≃
N∆t−1
∑

k=0

ψ̄k(t)Φ̄k(x) :=

N∆t−1
∑

k=0

ψ̄k(t)

M1
∑

j=1

ᾱkj ϕ̄j(x), x ∈ Γ,(4.1)

u2(x, t) ≃
N∆t−1
∑

k=0

ψ̂k(t)Φ̂k(x) :=

N∆t−1
∑

k=0

ψ̂k(t)

M2
∑

j=1

α̂kj ϕ̂j(x), x ∈ Ω2.(4.2)

The Galerkin BEM-FEM discretization coming from energetic weak formulation
(3.7) produces the linear system

Eα = b,
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where matrix E has a block lower triangular Toeplitz structure, since its elements
depend on the difference th − tk and in particular they vanish if th < tk. Each
block has dimension M := M1 +M2. If we denote by E

(ℓ) the block obtained when
th − tk = ℓ∆t, ℓ = 0, . . . , N∆t − 1, the linear system can be written as

(4.3)















E
(0) 0 0 . . . 0

E
(1)

E
(0) 0 . . . 0

E
(2)

E
(1)

E
(0) . . . 0

...
...

...
. . .

...
E

(N∆t−1)
E

(N∆t−2)
E

(N∆t−3) . . . E
(0)





























α(0)

α(1)

α(2)

...
α(N∆t−1)















=















b(0)

b(1)

b(2)

...
b(N∆t−1)















where for ℓ = 0, . . . , N∆t − 1 and j = 1, . . . ,M :

α(ℓ) =
(

α
(ℓ)
j

)

, α(ℓ) = (ᾱℓ1, . . . , ᾱℓM1
, α̂ℓ1, . . . , α̂ℓM2

)⊤, b(ℓ) =
(

b
(ℓ)
j

)

,

Note that each block has a symmetric 2 × 2 block substructure of the type

(4.4) E
(ℓ) =

[

E
(ℓ)
Γ E

(ℓ)
Γ,F EM

E
(ℓ)
F EM,Γ E

(ℓ)
F EM

]

where we can recognize the contribution of the coupling on the interface Γ and
of the pure energetic FEM inside Ω2, and it generally presents a highly sparse
structure due to the FEM contribution.

The solution of (4.3) is obtained with a block forward substitution, i.e., at every
time instant tℓ = ℓ∆t, ℓ = 0, . . . , N∆t − 1, one computes:

z(ℓ) = b(ℓ) −
ℓ

∑

j=1

E
(j)α(ℓ−j)

and then solves the reduced linear system:

(4.5) E
(0)α(l) = z(l).

Procedure (4.5) is a time-marching technique, where the only matrix to be inverted
is the nonsingular symmetric block E

(0), therefore LU factorization needs to be
performed only once and saved. At each time step the solution of (4.5) requires
only a forward and backward substitution phases, while all the other blocks are
used to update at every time step the right-hand side. Owing to this procedure,
we can construct and store only the blocks E

(0), . . . ,E(N∆t−1) with a considerable
reduction of computational cost and memory requirement.

Now, referring to the left-hand sides of weak problem (3.7), having set ∆hk =
th−tk, after a double analytic integration in the time variable, we have the following
results

• matrix elements coming from the discretization of 〈Vp1, q̇1〉 are of the form

(4.6)

1
∑

α,β=0

(−1)α+β

∫

Γ
ϕ̄i(x)

∫

Γ
H [c1∆h+α,k+β − r]SV (r; ∆h+α,k+β)ϕ̄j(ξ)dγξdγx
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where

SV(r; ∆h+α,k+β) =
1

2π

[

log
(

c1∆h+α,k+β +
√

c2
1∆2

h+α,k+β − r2
)

− log r
]

• matrix elements coming from the discretization of 〈Ku2|Γ
, q̇1〉 are of the form

(4.7)

1
∑

α,β=0

(−1)α+β

∫

Γ
ϕ̄i(x)

∫

Γ
H [c1∆h+α,k+β − r]SK(r; ∆h+α,k+β)ϕ̂j|Γ

(ξ)dγξdγx

where

SK(r; ∆h+α,k+β) =
1

2πc1∆t

r · nξ

r2

√

c2
1∆2

h+α,k+β − r2

• matrix elements coming from the discretization of 〈Du2|Γ
, v̇2|Γ

〉 are of the form

(4.8)

1
∑

α,β=0

(−1)α+β

∫

Γ
ϕ̂i|Γ

(x)

∫

Γ
H [c1∆h+α,k+β − r]SD(r; ∆h+α,k+β)ϕ̂j|Γ

(ξ)dγξdγx

where

SD(r; ∆h+α,k+β) :=
1

2π∆t2

{

(r · nx)(r · nξ)

r2

∆h+α,k+β

√

c2
1∆2

h+α,k+β − r2

c1r2

+
nx · nξ

2c2
1

[

log
(

c1∆h+α,k+β +
√

c2
1∆2

h+α,k+β − r2
)

− log r −
c1∆h+α,k+β

√

c2
1∆2

h+α,k+β − r2

r2

]}

.

