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NEW INTEGRAL REPRESENTATIONS

IN THE LINEAR THEORY OF

VISCOELASTIC MATERIALS WITH VOIDS

A. Cialdea, E. Dolce, V. Leonessa, and A. Malaspina

Abstract. We investigate the two basic internal BVPs related to the linear
theory of viscoelasticity for Kelvin–Voigt materials with voids by means of the
potential theory. By using an indirect boundary integral method, we represent
the solution of the first (second) BVP of steady vibrations in terms of a simple
(double) layer elastopotential. The representations achieved are different from
the previously known ones. Our approach hinges on the theory of reducible
operators and on the theory of differential forms.

1. Introduction

The theory of viscoelasticity is involved in different branches of applied sci-
ences like, for instance, civil engineering, geotechnical engineering, technology and
biomechanics (see [13,20] and the references therein).

Recently, Svanadze [20] has studied some properties related to the linear theory
of viscoelasticity for Kelvin–Voigt materials with voids. In particular, the existence
and uniqueness theorems for classical solutions of the internal and external two
basic boundary value problems (BVPs) of steady vibrations are proved by means
of boundary integral method.

The purpose of this work is to obtain integral representations for the solution
different from those given in [20]. The method we use has been introduced for
the first time in [1] for the n-dimensional laplacian and it leads to the solution
of the Dirichlet problem by means of a simple layer potential. The double layer
potential ansatz for the Neumann problem can be treated in a similar way as shown
in [5]. This approach does not require neither the knowledge of pseudodifferential
operators nor the use hypersingular integral, but it hinges on the theory of singular
integral operators and the theory of differential forms. The method has been applied
to several PDEs in simply and multiply connected domains (see [3–8,15,16]).
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The paper is organized as follows. After giving some definitions and preliminary
results in Sections 2 and 3, in Section 4 we deal with some properties of simple
and double layer elastopotential. Section 5 concerns the study of the first BVP
of steady vibrations. We show how to obtain the solution by means of a simple
layer elastopotentials. In particular, we construct a left reduction for the related
singular integral system. We prove that this singular integral system is equivalent
to the Fredholm system obtained through the reduction. Section 6 is devoted to
the second BVP of steady vibrations. It turns out that the solution does exist in
the form of double layer elastopotential.

We mention that results of this kind are of interest also in numerical applica-
tions, inasmuch they allow to apply Boundary Element Method to BVPs of the
linear theory of viscoelasticity for Kelvin–Voigt materials with voids.

2. Definitions and preliminary results

Let us consider Ω as a bounded domain of R3 such that its boundary ∂Ω is a
Lyapunov surface, i.e., Σ ∈ C1,β , β ∈ (0, 1], and such that R

3
r Ω is connected;

n(x) = (n1(x), n2(x), n3(x)) denotes the outward unit normal vector at the point
x = (x1, x2, x3) ∈ Σ and D = (∂/∂x1, ∂/∂x2, ∂/∂x3). If v = (v1, v2, v3, v4), w =

(w1, w2, w3, w4) are two vectors, then v ·w =
∑4

j=1 vjwj , where wj is the conjugate
of wj .

In the sequel p indicates a real number such that p ∈ ]1,+∞ [. We denote
by Lp(Σ) the space of all complex-valued measurable functions u such that |u|p

is integrable over Σ and by W 1,p(Σ) the space of all complex-valued measurable
functions u ∈ Lp(Σ) such that Du ∈ Lp(Σ).

The symbol Chk (Σ) (resp. Lpk(Σ)) stands for the space of the differential forms
of degree k (k = 0, 1, 2, 3) whose components are continuously differentiable up to
the order h (resp. belong to Lp(Σ)) in a coordinate system of class Ch+1 (resp. C1)
(and then in every coordinate system of class Ch+1 (resp. C1)).

We recall that if v is a k-form on Σ, the symbol dv denotes the differential
of v and ∗v denotes the adjoint of u (∗ stands for the star Hodge operator). In
the sequel we shall use the symbol ∗

Σ
; it means that, if w is a 2-form on Σ and

w = w0dσ, then ∗
Σ
w = w0. For more details about differential forms we refer the

reader to [10,11].

We mention that if B and B̃ are two Banach spaces and S : B → B̃ is a
continuous linear operator, we say that S can be reduced on the left if there exists

a continuous linear operator S′ : B̃ → B such that S′S = I + T , where I stands
for the identity operator on B and T : B → B is compact. One of the main
properties of such operators is that the equation Sα = β has a solution if and only
if 〈γ, β〉 = 0 for any γ such that S∗γ = 0, S∗ being the adjoint of S (see [9, 17]).
A left reduction is said to be equivalent if N(S′) = {0}, where N(S′) denotes the
kernel of S′ (see [17, pp. 19–20]).

