
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 96 (110) (2014), 23–29 DOI: 10.2298/PIM1410023B

ON Lp-CONVERGENCE OF

BERNSTEIN–DURRMEYER OPERATORS

WITH RESPECT TO ARBITRARY MEASURE

Elena E. Berdysheva and Bing-Zheng Li

Abstract. We consider Bernstein–Durrmeyer operators with respect to ar-
bitrary measure on the simplex in the space Rd. We obtain estimates for rate
of convergence in the corresponding weighted Lp-spaces, 1 6 p < ∞.

1. Introduction

We consider Bernstein–Durrmeyer operators with respect to arbitrary measure.
These are positive linear operators defined for functions on a d-dimensional simplex.
We start with notation. Let

S
d := {x = (x1, . . . , xd) ∈ R

d : 0 6 x1, . . . , xd 6 1, 0 6 x1 + · · · + xd 6 1}
denote the standard simplex in Rd. We denote by ∂Sd the boundary of Sd. We will
also use barycentric coordinates on the simplex which we denote by the boldface
symbol x = (x0, x1, . . . , xd), x0 := 1−x1−· · ·−xd. We will use standard multiindex
notation such as

xα := xα0

0 xα1

1 · · · xαd

d and
α

n
:=

(α0

n
,

α1

n
, · · · ,

αd

n

)

for x = (x0, x1, . . . , xd), α = (α0, α1, . . . , αd) ∈ Rd+1, n ∈ N. Functions defined
on Sd are understood as functions of a point that can be given alternatively in
cartesian or in barycentric coordinates.

The spaces Lp(Sd, ρ), 1 6 p < ∞, are defined in the standard way as spaces
of (equivalence classes) of real-valued functions f for which |f |p is integrable with
respect to a measure ρ with the norm

‖f‖Lp(Sd,ρ) :=

(
∫

Sd

|f(x)|pdρ(x)

)1/p

.

The space L∞(Sd, ρ) is the space of essentially bounded functions with the norm
‖f‖L∞(Sd,ρ) := ess supx∈Sd |f(x)|. We will also consider the space C(Sd) of contin-

uous bounded functions on Sd with the norm ‖f‖C(Sd) := maxx∈Sd |f(x)|.
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An important building stone of our construction are the Bernstein basis poly-

nomials of degree n ∈ N on the simplex

Bα(x) :=
(n

α

)

xα =
n!

α0!α1! · · · αd!
(1 − x1 − · · · − xd)α0 xα1

1 · · · xαd

d ,

with α = (α0, α1, . . . , αd), where α0, α1, . . . , αd are nonnegative integers and |α| :=
α0 + α1 + · · · + αd = n. Here, and in similar expressions later, 00 means 1. The
Bernstein basis polynomials are nonnegative on Sd, and

∑

|α|=n

Bα(x) = 1.

The polynomials {Bα}|α|=n constitute a basis of the space of real algebraic poly-
nomials in d variables of total degree at most n.

Definition 1.1. Let ρ be a nonnegative bounded Borel measure on Sd such
that

(1.1) supp ρ r ∂Sd 6= ∅.

The Bernstein–Durrmeyer operator with respect to the measure ρ is defined for
f ∈ C(Sd) or f ∈ Lp(Sd, ρ), 1 6 p 6 ∞, by

(1.2) Mn,ρ f :=
∑

|α|=n

∫

Sd fBαdρ
∫

Sd Bαdρ
Bα, n ∈ N.

Note that ρ is regular (being a nonnegative bounded Borel measure on a met-
ric space), and thus polynomials are dense in the spaces Lp(Sd, ρ), 1 6 p 6 ∞.
Condition (1.1) guarantees that

∫

Sd Bαdρ > 0 for all Bernstein basis polynomials
Bα.

The operator Mn,ρ is linear and positive, and it reproduces constant functions.
It is a variant of the Bernstein polynomial operator Bn for integrable functions.
The latter is defined as follows.

Definition 1.2. The Bernstein operator is defined for f ∈ C(Sd) by

(1.3) Bn f :=
∑

|α|=n

f
(α

n

)

Bα, n ∈ N.

This is a linear positive operator that reproduces linear functions. The operator
Bn was introduced by Bernstein [7] in the one-dimensional case in order to give a
constructive proof of the Weierstrass Approximation Theorem. Many variants and
generalizations of operator (1.3) were studied in hundreds of papers.