We observe in (4.6)–(4.8) a space weak singularity of type O(log r), a space strong
singularity of type O(1/r) and a space hypersingularity of type O(1/r2) as r → 0,
which are typical of integral kernels related to 2D elliptic problems, and also the
presence of the Heaviside function which analytically represents the wave front
propagation. Hence, the numerical treatment of space strong singularity and hy-
persingularity have been operated through quadrature schemes widely used in the
context of Galerkin BEM coming from elliptic problems (see [9]), coupled with a
suitable regularization technique, after a careful subdivision of the integration do-
main due to the presence of the Heaviside function. We refer the interested reader
to [10] for the description of the accurate and fast evaluation of such type of double
integrals on the interface Γ.

For what concerns matrix elements coming from < u2|Γ
, q̇1 > after an analytic

integration in time, one has

δhk

∫

Γ
ϕ̂j|Γ

(x)ϕ̄i(x)dγx

where δhk is the Kronecker symbol. An analogous result holds for the discretization
of 〈p1, v̇2|Γ

〉.
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Finally, the matrix elements coming from A(u2, v2) will be of the type

ρhk

∫

Ω2

∇ϕ̂j(x) · ∇ϕ̂i(x)dx +
χhk

(c2∆t)2

∫

Ω2

ϕ̂j(x)ϕ̂i(x)dx,

where

ρhk =











1/2, h = k

1, h > k

0, h < k

and χhk =











1, h = k

−1, h = k + 1

0, elsewhere

hence they involve the evaluation of standard stiffness and mass matrices elements
related to the bounded subdomain Ω2.

5. Energy estimates for the numerical scheme

Let us consider the second energetic weak equation in (3.7), which involves
all the problem unknowns, and, to simplify the following notation, p̄ = 0. Now,
using (4.1) and (4.2) as approximate solutions and v2(x, t) = ψ̂h(t)Φ̂h(x) as a test
function, remembering the second equation in (2.6), we obtain

µ2

N∆t−1
∑

k=0

[

(∇Φ̂h,∇Φ̂k)L2(Ω2)

∫ T

0

˙̂
ψh(t)ψ̂k(t)dt+

(Φ̂h, Φ̂k)L2(Ω2)

c2
2

∫ T

0

˙̂
ψh(t)

¨̂
ψk(t)dt

]

+

N∆t−1
∑

k=0

(Φ̂h|Γ
, Φ̄k)L2(Γ)

∫ T

0

˙̂
ψh(t)ψ̄k(t)dt = µ2(Φ̂h, Fh)L2(Ω2),(5.1)

where

Fh(x) = −

∫ T

0

˙̂
ψh(t)f2(x, t)dt .

Performing analytically time integrals in the left-hand side of (5.1), we get

µ2

h−1
∑

k=0

(∇Φ̂h,∇Φ̂k)L2(Ω2) +
µ2

2
(∇Φ̂h,∇Φ̂h)L2(Ω2) +

µ2

c2
2

(

Φ̂h,
Φ̂h − Φ̂h−1

(∆t)2

)

L2(Ω2)

+ (Φ̂h|Γ
, Φ̄h)L2(Γ) = µ2(Φ̂h, Fh)L2(Ω2).(5.2)

At this stage we need to observe that, from (4.1) and (4.2),

p1(x, th) ≃ ph
1 := Φ̄h(x), u2(x, th) ≃ uh

2 :=

h−1
∑

k=0

Φ̂k(x),

hence we can rewrite the numerical scheme (5.2) as

µ2

(

∇(uh+1
2 − uh

2 ),∇
uh+1

2 + uh
2

2

)

L2(Ω2)
+
µ2

c2
2

(

uh+1
2 − uh

2 ,
uh+1

2 − 2uh
2 + uh−1

2

(∆t)2

)

L2(Ω2)