In what follows we shall make use of the theory of singular integral operators,
for which we refer to [9,14,17].
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3. The system of the linear theory viscoelasticity

for Kelvin–Voigt material with voids

In this section we follow Svanadze [20]. Assume that the region Ω is occupied
by an isotropic homogeneous viscoelatic Kelvin–Voigt material with voids. The
system of homogeneous equations of motion in the linear theory of viscoelasticity
for such materials is

µ∆u′ + (λ+ µ) grad div u′ + b gradϕ′ − ρü′

+ µ∗∆u̇′ + (λ∗ + µ∗) grad div u̇′ + b∗ grad ϕ̇′ = 0,

(α∆ − ξ)ϕ′ − b divu′ − ρ0ϕ̈
′ + (α∗∆ − ξ∗)ϕ̇′ − ν∗ div u̇′ = 0,

where u′ = (u′
1, u

′
2, u

′
3) is the displacement vector, ϕ′ is the volume fraction field,

ρ is the reference mass density (ρ > 0), ρ0 = ρκ, κ is the equilibrated inertia
(κ > 0); λ, µ, b, α, ξ, λ∗, µ∗, b∗, α∗, ν∗, ξ∗ are (real) constitutive coefficients, and
a superposed dot denotes differentiation with respect to t. In particular λ and µ
are the Lamé constants and λ∗ and µ∗ are the dynamic viscosity constants.

We are interested in the case where u′ and ϕ′ have a harmonic time variation,
that is

u′(x, t) = Re[u(x)e−iωt], ϕ′(x, t) = Re[ϕ(x)e−iωt],

with u(x) = (u1(x), u2(x), u3(x)) a complex time-independent vector function and
ϕ(x) a complex time-independent function. Then we obtain the following system
of homogeneous equations of steady vibrations

(3.1)
µ1∆u+ (λ1 + µ1) grad div u+ b1 gradϕ+ ρω2u = 0,

(α1∆ + ξ2)ϕ− ν1 divu = 0,

where ω is the oscillation frequency (ω > 0),

λ1 = λ− iωλ∗, µ1 = µ− iωµ∗, b1 = b− iωb∗, α1 = α− iωα∗,

ν1 = b− iων∗, ξ1 = ξ − iωξ∗, ξ2 = ρ0ω
2 − ξ1.

We observe that (3.1) is a system of partial differential equations with complex
coefficients. It is convenient to write it in the following matrix form

(3.2) A(Dx)U(x) = 0, x ∈ Ω,

where U = (u, ϕ) and A(Dx) = (Apq(Dx))4×4 denotes the matrix whose entries are

Alj(Dx) = (µ1∆ + ρω2)δlj + (λ1 + µ1)
∂2

∂xl∂xj
, Al4(Dx) = b1

∂

∂xl
,

A4l(Dx) = −ν1
∂

∂xl
, A44(Dx) = α1∆ + ξ2, l, j = 1, 2, 3

(δlj being the Kronecker delta).
Let us introduce the matrix of differential operators

L(Dx) = (Lpq(Dx))4×4,

Llj(Dx) =
1

µ1
(∆ + τ2

1 )(∆ + τ2
2 )δlj −

1

α1µ1µ2
[(λ1 + µ1)(α1∆ + ξ2) + b1ν1]

∂2

∂xl∂xj
,
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Ll4(Dx) = −
b1

α1µ2

∂

∂xl
, L4l(Dx) =

ν1

α1µ1µ2
(µ1∆ + ρω2)

∂

∂xl
,

L44(Dx) =
1

α1µ2
(µ2∆ + ρω2), l, j = 1, 2, 3,

where τ2
1 and τ2

2 are the roots of the equation (with respect to τ)

(µ2τ − ρω2)(α1τ − ξ2) − b1ν1τ = 0

and µ2 = λ1 + 2µ1. Further set τ2
3 = ρω2/µ1. From now on we assume that

τ2
1 6= τ2

2 6= τ2
3 6= τ2

1 .
The matrix of fundamental solution of homogeneous system (3.1) is

(3.3) Γ = (Γpq)4×4,

defined by Γ(x) = L(Dx)Y (x), where

Y (x) = (Ypq(x))4×4, Yll(x) =

3∑

j=1

c1jγj(x), l = 1, 2, 3,

Y44(x) =
2∑

j=1

c2jγj(x), Ypq(x) = 0, p, q = 1, 2, 3, 4, p 6= q,

with γj(x) = s(x)eiτj |x|,

(3.4) s(x) = −
1

4π|x|

being the fundamental solution of the Laplace equation, and

c1j =

3∏

l=1
l 6=j

1

τ2
l − τ2

j

, c21 = −c22 =
1

τ2
2 − τ2

1
, j = 1, 2, 3.