The operator Mn,ρ without weight (i.e., when ρ is the Lebesgue measure) was
defined in [12, 17] and studied in [8, 9]. In the special case when ρ is the Jacobi
weight, Mn,ρ was introduced in [18, 6]. It is very well understood; see, e.g., [11].
See also [5] for properties and further references.

Operators (1.2) in full generality were for the first time systematically studied in
[4], to our knowledge. The motivation came from learning theory; Jetter and Zhou
[14] used the univariate Bernstein–Durrmeyer operators of type (1.2) to obtain
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bias-variance estimates for support vector machine classifiers. In [16], the second
named author applied multivariate operators (1.2) as a tool for proving learning
rates of least-square regularized regression with polynomial kernels.

In this paper, we continue our investigations on convergence of operators (1.2).
In [2], the first named author considered uniform convergence of operators Mn,ρ.
She proved that

lim
n→∞

‖f − Mn,ρ f‖C(Sd) = 0 for every f ∈ C(Sd)

if and only if ρ is strictly positive on S
d (i.e., supp ρ = S

d). In [3], she con-
sidered pointwise convergence on the support of the measure. She showed that
(Mn,ρ f)(x) → f(x) as n → ∞ at each point x ∈ supp ρ if f is bounded on supp ρ
and continuous at x. Moreover, the convergence is uniform on any compact set in
the interior of supp ρ. Her method does not lead to estimates for rates of conver-
gence.

The second named author studied the weighted Lp-convergence of operators
(1.2). In [16], she proved that

lim
n→∞

‖f − Mn,ρ f‖Lp(Sd,ρ) = 0

for every f ∈ Lp(Sd, ρ), 1 6 p < ∞. Note that no additional assumptions on ρ
are required. Moreover, she obtained estimates for the rate of convergence in the
spaces Lp(Sd, ρ), 1 6 p < ∞, in terms of the following K-functional. Let C1(Sd)

be the space of functions g ∈ C(Sd) with continuous partial derivatives ∂ig := ∂g
∂xi

,
i = 1, . . . , d, endowed with the seminorm

‖∇g‖C(Sd) := max
i=1,...,d

‖∂ig‖C(Sd).

The K-functional used in [16] is defined by

K(f, t)p := inf
g∈C1(Sd)

{

‖f − g‖Lp(Sd,ρ) + t ‖∇g‖C(Sd)
}

, 1 6 p 6 ∞.

The following estimates were proved in [16]. If f ∈ Lp(Sd, ρ), 1 6 p < ∞, then

‖f − Mn,ρ f‖Lp(Sd,ρ) 6 2dK
(

f, n−1/2p
[

ρ(Sd)
]1/p )

p
, 1 6 p < 2,(1.4)

‖f − Mn,ρ f‖Lp(Sd,ρ) 6 2dK
(

f, n−1/p
[

ρ(Sd)
]1/p)

p
, 2 6 p < ∞.(1.5)

In this paper, we improve the rates given in estimates (1.4) and (1.5). Namely,
by a modification of the method of [16], we obtain the following result.

Theorem 1.1. Let ρ be a nonnegative bounded Borel measure on Sd such that

supp ρ r ∂Sd 6= ∅, and let f ∈ Lp(Sd, ρ), 1 6 p < ∞. Then

‖f − Mn,ρ f‖Lp(Sd,ρ) 6 2K
(

f, Cp n−1/2d
[

ρ(Sd)
]1/p )

p
, 1 6 p < ∞,

where Cp is a constant that depends only on p. It holds Cp 6 Cp̃ for p 6 p̃.

Moreover, one can take Cp = 1
2 for 1 6 p 6 2.
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2. Proof of Theorem 1.1

Denote ϕi(x) := xi, i = 1, . . . , d, and for 1 6 p 6 ∞

∆n,p :=

d
∑

i=1

∥

∥Mn,ρ

(

|ϕi(x) − ϕi(·)|
)∥

∥

Lp(Sd,ρ).

It is easy to see that

(2.1) ‖Mn,ρf − f‖Lp(Sd,ρ) 6 2K(f, ∆n,p/2)p

for f ∈ Lp(Sd, ρ), 1 6 p 6 ∞ (see [4, Theorem 4.5] or [16, Theorem 2.1]). Thus,
the key to proving estimates for the rate of convergence of the operator Mn,ρ is to
study the behaviour of ∆n,p.