+ (uh+1
2|Γ

− uh
2|Γ
, ph

1)L2(Γ) = µ2(uh+1
2 − uh

2 , Fh)L2(Ω2).(5.3)
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Now, let us introduce the discrete energy at time instant th+1 in the subdomain
Ωi, i = 1, 2, defined as

(5.4) Eh+1
i :=

1

2

[

1

c2
i

∥

∥

∥

uh+1
i − uh

i

∆t

∥

∥

∥

2

L2(Ωi)
+ ‖∇uh+1

i ‖2
L2(Ωi)

]

;

further we observe that

(∇(uh+1
2 − uh

2),∇(uh+1
2 + uh

2))L2(Ω2) = ‖∇uh+1
2 ‖2

L2(Ω2) − ‖∇uh
2 ‖2

L2(Ω2)

and

(uh+1
2 − uh

2 , u
h+1
2 − 2uh

2 + uh−1
2 )L2(Ω2)

= ‖uh+1
2 − uh

2 ‖2
L2(Ω2) − (uh+1

2 − uh
2 , u

h
2 − uh−1

2 )L2(Ω2)

> ‖uh+1
2 − uh

2 ‖2
L2(Ω2) −

1

2
‖uh+1

2 − uh
2‖2

L2(Ω2) −
1

2
‖uh

2 − uh−1
2 ‖2

L2(Ω2)

=
1

2

[

‖uh+1
2 − uh

2‖2
L2(Ω2) − ‖uh

2 − uh−1
2 ‖2

L2(Ω2)

]

.

Combining these results with (5.3) and (5.4), we finally obtain

(5.5) µ2[Eh+1
2 − Eh

2 ] + (uh+1
2|Γ

− uh
2|Γ
, ph

1 )L2(Γ) 6 µ2(uh+1
2 − uh

2 , Fh)L2(Ω2).

Applying the Cauchy–Schwarz inequality to the right-hand side of (5.5), we deduce

µ2[Eh+1
2 − Eh

2 ] + (uh+1
2|Γ

− uh
2|Γ
, ph

1)L2(Γ) 6 µ2∆t
∥

∥

∥

uh+1
2 − uh

2

c2∆t

∥

∥

∥

L2(Ω2)
c2‖Fh‖L2(Ω2),

wherefrom, applying the Young inequality and remembering (5.4), we obtain

(5.6) µ2[Eh+1
2 − Eh

2 ] + (uh+1
2|Γ

− uh
2|Γ
, ph

1 )L2(Γ) 6 µ2∆tEh+1
2 + µ2c

2
2

∆t

2
‖Fh‖2

L2(Ω2).

Let us now sum inequality (5.6), for h = 0, . . . , n− 1, with 1 6 n 6 N∆t, observing
that E0 = 0

(5.7) µ2En
2 +∆t

n−1
∑

h=0

(

uh+1
2|Γ

− uh
2|Γ

∆t
, ph

1

)

L2(Γ)
6 µ2∆t

[

En
2 +

n−1
∑

h=0

Eh
2 +

c2
2

2
‖Fh‖2

L2(Ω2)

]

.

Let us note that, remembering the coupling conditions on the interface, for the
second term in the left-hand side of (5.7) it holds, for sufficiently small ∆t,

∆t
n−1
∑

h=0

(uh+1
1 − uh

1

∆t
, ph

1

)

L2(Γ)
≃

∫

Γ

∫ tn

0
u̇1(x, t)p1(x, t) dt dγx = µ1EΩ1

(u1, tn),

hence we can write

(5.8) ∆t

n−1
∑

h=0

(uh+1
1 − uh

1

∆t
, ph

1

)

L2(Γ)
= µ1En

1 > 0

and finally from (5.7) and (5.8)

(5.9) µ2(1 − ∆t)En
2 + µ1En

1 6 µ2∆t

[ n−1
∑

h=0

Eh
2 +

c2
2

2

n−1
∑

h=0

‖Fh‖2
L2(Ω2)

]

.
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For the discrete energy in the subdomain Ω2 we obtain, under the natural assump-
tion 0 < ∆t < 1

En
2 6

∆t

1 − ∆t

[ n−1
∑

h=0

Eh
2 +

c2
2

2

n−1
∑

h=0

‖Fh‖2
L2(Ω2)

]

and applying at last Gronwall’s discrete lemma we deduce, for every time instant
tn, the following upper bound

(5.10) En
2 6

c2
2∆t

2(1 − ∆t)
exp

( tn
1 − ∆t

)

n−1
∑

h=0

‖Fh‖2
L2(Ω2).

