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AN ALGEBRAIC EXPOSITION OF UMBRAL
CALCULUS WITH APPLICATION TO GENERAL

LINEAR INTERPOLATION PROBLEM – A SURVEY

Francesco Aldo Costabile and Elisabetta Longo

Abstract. A systematic exposition of Sheffer polynomial sequences via de-
terminantal form is given. A general linear interpolation problem related to
Sheffer sequences is considered. It generalizes many known cases of linear
interpolation. Numerical examples and conclusions close the paper.

1. The modern umbral calculus

In the 1970s Rota and his collaborators [17,19,20] began to construct a com-
pletely rigorous foundation for the classical umbral calculus, consisted primarily of
a symbolic technique for the manipulation of numerical and polynomial sequences.
The theory of Rota et al. was based on the relatively modern ideas of linear func-
tional, linear operator and adjoint. This theory followed that less efficient of gener-
ating function methods; in fact, Appell [1], Sheffer [22] and Steffensen [23] based
their theories on formal power series. These theories can be criticized both for
their formalism not suitable for nonspecialists and for insufficient computational
tools. The umbral calculus, because of its numerous applications in many branches
of mathematics, physics, chemistry and engineering [24], has received many atten-
tions from researchers. Recently, Di Bucchianico and Loeb [14] summarized and
documented more than five hundred old and new findings related to umbral calcu-
lus. In last years attention has centered on finding novel approaches. For example,
in [21] the connection between Sheffer polynomials and Riordan array is sketched
and in [16] the isomorphism between the Sheffer group and the Riordan Group is
proved. In [5,27] two different matrix approaches to Appell polynomials are given,
in [9,26], these methods have been extended to Sheffer polynomials, and in [11], to
binomial polynomial sequences. Recently, the relation between the umbral calculus
and the general linear interpolation problem has been highlighted [6–8,10,11]. In
this survey we give a unitary matrix approach to Sheffer polynomials, including
Appell and binomial type polynomial sequences. Our theory of Sheffer sequences
assumes binomial type polynomial sequences, therefore the paper is organized as
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follows: in Section 2 we give the preliminaries on binomial type sequences; in
Section 3 we provide the new determinantal definition of Sheffer polynomials; in
Section 4 we give the relationship with δ-operator and functional, finding the con-
nection with Rota’s theory; in Section 5 we recall the determinantal definition of
Yang [26]; in Section 6 we define the umbral interpolation problem and in Sec-
tion 7 we provide classical and nonclassical examples; in Section 8 we furnish some
numerical examples and finally, in Section 9, conclusions close the paper.

2. Preliminaries

In order to render the work self-contained we provide the necessary preliminary
tools on binomial polynomial sequences. Let Pn be the commutative algebra of all
polynomials in a simple variable x, with coefficients in a field K (typically R or C).

Definition 2.1. [19] A polynomial sequence {pn(x)}n∈N, where n is the degree
of pn(x), is said to be of binomial type (b.t.) if and only if it satisfies the binomial
identity

(2.1) pn(x + y) =

n∑

k=0

(n

k

)
pk(x)pn−k(y),

for all n ∈ N and x, y ∈ R.

Well-known examples of polynomial sequences can been found in [17–19] and
references therein. For a polynomial sequence pn(x) we could consider its coeffi-
cients an,k in its decomposition over power monomials xk, that is

(2.2) pn(x) =

n∑

k=0

an,kxk.

Relation (2.1), defining polynomial sequences of b.t., can be expressed in terms of
coefficients an,k as follows [19, p. 111]

(2.3)
( i + j

i

)
an,i+j =

n∑

l=0

(n

l

)
al,ian−l,j .

From (2.1) we can observe that an,0 = δn,0, and from (2.3) that all the coefficients
an,k, k = 1, . . . , n, n = 0, 1, . . . , are completely determined by a sequence {bn}n∈N,
with b0 = 0, b1 6= 0, as follows

an,1 = bn, an,k =
1

k

n−k+1∑

i=1

(n

i

)
ai,1an−i,k−1, k = 2, . . . , n,

We also have [2]

an,k =
1

k!