If α1µ1µ2 6= 0, then each column of the matrix Γ(x) satisfies system (3.2)
at every point x ∈ R3 except the origin [20, Corollary 4.1]. Moreover (see [20,
Corollary 4.2]), the fundamental solution of the system

µ1∆u(x) + (λ1 + µ1) grad div u(x) = 0,

α1∆ϕ(x) = 0

is the matrix Ψ = (Ψpq)4×4, whose entries are

Ψlj(x) = −
1

8π

(
1

µ1
∆δlj −

λ1 + µ1

µ1µ2

∂2

∂xl∂xj

)
|x|,

Ψ44(x) =
1

α1
s(x), Ψl4(x) = Ψ4j(x) = 0, l, j = 1, 2, 3,

(3.5)

with s(x) given by (3.4).
In the sequel the following result will be useful (see [20, Theorem 4.2]).
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Lemma 3.1. If α1µ1µ2 6= 0, then the relations

Ψpq(x) = O(1/|x|), Γpq(x) − Ψpq(x) = O(1 + |x|),

∂m

∂xm1
1 ∂xm2

2 ∂xm3
3

[Γpq(x) − Ψpq(x)] = O(|x|1−m)

hold in a neighborhood of the origin, where m = m1 + m2 + m3, m > 1, ml > 0,
l = 1, 2, 3 and p, q = 1, 2, 3, 4.

Thus, Ψ(x) is the singular part of the matrix Γ(x) in the neighborhood of the
origin.

Denote by P (Dx, n) the matrix of differential operators whose entries are

Pij(Dx, n) = Tij(Dx, n), Tij(Dx, n) = µ1δij
∂

∂n
+ µ1nj

∂

∂xi
+ λ1ni

∂

∂xj
,

Pi4(Dx, n) = b1ni, P4j(Dx, n) = 0, P44(Dx, n) = α1
∂

∂n
, i, j = 1, 2, 3.

(3.6)

Let us introduce the following notation:

Ã(Dx) = AT (−Dx)

(the superscript T denotes the transposition),

P̃ (Dx, n) = (P̃pq(Dx, n))4×4, P̃pj(Dx, n) = Ppj(Dx, n),

P̃j4(Dx, n) = ν1nj , P̃44(Dx, n) = P44(Dx, n), j = 1, 2, 3, p = 1, 2, 3, 4,
(3.7)

(3.8) Γ̃(x) = ΓT (−x).

Γ̃ is the fundamental solution of Ã(Dx)U = 0.
The basic internal BVPs of steady vibrations in the theory of viscoelastic mate-

rials with voids consist in finding a solution of system (3.2) satisfying the boundary
condition (with F assigned complex-valued vector function)

lim
Ω∋x→z∈Σ

U(x) = [U(z)]+ = F (z) in the first problem,

[P (Dz , n)U(z)]+ = F (z) in the second problem.

4. Some properties of simple and double layer elastopotentials

Throughout this article the symbol Sp stands for the class of simple layer
elastopotentials

(4.1) U [g](x) =

∫

Σ
Γ(x− y)g(y) dσy , x ∈ Ω,

with density belonging to [Lp(Σ)]4; by Dp we mean the class of double layer
elastopotentials

(4.2) W [g](x) =

∫

Σ
[P̃ (Dy, n)ΓT (x− y)]T g(y) dσy , x ∈ Ω,

with density in [W 1,p(Σ)]4. For simplicity of notation, we omit to specify the
density when it is not necessary.
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We begin to note that, from Lemma 3.1 it follows that

(4.3) Γ = Ψ +H,

where Ψ is the matrix defined by (3.5) and H is a 4 × 4 complex matrix whose
entries are Hpq(x) = O(1 + |x|). Then, on account of [14, Theorem 7.2, p. 317] and
Lemma 3.1, we have the following properties of the simple layer elastopotential.

Theorem 4.1. If G ∈ [C0,β′

(Σ)]4, 0 < β′ < β 6 1, then

(i) A(Dx)U [G] = 0 in Ω; (ii) U [G] ∈ [C1,β′

(Ω) ∩C∞(Ω)]4.

Now consider the double layer elastopotentialW with density a complex-valued
function G:

W (x) =

∫

Σ
[P̃ (Dy, n)ΓT (x− y)]TG(y) dσy , x ∈ Ω.

Then, from (4.3),

P̃ (Dy, n)ΓT (x− y) = P̃ (Dy, n)ΨT (x − y) + P̃ (Dy, n)HT (x− y)

and, consequently, we can rewrite

(4.4) W (x) =

∫

Σ
[P̃ (Dy, n)ΨT (x− y)]TG(y) dσy

+

∫

Σ
[P̃ (Dy, n)HT (x− y)]TG(y) dσy = WΨ(x) +WH(x).

A direct calculation shows that WΨ = (wΨ, ϕΨ) with

wΨ(x) =

∫

Σ
[P̃ (Dy, n)ΨT (x− y)]T g(y) dσy,

ϕΨ(x) =

∫

Σ

[
ν1

α1
s(x− y)ny · g(y) +

∂

∂ny
s(x− y)g4(y)

]
dσy ,

(4.5)

where G = (g1, g2, g3, g4) = (g, g4).

Set now H(x− y) = [P̃ (Dy, n)HT (x − y)]T , H = (Hpq)4×4, where

(4.6) Hpq(x − y) =

4∑

j=1

P̃qj(Dy, n)Hpj(x− y).

In particular, if p = 1, 2, 3, 4 and q = 1, 2, 3, from (4.6) and (3.7) we get

Hpq(x− y) =

3∑

j=1

Tqj(Dy, n)Hpj(x− y) + ν1nq(y)Hp4(x− y),(4.7)

H44(x− y) = α1
∂

∂ny
H44(x− y)(4.8)

and Hq4(x− y) = 0.
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This yields that WH = (wH , ϕH) with

wHp (x) =

∫

Σ
Hpq(x − y)gq(y) dσy, p = 1, 2, 3,

ϕH(x) =

∫

Σ
H44(x − y)g4(y) dσy .