We were able to obtain estimates for ∆n,p in case when 1 6 p < ∞. Theo-
rem 1.1 is a direct consequence of the lemma given below.

Lemma 2.1. Let ρ be a nonnegative bounded Borel measure on Sd such that

supp ρ r ∂Sd 6= ∅, and let f ∈ Lp(Sd, ρ), 1 6 p < ∞. Then

(2.2) ‖Mn,ρ

(

|ϕi(x) − ϕi(·)|
)

‖Lp(Sd,ρ) 6 cp n−1/2[

ρ(Sd)
]1/p

, i = 1, . . . , d,

where cp is a constant that depends only on p. It holds cp 6 cp̃ for p 6 p̃. Moreover,

one can take cp = 1 for 1 6 p 6 2.

Proof. Denote θα :=
∫

Sd Bα dρ. Following [16], we write

Mn,ρ

(

|ϕi(x) − ϕi(·)|
)

(x) =
∑

|α|=n

1

θα

∫

Sd

|ϕi(x) − ϕi(t)| Bα(t) dρ(t) Bα(x)

=
∑

|α|=n

∣

∣

∣
ϕi(x) − αi

n

∣

∣

∣
Bα(x) +

∑

|α|=n

1

θα

∫

Sd

∣

∣

∣

αi

n
− ϕi(t)

∣

∣

∣
Bα(t) dρ(t) Bα(x)

= Bn

(

|ϕi(x) − ϕi(·)|
)

(x) + I(x),

where Bn is the Bernstein operator (1.3), and

I(x) :=
∑

|α|=n

1

θα

∫

Sd

∣

∣

∣

αi

n
− ϕi(t)

∣

∣

∣
Bα(t) dρ(t) Bα(x).

By Cauchy–Schwarz inequality for positive operators (e.g., [13]), we have

Bn

(

|ϕi(x) − ϕi(·)|
)

(x) 6
(

Bn

(

[ϕi(x) − ϕi(·)]2
)

(x)
)1/2

(Bn(1)(x))
1/2

.

It is well known and easy to prove that

(2.3) Bn

(

[ϕi(x) − ϕi(·)]2
)

(x) =
ϕi(x) (1 − ϕi(x))

n
6

1

4n
,

and Bn(1) = 1. Thus, Bn

(

|ϕi(x) − ϕi(·)|
)

(x) 6 1
2

√
n

, and

(2.4) ‖Bn

(

|ϕi(x) − ϕi(·)|
)

‖Lp(Sd,ρ) 6
1

2
√

n

[

ρ(Sd)
]1/p

.
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Next we obtain an estimate for ‖I‖Lp(Sd,ρ). Take q such that 1
p + 1

q = 1.

Applying the Hölder inequality two times, we obtain

‖I‖p
Lp(Sd,ρ) =

∫

Sd

{

∑

|α|=n

1

θα

∫

Sd

∣

∣

∣

αi

n
− ϕi(t)

∣

∣

∣
Bα(t) dρ(t) B

1

p
+ 1

q

α (x)

}p

dρ(x)

6

∫

Sd

∑

|α|=n

1

θp
α

(
∫

Sd

∣

∣

∣

αi

n
− ϕi(t)

∣

∣

∣
Bα(t) dρ(t)

)p

Bα(x) dρ(x)

=
∑

|α|=n

1

θp−1
α

(
∫

Sd

∣

∣

∣

αi

n
− ϕi(t)

∣

∣

∣
B

1

p
+ 1

q

α (t) dρ(t)

)p

6
∑

|α|=n

1

θp−1
α

∫

Sd

∣

∣

∣

αi

n
− ϕi(t)

∣

∣

∣

p

Bα(t) dρ(t) θp/q
α

=

∫

Sd

∑

|α|=n

∣

∣

∣

αi

n
− ϕi(t)

∣

∣

∣

p

Bα(t) dρ(t)

=
∥

∥Bn

(

|ϕi(x) − ϕi(·)|p
)∥

∥

L1(Sd,ρ).