∑ ( n

ν1, . . . , νk

)
bν1

· · · bνk
, k = 2, . . . , n,



AN ALGEBRAIC EXPOSITION OF UMBRAL CALCULUS WITH APPLICATION 69

where the summation is over all k-tuples (ν1, . . . , νk) with νi > 1 and
∑

νi = n.
Finally, for the coefficients an,k defined in (2.2) we have

an,0 = δn,0, an,1 = bn,(2.4)

an,k =
1

k

n−k+1∑

i=1

(n

i

)
ai,1an−i,k−1 =

1

k!

∑ ( n

ν1, . . . , νk

)
bν1

· · · bνk
, k = 2, . . . , n.

Therefore, a polynomial sequence of b.t. pn(x), n = 0, 1, . . . , is associated to a real
numerical sequence bn, n = 0, 1, . . . , with b0 = 0 and b1 6= 0. Moreover, let us
define the formal power series

(2.5) B(t) =

∞∑

n=1

bn
tn

n!
,

then we have
∞∑

n=0

pn(x)
tn

n!
= exB(t),

that is, the function exB(t) is the generating function for polynomials pn(x) [19,
p. 106]. Moreover, we also have

(B(x))
k

=

∞∑

n=1

an,k
xn

n!
,

with an,k defined by (2.4).
Now, let us set Xn(x) = [1, x, . . . , xn]T , Pn(x) = [p0(x), p1(x), . . . , pn(x)]T

(Pn(x) which will be called b.t. vector), and

(2.6) (A)i,j =
{

ai,j i > j

0 otherwise
i, j = 0, . . . , n,

with ai,j , i, j = 0, . . . , n, defined by (2.4). Then, from (2.2), we can write

(2.7) Pn(x) = AXn(x),

and, observing that A is invertible,

(2.8) Xn(x) = A−1Pn(x).

Remark 2.1. [9] For the calculation of the inverse matrix

Â ≡ A−1 =
(
A−1)

i,j
≡

{
âi,j i > j

0 otherwise
i, j = 0, . . . , n,

we can use the following algorithm.

• determine the sequence b̂n, n = 0, 1, . . . , as follows [15]

(2.9) b̂0 = 0, b̂1 =
1

a1,1
, b̂n = −

1

an,n

n−1∑

k=1

b̂kan,k, n = 2, . . . ,

with an,k defined by (2.4);



70 COSTABILE AND LONGO

• determine the sequence ân,k, k = 0, . . . , n, n = 0, 1, . . . , as follows [7,9]

ân,0 = δn,0, ân,1 = b̂n,(2.10)

ân,k =
1

k

n−k+1∑

i=1

(n

i

)
âi,1ân−i,k−1 =

1

k!

∑ ( n

ν1, . . . , νk

)
b̂ν1

· · · b̂νk
, k = 2, . . . , n.

Remark 2.2. We observe explicitly that from (2.7) and (2.8) we have

pn(x) =

n∑

k=0

an,kxk, xn =

n∑

k=0

ân,kpk(x),

that is, these two relations are inverse ones. Therefore, pn(x) in a basis for Pn.

Now, we define the linear operator on Pn

(2.11) Qy =

∞∑

n=0

b̂n

n!
y(n),

with b̂n defined by (2.9). Then we have

Theorem 2.1. [11] The relation Qpn(x) = npn−1(x), n = 1, 2, . . . holds.

Remark 2.3. According to the Rota theory, after Theorem 2.1 Q is the δ-
operator associated to the polynomial sequence of b.t. pn(x).

3. Sheffer polynomial sequences

Let pn(x), n = 0, 1, . . . , be a polynomial sequence of b.t. and βn, n = 0, 1, . . . ,
a real numerical sequence with β0 6= 0.

Definition 3.1. [9] The polynomial sequence sn(x), n = 0, 1, . . . , defined by

s0(x) =
1

β0
,(3.1)

sn(x) =
(−1)n

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣

p0 p1(x) · · · pn−1(x) pn(x)

β0 β1 · · · βn−1 βn

0 β0 · · ·
(

n−1
1

)
βn−2

(
n
1

)
βn−1

...
. . .

...
...

0 · · · 0 β0
(

n
n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, . . .

is called the Sheffer polynomial sequence for (βn, pn(x)).

Remark 3.1. For pn(x) = xn the sequence sn(x) is the Appell sequence for
βn [5]; for β0 = 1, and βn = 0, n = 1, 2, . . . , we get sn(x) = pn(x). In general, a
Sheffer sequence sn(x) is the umbral composition [19] of an Appell sequence and a
binomial type polynomial sequence.