(4.9)

Note that, if p = 1, 2, 3, 4 and q = 1, 2, 3, from (4.7) and Lemma 3.1 it follows that

(4.10) Hpq(x− y) = O(1 + |x− y|),

since

Tqj(Dy, n)Hpj(x− y) = µ1δqj
∂

∂ny
Hpj(x− y) + µ1nj(y)

∂

∂yq
Hpj(x− y)

+ λ1nq(y)
∂

∂yj
Hpj(x− y) = O(1)

and

(4.11) Hp4(x− y) = O(1 + |x− y|).

Moreover, again from Lemma 3.1 and (4.8), we get

(4.12) H44(x− y) = O(1).

We end this section with the following result.

Theorem 4.2. If G ∈ [C1,β′

(Σ)]4, 0 < β′ < β 6 1, then

(i) A(Dx)W [G] = 0 in Ω; (ii) W [G] ∈ [C1,β′

(Ω) ∩ C∞(Ω)]4.

Proof. Statement (i) is obvious. In order to obtain (ii), keeping in mind (4.4),
(4.5) and (4.9), it is sufficient to apply [14, Theorem 6.2, p. 315]. �

5. First problem

In this section we look for the solution of the first BVP in the form of a simple
layer elastopotential. Namely, we consider the BVP

U ∈ Sp,

A(Dx)U = 0 in Ω,(5.1)

U = F on Σ, F ∈ [W 1,p(Σ)]4.

Imposing the boundary condition we get the integral system of the first kind

(5.2)

∫

Σ
Γ(x− y)φ(y) dσy = F (x)

on Σ. Following the approach introduced in [1], we take the differential of both
sides of (5.2), obtaining the following singular integral system

(5.3)

∫

Σ
dx[Γ(x− y)]φ(y) dσy = dF (x).

In (5.3) the unknown is the vector (φ1, . . . , φ4) whose components are scalar func-
tions, while the data is the vector (dF1, . . . , dF4) whose components are differential
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forms of degree 1. We shall see that (5.3) is solvable and we shall obtain the solution
of (5.1). Moreover system (5.3) is shown to be equivalent to a Fredholm one.

The following result was proved in [1, Theorem I, p. 186].

Lemma 5.1. The singular integral operator

J : Lp(Σ) −→ Lp1(Σ)

Jφ(x) =

∫

Σ
φ(y) dxs(x− y) dσy ,

where s is given by (3.4), can be reduced on the left. A reducing operator is

J ′ : Lp1(Σ) −→ Lp(Σ)

J ′ψ(z) = ∗
Σ

∫

Σ
ψ(x) ∧ dz[s1(z − x)],

where s1(z − x) is the double 1-form introduced by Hodge in [12]:

s1(z − x) =

3∑

j=1

s(z − x) dzjdxj .

As in [5, Theorem 4, p. 38], one can show

Lemma 5.2. The singular integral operator

R : [Lp(Σ)]3 −→ [Lp1(Σ)]3

Rjφ(x) =

∫

Σ
φk(y) dx[Ψjk(x− y)]dσy (j = 1, 2, 3),

Ψjk, being defined by (3.5), can be reduced on the left. A reducing operator is

R′ : [Lp1(Σ)]3 −→ [Lp(Σ)]3

R′
iψ =

(λ1 + µ1)(λ1 + 2µ1)

λ1 + 3µ1
Kjj(ψ)ni+ 2µ1

(λ1 + 2µ1)

(λ1 + 3µ1)
Kij(ψ)nj

+ µ1
(λ1 + µ1)

(λ1 + 3µ1)
δijspnjKps(ψ).

Here Kjs are the operators defined by

Kjs(ψ)(x) = ∗

∫

Σ
dx[s1(x−y)]∧ψj(y)∧dxs−δ123

ihp

∫

Σ

∂

∂xs
[Kij(x−y)]∧ψh(y)∧dyp,

where

Kij(x − y) =
1

4π

[
(λ1 + µ1)

(λ1 + 3µ1)

∂|x− y|

∂yj

∂|x− y|

∂yi

]
1

|x− y|

and δ123
ihp is the Levi-Civita symbol.

Lemma 5.3. The singular integral operator

S0 : [Lp(Σ)]4 −→ [Lp1(Σ)]4

S0(φ)(x) =

∫

Σ
dx[Ψ(x − y)]φ(y) dσy ,
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where the matrix Ψ is given by (3.5), can be reduced on the left. A reducing operator
is

S′ : [Lp1(Σ)]4 −→ [Lp(Σ)]4

S′
k(ψ) = (1 − δk4)R′

k(ψ(1)) + δk4α1J
′(ψ4),

(5.4)

where ψ =
(
ψ(1)

ψ4

)
, and ψ(1) is a three-component column vector.