If we finally consider the discrete energy in the subdomain Ω1, from (5.9) we can
write

(5.11) En
1 6

µ2

µ1
∆t

[ n−1
∑

h=0

Eh
2 +

c2
2

2

n−1
∑

h=0

‖Fh‖2
L2(Ω2)

]

and using (5.10) to bound from above every term in the first sum on the right-hand
side of (5.11), we succeed in proving a complete stability result for our numerical
scheme.

6. Numerical results

We illustrate first the performance of the proposed method with a classical
benchmark taken from [2]. We consider a circular hole of radius RC = 1 in an
infinite linear and homogeneous membrane. The Ω2 region is defined by RC < r <
RI , with RI = 2, the Ω1 region is defined by r > RI and the interface Γ is the
circumference r = RI (see Figure 2). Here µ1 = µ2 = 1 and c1 = c2 = 1. Meshes in
Ω2 and over Γ are conformal, i.e., segments for Γ coincide with sides of triangles for
Ω2 (see Figure 3). The hole is subjected to an uniform traction p̄(x, t) = e−t. The
observation time interval is [0, 20]. For the discretization, we have used different
temporal and spatial steps, ∆t and ∆x respectively.

−2 −1 0 1 2

−2

−1

0

1

2

Ω
Ω

2

Ω
1

••A B

Γ
Γ

N

Figure 2. The problem domain

The model describes an explosive phenomenon in which the solution is the
highest in the first instants of time and then rapidly decreases almost to exhaustion.
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Table 1. Solution u(A, t) with c = 1 and p(x, t) = e−t

∆x ∆t u(A, 0.4) u(A, 0.8) u(A, 1.2) u(A, 1.6) u(A, 2.0)
0.4 0.4 3.880 · 10−1 4.338 · 10−1 5.214 · 10−1 4.922 · 10−1 4.885 · 10−1

0.2 3.197 · 10−1 4.502 · 10−1 5.049 · 10−1 5.171 · 10−1 4.915 · 10−1

0.1 3.099 · 10−1 4.460 · 10−1 5.029 · 10−1 5.267 · 10−1 4.996 · 10−1

0.2 0.2 3.064 · 10−1 4.481 · 10−1 5.054 · 10−1 5.129 · 10−1 4.887 · 10−1

0.1 3.088 · 10−1 4.495 · 10−1 5.085 · 10−1 5.207 · 10−1 4.974 · 10−1

0.1 0.1 3.055 · 10−1 4.498 · 10−1 5.092 · 10−1 5.190 · 10−1 4.967 · 10−1

0.05 0.05 3.027 · 10−1 4.492 · 10−1 5.100 · 10−1 5.213 · 10−1 5.013 · 10−1

Table 2. Solution u(A, t) with c = 1 and p(x, t) = e−t

∆x ∆t u(A, 4) u(A, 8) u(A, 12) u(A, 16) u(A, 20)
0.4 0.4 3.365 · 10−1 1.552 · 10−1 9.438 · 10−1 6.798 · 10−1 5.322 · 10−1

0.2 3.385 · 10−1 1.542 · 10−1 9.433 · 10−1 6.798 · 10−1 5.321 · 10−1

0.1 3.376 · 10−1 1.536 · 10−1 9.430 · 10−1 6.799 · 10−1 5.322 · 10−1

0.2 0.2 3.396 · 10−1 1.549 · 10−1 9.483 · 10−2 6.834 · 10−2 5.348 · 10−2

0.1 3.387 · 10−1 1.544 · 10−1 9.480 · 10−1 6.834 · 10−1 5.349 · 10−2

0.1 0.1 3.389 · 10−1 1.546 · 10−1 9.492 · 10−2 6.843 · 10−2 5.356 · 10−2

Table 3. Solution u(B, t) with c = 1 and p(x, t) = e−t

∆x ∆t u(B, 0.4) u(B, 0.8) u(B, 1.2) u(B, 1.6) u(B, 2.0)
0.4 0.4 6.984 · 10−3 4.676 · 10−2 1.389 · 10−1 2.500 · 10−1 3.252 · 10−1