Now, we give several characterizations for Sheffer polynomial sequences.
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Theorem 3.1. [9] The sequence sn(x) is the Sheffer polynomial sequence for

(βn, pn(x)) if and only if

sn(x) = αnp0 +
(n

1

)
αn−1p1(x) +

(n

2

)
αn−2p2(x) + · · · + α0pn(x), n = 0, 1, . . .

with

(3.2) α0 =
1

β0
, αi = −

1

β0

i−1∑

k=0

( i

k

)
βi−kαk, i = 1, 2, . . . , n.

Remark 3.2. [9] Let

(3.3) (M)i,j =

{(
i
j

)
βi−j i > j

0 otherwise
, i, j = 0, . . . , n.

The matrix M is invertible and

(M−1)i,j =

{(
i
j

)
αi−j i > j

0 otherwise
, i, j = 0, . . . , n,

with αn defined by (3.2).

Therefore, setting

(3.4) β0 =
1

α0
, βi = −

1

α0

i−1∑

k=0

( i

k

)
αi−kβk, i = 1, 2, . . . , n,

Relations (3.2) and (3.4) are inverse ones.

Theorem 3.2 (Recurrence, [9]). The sequence sn(x), n = 0, 1, . . . , is the Shef-

fer sequence for (βn, pn(x)) if and only if

sn(x) =
1

β0

(
pn(x) −

n−1∑

k=0

(n

k

)
βn−ksk(x)

)
, n = 1, 2, . . .

Now, we have the following

Theorem 3.3 (Sheffer identity, [9]). The sequence sn(x) is the Sheffer polyno-

mial sequence for (βn, pn(x)) if and only if

sn(x + y) =

n∑

i=0

(n

i

)
sn−i(x)pi(y) =

n∑

i=0

(n

i

)
si(x)pn−i(y), n = 1, 2, . . .

Remark 3.3. After Theorem 3.3 the polynomial sequence sn(x) defined by
(3.1) is the Sheffer sequence associated to the polynomial sequence of b.t. pn(x), as
defined in [19, p. 139].

Theorem 3.4 (Multiplication theorem, [9]). The sequence sn(x), n = 0, 1, . . . ,

is the Sheffer sequence for (βn, pn(x)) if and only if

sn(mx) =

n∑

i=0

(n

i

)
sn−i(x)pi((m − 1)x),

n = 0, 1, . . . ,

m = 1, 2, . . .
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Now, we give the relationship with generating function and the equivalence
with Sheffer theory [22].

Theorem 3.5 (Generating function, [9]). The sequence sn(x) is the Sheffer

polynomial sequence for (βn, pn(x)) if and only if there exists a unique numerical

sequence αn, n = 0, 1, . . . , α0 6= 0, such that, setting

a(t) = α0 + α1t + α2
t2

2
+ · · · + αn

tn

n!
+ . . . , α0 6= 0,

we have

a(t)exB(t) =

∞∑

n=0

sn(x)
tn

n!
,

where B(t) is defined in (2.5).

4. Relationship with δ-operator and functional

Let Q be the δ-operator [19] associated to the polynomial sequence of b.t. pn(x),
that is given by (2.11). Then we have the following

Theorem 4.1. [9] If sn(x), n = 0, 1, . . . is the Sheffer sequence for (βn, pn(x)),
then

(4.1) Qsn(x) = nsn−1(x) n = 1, 2, . . . .

Theorem 4.2. [9] If sn(x), n = 0, 1, . . . be the Sheffer sequence for (βn, pn(x))
and Q the δ-operator associated to the polynomial sequence of b.t. pn(x), then sn(x)
satisfies the functional equation

βn

n!
Qny(x) +

βn−1

(n − 1)!
Qn−1y(x) + · · · +

β2

2!
Q2y(x) + β1Qy(x) + β0y(x) = pn(x)

Let, now, L be the linear functional on Pn defined by βn = L(pn(x)), n =
0, 1, . . . . Then we have the following

Theorem 4.3. The sequence sn(x), n = 0, 1, . . . is the Sheffer sequence for

(βn, pn(x)) if and only if

(4.2) L(Qksn(x)) = n!δn,k, k = 0, . . . , n.

Proof. It follows from (3.1), (4.1) and from the linearity of L. �

Remark 4.1. After Theorem 4.3 we have the equivalence of our matrix ap-
proach with Roman theory [18].