Proof. We remark that

[S0(φ)]k = (1 − δk4)Rk(φ(1)) + δk4
1

α1
J(φ4), k = 1, 2, 3, 4.

We have

[S′S0(φ)]k = (1 − δk4)R′
k([S0(φ)](1)) + δk4α1J

′([S0(φ)]4) =

= (1 − δk4)R′
kRk(φ(1)) + δk4J

′J(φ4).

Lemmas 5.1 and 5.2 complete the proof. �

We are now in a position to find the reducing operator for S and to obtain an
existence theorem for the equation Sφ = ω.

Proposition 5.1. The singular integral operator

S : [Lp(Σ)]4 −→ [Lp1(Σ)]4

Sφ(x) =

∫

Σ
dx[Γ(x − y)]φ(y) dσy ,

(5.5)

Γ being the matrix (3.3), can be reduced on the left by S′ (see (5.4)).

Proof. We can write S = (S−S0)+S0. Since Lemma 3.1 implies that S−S0

is compact, by the previous lemma we have that S′S = S′(S − S0) + S′S0 is a
Fredholm operator. �

Theorem 5.1. If

(5.6) µ∗ > 0, 3λ∗ + 2µ∗ > 0, α∗ > 0, (3λ∗ + 2µ∗)ξ∗ > 3
4 (b∗ + ν∗)2

are satisfied, then, given ω ∈ [Lp1(Σ)]4, there exists a solution φ ∈ [Lp(Σ)]4 of the
singular integral system

(5.7) Sφ = ω a.e. x ∈ Σ,

where S is given by (5.5), if and only if

(5.8)

∫

Σ
γi ∧ ωi = 0, i = 1, 2, 3, 4

for every γ ∈ [Lq1(Σ)]4, q = p
p−1 , such that γi (i = 1, 2, 3, 4) is a weakly closed

1-form, i.e., ∫

Σ
γi ∧ dg = 0, ∀ g ∈ C∞(R3)

(g : R3 → C).



58 CIALDEA, DOLCE, LEONESSA, MALASPINA

Proof. Proposition 5.1 implies that the range of S is closed in [Lp1(Σ)]4. Then
integral system (5.7) has a solution φ ∈ [Lp(Σ)]4 if and only if compatibility condi-
tions (5.8) hold for every γ ∈ [Lq1(Σ)]4 solution of the homogeneous adjoint system

S∗
j γ(x) =

∫

Σ
γi(y) ∧ dy[Γij(y − x)] = 0 a.e. x ∈ Σ, j = 1, 2, 3, 4.

On the other hand S∗γ = 0 if and only if γi is a weakly closed 1-form. Indeed,
if γ is such that S∗γ = 0, that is

(5.9)

∫

Σ
γi(y) ∧ dy [Γij(y − x)] = 0 a.e. x ∈ Σ,

we have

0 =

∫

Σ
pj(x) dσx

∫

Σ
γi(y) ∧ dy [Γij(y − x)]

=

∫

Σ
γi(y) ∧ dy

∫

Σ
pj(x)Γij(y − x)dσx ∀ pi ∈ Cλ(Σ).

We can represent every smooth solution of (3.2) by means of a simple layer elastopo-
tential (see Theorem 4.1) Ui(y) =

∫
Σ pj(x)Γij(y− x) dσx, and then

∫
Σ γj ∧ dUj = 0

for any U ∈ [C1,β′

(Ω) ∩ C∞(Ω)]4 such that A(Dx)U = 0. Therefore we have

(5.10)

∫

Σ
γi(y) ∧ dy [Γij(y − x)] = 0 ∀x ∈ R

3
r Ω.

Let us denote by wj(x), j = 1, 2, 3, 4, the left-hand side of (5.10). By (3.8) it follows

that wj(x) =
∫

Σ γi(y) ∧ dy[Γ̃ji(x− y)].

If v ∈ [C∞(R3)]4 and η ∈ [C1(Ω)]4 ∩ [C2(Ω)]4 are such that A(Dx)η = A(Dx)v
in Ω and η = 0 on Σ, we have

∫

Ω
wj(A(Dx)v)jdx =

∫

Ω
wj(A(Dx)η)jdx

=

∫

Ω
(A(Dx)η)j(x)dx

∫

Σ
γi(y) ∧ dy[Γ̃ji(x− y)]

=

∫

Σ
γi(y) ∧ dy

∫

Ω
(A(Dx)η)j(x)Γ̃ji(x− y) dx.

From [20, Theorem 7.3], it follows that
(5.11)

ηi(y) = −

∫

Σ
Γ̃ji(x−y)(P (Dx, n)η)j(x) dσx+

∫

Ω
Γ̃ji(x−y)(A(Dx)η)j(x) dx, y ∈ Ω.

Letting y → Σ, (5.11) gives
∫

Σ
Γ̃ji(x− y)(P (Dx, n)η)j(x) dσx =

∫

Ω
Γ̃ji(x− y)(A(Dx)η)j(x) dx, y ∈ Σ.