0.2 1.128 · 10−3 2.664 · 10−2 1.355 · 10−1 2.595 · 10−1 3.363 · 10−1

0.1 9.125 · 10−4 9.831 · 10−3 1.323 · 10−1 2.658 · 10−1 3.424 · 10−1

0.2 0.2 1.296 · 10−3 2.818 · 10−2 1.327 · 10−1 2.600 · 10−1 3.388 · 10−1

0.1 3.320 · 10−5 1.244 · 10−2 1.277 · 10−1 2.673 · 10−1 3.460 · 10−1

0.1 0.1 7.421 · 10−5 1.363 · 10−2 1.258 · 10−1 2.679 · 10−1 3.472 · 10−1

0.05 0.05 4.748 · 10−7 4.794 · 10−3 1.214 · 10−1 2.732 · 10−1 3.515 · 10−1

Table 4. Solution u(B, t) with c = 1 and p(x, t) = e−t

∆x ∆t u(B, 4) u(B, 8) u(B, 12) u(B, 16) u(B, 20)
0.4 0.4 3.232 · 10−1 1.584 · 10−1 9.525 · 10−2 6.828 · 10−2 5.335 · 10−2

0.2 3.261 · 10−1 1.569 · 10−1 9.510 · 10−2 6.827 · 10−2 5.335 · 10−2

0.1 3.273 · 10−1 1.562 · 10−1 9.506 · 10−2 6.827 · 10−2 5.335 · 10−2

0.2 0.2 3.270 · 10−1 1.576 · 10−1 9.559 · 10−2 6.862 · 10−2 5.362 · 10−2

0.1 3.270 · 10−1 1.576 · 10−1 9.559 · 10−2 6.862 · 10−2 5.362 · 10−2

0.1 0.1 3.287 · 10−1 1.571 · 10−1 9.566 · 10−2 6.870 · 10−2 5.369 · 10−2

In Tables 1–4, the values of the numerical solution u(x, t) at points A and B
obtained by varying the mesh (see Figure 3) of the domain and of the time step are
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Figure 3. Triangulation of the domain Ω2 with ∆x = 0.4 (left)
and its refinement (right)

reported. The results show both the efficiency of the numerical scheme proposed
and the stability of the numerical solution.

In Figure 4 the solution u(x, t) on the segment AB for different time instants
is represented. The curves, shown in Figure 5, reproduce the numerical solution of
the problem in the points A and B. They tend to coincide with increasing time.
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Figure 4. Solution u(x, t) on the segment AB for different time
instants (c = 1 and p(x, t) = e−t)

When the domain Ω2 ∪Ω1 is not homogeneous, the interface Γ is no longer ficti-
tious and separates two regions with different characteristics, and different speeds.

Now, we consider again a circular crown Ω2 and an unbounded region Ω1

complementary to it (see Figure 2). Suppose then that the characteristic speeds in



18 AIMI, DESIDERIO, DILIGENTI, AND GUARDASONI

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

u(
x,

t)

 

 

u(B,t)
u(A,t)

Figure 5. Graph of u(x, t) at points A and B (c = 1 and p(x, t) = e−t)
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Figure 6. Graph of u(x, t) at the point A for different values of
speed ci and p(x, t) = H [t]

Ω1 and Ω2 are one double of the other, in particular c1 = 1, c2 = 2 and subsequently
c1 = 2, c2 = 1. We will refer to numerical solution obtained with a triangulation
built with ∆x = 0.2 and a time step ∆t = 0.2. In this example we take on Γ the
Neumann datum p(x, t) = H [t].

From Figure 6 we see that, when the perturbation is localized in Ω2, the so-
lution u(A, t) behaves as in the case of a monodomain with the same physical
characteristics of Ω2. When the wave crosses the interface Γ diffraction and reflec-
tion phenomena occur, as a result of which the value of the solution is no longer
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Figure 7. Graph of u(x, t) at the point A for different values of
speed ci and p(x, t) = H [t]
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Figure 8. Unbounded domain with two holes

assimilated to one of the two monodomain. For growing time, the solution u(A, t)
tends to take on the behavior that would have in a monodomain with the same
physical characteristics Ω1.

Remark. When the two subdomains have the same physical properties, the
BIEs used on the interface in the coupling system can be seen as an exact NRBC [18]
assigned on an arbitrary truncation boundary chosen in an unbounded domain in
order to deal with standard domain methods (in this case finite elements). Hence,
the interface acts as an absorbing layer preventing waves from being reflected back-
wards. In this framework, let us consider the unbounded plain domain depicted in
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Figure 9. Solution in the domain Ω2 in different time instants
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Figure 10. Solution in the domain Ω2 in different time instants

figure 8, exterior to two holes. The truncation line is chosen as the circumference of
radius 3 (dotted line). In figures 9 and 10 we report the computed solution inside
the domain Ω2.
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