Remark 4.2. Putting Li = LQi, i = 0, . . . , n, relations (4.2) can be interpreted
as a linear interpolation problem on Pn, the solution of which is the polynomial
sequence sn(x) given by (3.1).

Let us, now, introduce the Sheffer vector.

Definition 4.1. If sn(x) is the Sheffer polynomial sequence for (βn, pn(x)),
then the vector of functions Sn(x) = [s0(x), . . . , sn(x)]T is called the Sheffer vector
for (βn, pn(x)).
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Then we have

Theorem 4.4 (Matrix form, [9]). Let Sn(x) be a vector of polynomial function.

It is the Sheffer vector for (βn, pn(x)) if and only if

Sn(x) = SXn(x), Xn(x) = ŜSn(x),

where S = M−1A, Ŝ ≡ S−1 = A−1M , with M and A defined by (3.3) and (2.6)
respectively.

Remark 4.3. Putting

S ≡ (S)i,j ≡
{ si,j i > j

0 otherwise
, i, j = 0, . . . , n,

Ŝ ≡ (Ŝ)i,j ≡
{

ŝi,j i > j

0 otherwise
, i, j = 0, . . . , n,(4.3)

we get

si,j =

i∑

k=j

( i

k

)
αi−kak,j , i = 0, . . . , n, j = 0, . . . , i,

ŝi,j =

i∑

k=j

( i

k

)
βi−kâk,j =

L(Qjxi)

j!
, i = 0, . . . , n, j = 0, . . . , i.(4.4)

Theorem 4.5 (Representation Theorem, [9]). If sn(x) is the Sheffer sequence

for (βn, pn(x)) and qn(x) is a polynomial of degree 6 n such that qn(x) =
∑n

k=0 ckxk,

n = 0, 1, . . . , then

qn(x) =

n∑

k=0

L(Qkqn(x))

k!
sk(x) =

n∑

k=0

( n∑

j=k

ckŝj,k

)
sk(x), n = 0, 1, . . . .

Theorem 4.6. [9] The sequence sn(x) is the Sheffer sequence for (βn, pn(x))
if and only if

sn(x) =
(−1)n

∏n
k=0 ŝk,k

∣∣∣∣∣∣∣∣∣∣∣∣

1 x · · · xn−1 xn

ŝ0,0 ŝ1,0 · · · ŝn−1,0 ŝn,0

0 ŝ1,1 · · · ŝn−1,1 ŝn,1
...

. . .
...

0 · · · 0 ŝn−1,n−1 ŝn,n−1

∣∣∣∣∣∣∣∣∣∣∣∣

, n = 0, 1, . . . ,

with ŝi,j, i, j = 0, . . . , n, defined by (4.4).

Remark 4.4. For ŝi,j =
(

i
j

)
βi−j , sn(x) is the Appell polynomial sequence as

defined in [5].
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Theorem 4.7 (Binomial sequences, [9]). If pn(x), n = 0, 1, . . . , is a binomial

type polynomial sequence associated to bn then

p0(x) = 1, pn(x) =
(−1)n+1

∏n
k=0 âk,k

∣∣∣∣∣∣∣∣∣∣∣∣

x x2 · · · xn−1 xn

â1,1 â2,1 · · · ân−1,1 ân,1

0 â2,2 · · · ân−1,2 ân,2
...

. . .
...

0 · · · ân−1,n−1 ân,n−1

∣∣∣∣∣∣∣∣∣∣∣∣

,

n = 1, 2, . . . , with âi,j , i, j = 0, . . . , n, defined by (2.10).

Remark 4.5. In [11] the inverse of Theorem 4.7 is proved.

Theorem 4.8 (Connection constants, [9]). Let Sn(x) and Tn(x) be the Sheffer

vectors for (βn, pn(x)) and (γn, qn(x)), respectively, with pn(x) =
∑n

k=0 an,kxk

and qn(x) =
∑n

k=0 dn,kxk. Then Tn(x) = CSn(x), where C = T S−1, with S−1

defined by (4.3) and (4.4), and

(T )i,j =

{ ∑i
k=j

(
i
k

)
δi−kdk,j i > j

0 otherwise
, i, j = 0, . . . , n,

where δn are defined by
∑n

k=0

(
n
k

)
δkγn−k =

{ 1, n=0,
0, n=1,...