Then, by (5.9) we have

(5.12)

∫

Ω
wj(A(Dx)v)jdx =

∫

Σ
γi(y) ∧ dy

∫

Σ
Γ̃ji(x− y)(P (Dx, n)η)j(x) dσx
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=

∫

Σ
(P (Dx, n)η)j(x) dσx

∫

Σ
γi(y) ∧ dy[Γ̃ji(x− y)] = 0.

Formulas (5.10) and (5.12) lead to

0 =

∫

R3

wj(A(Dx)ψ)jdx =

∫

R3

(A(Dx)ψ)j(x)dx

∫

Σ
γi(y) ∧ dy[Γ̃ji(x− y)]

=

∫

Σ
γi(y) ∧ dy

∫

R3

(A(Dx)ψ)j(x)Γ̃ji(x− y) dx =

∫

Σ
γi ∧ dψi,

for any ψ ∈ [
◦

C∞(R3)]4. The last equality follows from [20, Theorem 7.3]. This
shows that γi is a weakly closed 1-form and the theorem is proved. �

Lemma 5.4. If (5.6) hold, given F ∈ [W 1,p(Σ)]4, 1 < p < ∞, the boundary
value problem

U ∈ Sp,

A(Dx)U = 0 in Ω,(5.13)

dU = dF on Σ

is solvable. A solution is given by a simple layer elastopotential (4.1) where its
density g solves the singular integral system

(5.14) Sg = dF,

S being operator (5.5).

Proof. There exists a solution of (5.13) if and only if, there exists a solution
g ∈ [Lp(Σ)]4 of singular integral system (5.14). Such a system is always solvable,
by Theorem 5.1. �

Lemma 5.5. If (5.6) are satisfied, then the solution of the boundary value
problem

A(Dx)V = 0 in Ω,

V = C on Σ,
(5.15)

where C = (c1, . . . , c4) ∈ C4, can be represented by a simple layer elastopotential

with density g ∈ [C1,β′

(Σ)]4, 0 < β′ < β 6 1.

Proof. From Theorem 4.2(i) and [20, Theorem 9.1], it follows that the solu-
tion of (5.15) can be represented by a double layer elastopotential

V (x) =

∫

Σ
[P̃ (Dy, n)ΓT (x− y)]T g(y) dσy, g ∈ [C1,β′

(Σ)]4, (0 < β′ < β 6 1),

where g is a solution of the singular integral equation

1

2
g(z) +

∫

Σ
[P̃ (Dy, n)ΓT (x − y)]T g(y) dσy = C,

which is always solvable. Then V ∈ [C1,β′

(Ω)]4 (see Theorem 4.2(ii)).
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Let us consider now the boundary value problem

A(Dx)U = 0 in Ω,

P (Dx, n)U = P (Dx, n)V on Σ.
(5.16)

Since the solution U of problem (5.16) exists, is unique and can be represented
by a simple layer elastopotential ( [20, Theorem 9.3] and Theorem 4.1), we obtain
U = V , which proves the theorem. �

Now we can solve the first BVP in the class Sp.

Theorem 5.2. Assuming conditions (5.6), the first BVP (5.1) admits a unique
solution U . In particular, the density φ of U can be written as φ = φ0 + ψ0, where
φ0 solves the singular integral system

∫

Σ
dx [Γij(y − x)]φ0j(y) dσy = dFi(x), i = 1, . . . , 4, a.e. x ∈ Σ

and ψ0 is the density of a simple layer elastopotential which is constant on Σ.

Proof. Let W be a solution of (5.13). Since dW = dF on Σ and Σ is con-
nected, we have W = F − C on Σ, with C ∈ C4. Then U = W + V , V being a
solution of (5.15), solves (5.1).

In order to show the uniqueness, suppose that the simple layer elastopotential
U defined by (4.1) solves (5.1) with F = 0. From Proposition 5.1 it follows that
the condition U = 0 on Σ implies that

(5.17) φ+Kφ = 0,

where K is a suitable compact operator from [Lp(Σ)]4 into itself such that S′S =
I + K (S and S′ being given by (5.5) and (5.4) resp.). By bootstrap techniques

(5.17) implies that φ ∈ [C1,β′

(Σ)]4, 0 < β′ < β 6 1. Then U ∈ [C1,β′

(Ω) ∩C2(Ω)]4

thanks to Theorem 4.1, the uniqueness proved in [20, Theorem 6.1] completes the
proof. �

When we solve the first BVP (5.1) by means of a simple layer elastopotential,
we need to study singular integral system (5.14). We known that this system can
be reduced to a Fredholm one by the operator S′. Note that this reduction is
not an equivalent one because N(S′) 6= {0}. Nevertheless, we still have a kind of
equivalence, as we prove in the next theorem.

Theorem 5.3. The singular integral system (5.14) is equivalent to the Fredholm
system S′Sg = S′(dF ), where g ∈ [Lp(Σ)]4, F ∈ [W 1,p(Σ)]4.