First suppose that p > 1 is an even integer. In this case, the expression in the
last line of the previous formula is the L1(Sd, ρ)-norm of a moment of the Bernstein
operator (1.3), namely, of Bn

(

[ϕi(x) − ϕi(·)]p
)

(x). First we note that the value of
this moment is independent of the dimension d. To see this, consider without loss
of generality i = 1. Then

Bn

(

[ϕ1(x) − ϕ1(·)]p
)

(x) =
∑

|α|=n

(

x1 − α1

n

)p

Bα(x)

=
∑

|α|=n

(

x1 − α1

n

)p( n

α1

)

xα1

1 (1 − x1)n−α1

× (n − α1)!

α2! · · · α0!

( x2

1 − x1

)α2

· · ·
( x0

1 − x1

)α0

=

n
∑

α1=0

(

x1 − α1

n

)p( n

α1

)

xα1

1 (1 − x1)n−α1

×
∑

|(α2,...,αd,α0)|=n−α1

B(α2,...,αd,α0)

( x2

1 − x1
, · · · ,

xd

1 − x1

)

=

n
∑

α1=0

(

x1 − α1

n

)p( n

α1

)

xα1

1 (1 − x1)n−α1

which is the p-th moment of the one-dimensional Bernstein operator. Estimates
for these moments are well known an can be found, e.g., in [10, Chapter 10, §1]. It
follows from Corollary to Theorem 1.1 of this chapter that there is a constant Ap

depending only on p such that
n

∑

α1=0

(

x1 − α1

n

)p( n

α1

)

xα1

1 (1 − x1)n−α1 6 Ap n−p/2.
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Consequently,

(2.5) ‖I‖Lp(Sd,ρ) 6
{

‖Bn([ϕi(x) − ϕi(·)]p)‖L1(Sd,ρ)
}1/p

6 n−1/2A1/p
p

[

ρ(Sd)
]1/p

.

For an arbitrary p > 1, take p̃ to be the smallest even integer with p 6 p̃. The
Lp(Sd, ρ)-and Lp̃(Sd, ρ)-norms are connected by the inequality

(2.6) ‖ · ‖Lp(Sd,ρ) 6 ‖ · ‖Lp̃(Sd,ρ)
[

ρ(Sd)
]

1

p
− 1

p̃

(e.g., [15, Chapter IV, §3, Theorem 6]). This estimate and (2.5) yield

‖I‖Lp(Sd,ρ) 6 n−1/2A
1/p̃
p̃

[

ρ(Sd)
]1/p

.

Combining this with (2.4), we obtain

‖Mn,ρ

(

|ϕi(x) − ϕi(·)|
)

‖Lp(Sd,ρ) 6 ‖Bn

(

|ϕi(x) − ϕi(·)|
)

‖Lp(Sd,ρ) + ‖I‖Lp(Sd,ρ)

6 n−1/2cp

[

ρ(Sd)
]1/p

with cp = 1
2 + A

1/p̃
p̃ , which is (2.2).

It follows from (2.6) that for all p 6 p̃ it holds

‖Mn,ρ

(

|ϕi(x) − ϕi(·)|
)

‖Lp(Sd,ρ) 6 n−1/2cp̃

[

ρ(Sd)
]1/p

.

Thus, cp 6 cp̃ for p 6 p̃.
Finally, consider p = 2. In this case A2 = 1

4 (see (2.3)). Thus, c2 = 1, and we
also can take cp = 1 for 1 6 p 6 2. �

Remark 2.1. Representations of general moments of the multivariate Bern-

stein operator (1.3) of the form Bn

(
∏d

i=1(ϕi(x) − ϕi(·))pi
)

with nonnegative inte-
gers pi, i = 1, . . . , d, in terms of Stirling numbers are given by Abel and Ivan [1].
They also estimated the order of these moments.

Remark 2.2. Alternatively, we could use in Theorem 1.1 the estimate

‖Mn,ρf − f‖Lp(Sd,ρ) 6 max {2, d} K (f, ∆n,p)p

instead of (2.1). This inequality leads to the estimate

‖Mn,ρf − f‖Lp(Sd,ρ) 6 max{2, d} K
(

f, n−1/2cp

[

ρ(Sd)
]1/p )

p
, 1 6 p < ∞,

with a constant cp like in Lemma 2.1.

Remark 2.3. Our method does not lead to estimates for the rates of conver-
gence of the operator Mn,ρ in the space L∞(Sd, ρ), or to pointwise estimates. These
are important and interesting open questions.
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