5. The algebraic approach of Yang

Yang in [26] gives a new determinantal form and a recurrence relation for Shef-
fer sequences; his approach is based on the production matrix [13] of an invertible
lower triangular matrix. There is the following

Theorem 5.1. [26] Let [g(t), f(t)] be an exponential Riordan array with the c-

sequences (ci)i>0 and r-sequences (ri)i>0. Let (an(x))x>0 be the Sheffer polynomial

sequence for (g(t), f(t)). Then (an(x))x>0 satisfies the recurrence relation

an+1(x) = (x − c0 − nr1)an(x) −
n!

(n − 1)!
(c1 + (n − 1)r2)an−1(x) − . . .

−
n!

2!
(cn−2 + 2rn−1)a2(x) −

n!

1!
(cn−1 + rn)a1(x) − n!cna0(x),

with initial conditions a0(x) = 1 and a1(x) = x − c0. For n > 0, an+1(x) is given

by

an+1(x) = (−1)n+1

×

∣∣∣∣∣∣∣∣∣∣∣∣

c0 − x 1 0 · · · 0

1!c1
1!
1! (c0 + r1) − x 1 · · · 0

2!c2
2!
1! (c1 + r2) 2!

2! (c0 + 2r1) − x · · · 0
...

...
...

. . .
...

n!cn
n!
1! (cn−1 + rn) n!

2! (cn−2 + 2rn−1) · · · n!
n! (c0 + nr1) − x

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n+1|Pn+1 − xIn+1| = |xIn+1 − Pn+1|.
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Thus, the Sheffer sequences are characteristic polynomials of production ma-
trices.

6. The umbral interpolation

The umbral interpolation [10] is the linear interpolation problem which is ex-
pressed through a basis of Sheffer polynomials (Appell or binomial polynomials in
particular). Let X be the linear space of real functions defined in the interval [a, b]
continuous and with continuous derivatives of all necessary orders. Let Q be a δ-
operator on Pn and pn(x), n = 0, 1, . . . , the polynomial sequence of binomial type
associated to it. Let L be a linear functional on X such that L(1) 6= 0. Let us we
set βn = L(pn(x)), n = 0, 1, . . . , and let sn(x) be the Sheffer polynomial sequence
for (βn, pn(x)).

Definition 6.1. [10] The polynomial sequence sn(x), n = 0, 1, . . . , is a basis
for Pn and we call it Umbral basis for (L, Q).

Let be ωi ∈ R, i = 0, 1, . . . , n, and consider the problem

L(QiPn) = i!ωi, i = 0, . . . , n, Pn(x) ∈ Pn.

We call it Umbral interpolation problem.

Theorem 6.1 (Main theorem, [10]). Let si(x) be the Umbral basis for (L, Q)
and ωi ∈ R, i = 0, 1, . . . , n; the polynomial Pn(x) =

∑n
i=0 ωisi(x) is the unique

polynomial of degree less than or equal to n such that L(QiPn) = i!ωi, i = 0, . . . , n.

Remark 6.1. [10] For each Pn(x) ∈ Pn we have Pn(x) =
∑n

i=0
L(QiPn)

i! si(x).

Let us consider a function f ∈ X , such that Qif is defined in X . Then we have

Theorem 6.2. [10] Let f ∈ X such that Qif ∈ X. The polynomial

(6.1) Pn[f ](x) =

n∑

i=0

L(Qif)

i!
si(x)

is the unique polynomial of degree less than or equal to n such that

L(QiPn[f ]) = L(Qif), i = 0, . . . , n.

Definition 6.2. The polynomial Pn[f ](x), if not identically zero, is called
Umbral interpolation polynomial of the function f for (L, Q); it satisfies

L(QiPn) = L(Qif), i = 0, 1, . . . , n.

Therefore, it is interesting to consider the estimation of the remainder. Let us
set Rn[f ](x) = f(x) − Pn[f ](x), for all x ∈ [a, b].

Theorem 6.3 (Exactness, [10]). For any f ∈ Pn and each x ∈ [a, b],

Rn[f ](x) = 0 and Rn[pn+1(x)] 6= 0.

For a fixed x, we may consider Rn[f ](x) as a linear functional which acts on f
and annihilates all elements of Pn. By Peano’s theorem, if a linear functional has
this property, then it must have a simple representation in terms of f (n+1).
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Theorem 6.4. [10] For f ∈ Cn+1[a, b], the following relation holds

∀x ∈ [a, b], Rn[f ](x) =
1

n!