Proof. As in [2, pp. 253–254], one can show that N(S′S) = N(S). This
implies that, if G is such that there exists a solution g of the system Sg = G,
this system is satisfied if and only if S′Sg = SG. Since we know that the system
Sg = dF is solvable, we have that Sg = dF if, and only if, S′Sg = S′(dF ). �
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6. Second problem

In this section we achieve the representability of the solution of the second BVP
by means of a double layer elastopotential, i.e.,

W ∈ Dp,

A(Dx)W = 0 in Ω,(6.1)

[P (Dx, n)W ]+ = F on Σ, F ∈ [Lp(Σ)]4.

In order to prove the claim of this section we need the following lemma.

Lemma 6.1. We have that

(6.2) [P (Dx, n)W [U ]]+ = −
1

4
g + V 2g, g ∈ [Lp(Σ)]4,

where P (Dx, n) are the matrix of differential operators defined by (3.6), U is a sim-
ple layer elastopotential (4.1) with density g, W is the double layer elastopotential
(4.2) with density U and

(6.3) V g(x) =

∫

Σ
P (Dx, n)Γ(x− y)g(y) dσy.

Proof. By [20, Theorem 7.3], we have

W [U ](x) = U(x) +

∫

Σ
Γ(x− y)P (Dy, n)U(y) dσy, x ∈ Ω.

It is also known that (see [20, formula (8.1)])

(6.4)
[
P (Dx, n)U [g](x)

]+
= −

1

2
g(x) + P (Dx, n)U [g](x), x ∈ Σ.

Then we have

[P (Dx, n)W [U ](x)]+ =
[
P (Dx, n)

(
U(x) +

∫

Σ
Γ(x− y)P (Dy, n)U(y) dσy

)]+

=
[
P (Dx, n)U(x) + P (Dx, n)

∫

Σ
Γ(x− y)P (Dy, n)U(y) dσy

]+

=
(

1 −
1

2

)
P (Dx, )U(x) + P (Dx, n)

∫

Σ
Γ(x− y)P (Dy, n)U(y) dσy , x ∈ Σ.

Keeping in mind (4.1) and (6.4), we get

[P (Dx, n)W [U ](x)]+ =
1

2
P (Dx, n)

( ∫

Σ
Γ(x− y)g(y) dσy

)

+ P (Dx, n)

∫

Σ
Γ(x− y)P (Dy, n)

( ∫

Σ
Γ(y − z)g(z) dσz

)
dσy

= −
1

4
g(x) + P (Dx, n)

∫

Σ
Γ(x− y)P (Dy, n)

∫

Σ
Γ(y − z)g(z)dσzdσy

= −
1

4
g(x)+V 2g(x), x ∈ Σ,

V being the operator (6.3). �



62 CIALDEA, DOLCE, LEONESSA, MALASPINA

Lemma 6.2. Let T be the following linear integral operator

T (G)(x) =

∫

Σ
K(x− y)G(y) dσy , x ∈ Ω,

where K is a 4 × 4 matrix whose entries are Kpq(x − y) = O(|x − y|−2). Then T
is a continuous operator from [L2(Σ)]4 into [L2(Ω)]4, i.e., there exists C such that

‖T (G)‖[L2(Ω)]4 6 C‖G‖[L2(Σ)]4 , ∀G ∈ [L2(Σ)]4.

Proof. Observe that for every q = 1, 2, 3, 4
∫

Ω
dx

∫

Σ

|Gq(y)|

|x− y|2
dσy

∫

Σ

|Gq(w)|

|x− w|2
dσw

=

∫

Σ
|Gq(y)| dσy

∫

Σ
|Gq(w)| dσw

∫

Ω

1

|x− y|2|x− w|2
dx

6 C1

∫

Σ
|Gq(y)| dσy

∫

Σ

|Gq(w)|

|y − w|
dσw ,

the last inequality being true thanks to [19, p. 806] or [18, p. 45]. Then
∫

Ω
dx

∫

Σ

|Gq(y)|

|x− y|2
dσy

∫

Σ

|Gq(w)|

|x− w|2
dσw

6 C1

( ∫

Σ
|Gq(y)|2 dσy

)1/2( ∫

Σ

( ∫

Σ

|Gq(w)|

|y − w|
dσw

)2

dσy

)1/2

6 C1

( ∫

Σ
|Gq(y)|2 dσy

)1/2( ∫

Σ

∫

Σ

|Gq(τ)|2

|y − τ |
dστ

∫

Σ

dσw
|y − w|

dσy

)1/2

6 C2

( ∫

Σ
|Gq(y)|2 dσy

)1/2( ∫

Σ
|Gq(τ)|2 dστ

∫

Σ

dσy
|y − τ |

)1/2

6 C3‖Gq‖
2
L2(Σ),

and hence the claim. �

Lemma 6.3. Let W = (w,ϕ) ∈ D2 be a double layer elastopotential with density
G = (g, g4) ∈ [W 1,2(Σ)]4 and set

E(w, λ1, µ1) =
1

3
(3λ1 + 2µ1)| divw|2

+ µ1

[
1

2

3∑

l,j=1,l6=j

∣∣∣
∂wj
∂xl

+
∂wl
∂xj

∣∣∣
2

+
1

3

3∑

l,j=1

∣∣∣
∂wl
∂xl

−
∂wj
∂xj

∣∣∣
2
]
,

B(Dx) = (Blj(Dx))3×3, Blj(Dx) = µ1δlj + (λ1 + µ1)
∂2

∂xl∂xj
, l, j = 1, 2, 3, 4.

Then ∫

Ω
[B(Dx)w · w + E(w, λ1, µ1)] dx =

∫

Σ
Tw · w dσ,(6.5)

∫

Ω
[∆ϕϕ + | gradϕ|2] dx =

∫

Σ

∂ϕ

∂n
ϕdσ.(6.6)
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Proof. Let (Gk)k>1 be a sequence of functions in [C1,β′

(Σ)]4 (0 < β′ < β)
such that Gk → G in [W 1,2(Σ)]4, that is gk → g in [W 1,2(Σ)]3 and g4k

→ g4 in
W 1,2(Σ). Setting

Wk(x) =

∫

Σ
[P̃ (Dy, n)ΓT (x− y)]TGk(y) dσy , x ∈ Ω,

on account of Theorem 4.2 we get Wk ∈ [C1,β′

(Ω)∩C2(Ω)]4 and then, from Green’s
formulas, identities (6.5) and (6.6) hold for Wk = (wk, ϕk):

∫

Ω
[B(Dx)wk · wk + E(wk, λ1, µ1)] dx =

∫

Σ
Twk · wk dσ,(6.7)

∫

Ω
[∆ϕkϕk + | gradϕk|2] dx =

∫

Σ

∂ϕk
∂n

ϕk dσ.(6.8)

Observe that gk → g in [L2(Σ)]3 and g4k
→ g4 in L2(Σ) imply wk → w

in [L2(Σ)]3 and ϕk → ϕ in L2(Σ), respectively. Indeed, taking (4.4)–(4.9) into
account, wk = wΨ

k + wHk and ϕk = ϕΨ
k + ϕHk . Hence wΨ

k → wΨ in [L2(Σ)]3

and ϕΨ
k → ϕΨ in L2(Σ) because of the well-known properties of singular integral

operators; thanks to (4.10)–(4.12) we get wHk → wH in [L2(Σ)]3 and ϕHk → ϕH in
L2(Σ).

Arguing as in [6, Lemma 6.1], one can show that TwΨ
k → TwΨ in [L2(Σ)]3. In

view of (4.6)–(4.11), we have that TwHk → TwH in [L2(Σ)]3. Therefore Twk →
Tw in [L2(Σ)]3. Analogously we can obtain ∂ϕk/∂n → ∂ϕ/∂n in L2(Σ) (see [7,
Lemma 5.1 and Remark 1] and (4.12)).

Further, according to Lemma 6.2, from Gk → G in [L2(Σ)]4 it follows that
Wk → W in [L2(Ω)]4.

We proceed to show that gradwk → gradw in [L2(Ω)]3. Indeed, the same
argument as in [6, Lemma 6.1] applies to show that gradwΨ

k → gradwΨ in [L2(Ω)]3.
The kernel of

∂

∂xp
(wHp )k(x) =

∫

Σ

∂

∂xp
Hpq(x− y)(gq)k(y) dσy, p = 1, 2, 3,

being O(|x− y|−1), gradwHk → gradwH in [L2(Ω)]3.
In the same way we get gradϕk → gradϕ in L2(Ω) (see [7, Lemma 5.1 and

Remark 1] and (4.12)).
Finally, since B(Dx)wΨ

k = 0 and ∆ϕΨ
k = 0, we have

B(Dx)wk = B(Dx)wHk → B(Dx)wH = B(Dx)w in [L2(Ω)]3,

∆ϕk = ∆ϕHk → ∆ϕH = ∆ϕ, in L2(Ω).

This is because the integral operators have weakly singular kernels (see Lemma 3.1).
We get the claim letting k → +∞ in (6.7) and (6.8). �

Theorem 6.1. Assume that conditions (5.6) are satisfied. Then, there exists
a unique solution of the second BVP (6.1). In particular, the density of the dou-
ble layer elastopotential W (4.2) is given by a simple layer elastopotential U [g],
(see (4.1)), g ∈ [Lp(Σ)]4 being a solution of the singular integral system

(6.9) − 1
4 g(x) + V 2g(x) = F (x), x ∈ Σ,



64 CIALDEA, DOLCE, LEONESSA, MALASPINA

where V is defined by (6.3).

Proof. Let W ∈ Dp. From (6.2) the boundary condition [P (Dx, n)W ]+ = F
turns into the system (6.9) which can be rewritten in the following way

(
−
I

2
+ V

)(1

2
g + V g

)
= F.

It is known (see [20, Theorem 9.3]) that there exists h ∈ [Lp(Σ)]4 such that

−
1

2
h+ V h = F

and from [20, Theorem 9.2] there exists g ∈ [Lp(Σ)]4 solution of the system

1

2
g + V g = h.

Consequently, system (6.9) is solvable and the second BVP (6.1) admits a solution.
Finally, for the proof of the uniqueness we can proceed as in the proof of [20,

Theorem 6.1], keeping in mind the identities (6.5) and (6.6). �
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