∫ b

a

Kn(x, t)f (n+1)(t) dt

where

Kn(x, t) = Rn

[
(x − t)n

+

]
= (x − t)n

+ −

n∑

i=0

Lx

[
Qi(x − t)n

+

]

i!
si(x).

Now, let us fix z ∈ [a, b] and consider the polynomial

(6.2) P n[f, z](x) ≡ f(z)+Pn[f ](x)−Pn[f ](z) = f(z)+

n∑

i=1

L(Qif)

i!
(si(x)−si(z)).

Definition 6.3. The polynomial P n[f, z](x) is called Umbral interpolation

polynomial of f centered at z.

Theorem 6.5. [10] The polynomial P n[f, z](x) is an approximating polyno-

mial of degree n for f(x), i.e.,

∀ x ∈ [a, b], f(x) = P n[f, z](x) + Rn[f ](x),

with Rn[pi(x)] = 0, i = 0, . . . , n and Rn[pn+1(x)] 6= 0.

Theorem 6.6. [10] The polynomial P n[f, z](x) satisfies the interpolation con-

ditions P n[f, z](z) = f(z), L(QiP n[f, z]) = L(Qif), i = 1, . . . , n.

7. Examples

7.1. Appell interpolation [6]. With the previous notation, let Qf = Df =
f ′(x). Then the associated sequence is the canonical basis xn, n = 0, 1, . . . .

Now, let L be a linear functional verifying L(1) 6= 0. Then the umbral inter-
polation polynomials (6.1) and (6.2) become

Pn[f ](x) = L(f) +

n∑

i=1

L(f (i)(x))

i!
Ai(x),(7.1)

P n[f, 0](x) = f(0) +

n∑

i=1

L(f (i)(x))

i!
(Ai(x) − Ai(0)),

where Ai(x) is the umbral basis for (L, D), and in particular, it is an Appell se-
quence.

7.1.1. Taylor interpolation [6, 12]. Let L(f) = f(x0), x0 ∈ [a, b]. Then the
umbral basis for (L, D) is the sequence A0(x) = 1, An(x, a) = (x − x0)n, n =
1, 2, . . . . The interpolation polynomial (6.1) becomes

Tn[f ](x) =
n∑

i=0

f (i)(x0)

i!
(x − x0)i

i.e., the Umbral interpolation is the well known Taylor interpolation [12]. There-
fore, (7.1) can be seen as a generalization of Taylor interpolation.



AN ALGEBRAIC EXPOSITION OF UMBRAL CALCULUS WITH APPLICATION 77

7.1.2. Bernoulli interpolation [3, 6]. Let L(f) =
∫ 1

0 f(x) dx. Then the umbral
basis for (L, D) is the Bernoulli sequence Bn(x) [4, 5]. Interpolation polynomials
(6.1) and (6.2) become

Bn[f ](x) =

∫ 1

0
f(x)dx +

n∑

i=1

f (i−1)(1) − f (i−1)(0)

i!
Bi(x),

Bn[f, 0](x) = f(0) +

n∑

i=1

f (i−1)(1) − f (i−1)(0)

i!
(Bi(x) − Bi(0)).(7.2)

7.1.3. Euler interpolation [6]. We consider L(f) = 1
2 (f(0) + f(1)). Then the

umbral basis for (L, D) is the Euler sequence En(x) [5]. Interpolation polynomials
(6.1) and (6.2) become

En[f ](x) =
f(0) + f(1)

2
+

n∑

i=1

f (i)(0) + f (i)(1)

2i!
Ei(x),(7.3)

En[f, 0](x) = f(0) +
n∑

i=1

f (i)(0) + f (i)(1)

2i!
(Ei(x) − Ei(0)).

7.2. Abel–Sheffer interpolation [10]. With the previous notation, let Qf =
Daf = f ′(x + a), a ∈ R, a 6= 0. Then the associated sequence is the Abel sequence
A0(x, a) = 1, An(x, a) = x(x − an)n−1, n = 1, 2, . . . [19].

Now, let L be a linear functional verifying L(1) 6= 0. Then umbral interpolation
polynomials (6.1) and (6.2) become

Pn[f ](x) = L(f) +

n∑

i=1

L(f (i)(x + ai))

i!
si(x),(7.4)

P n[f, 0](x) = f(0) +

n∑

i=1

L(f (i)(x + ai))

i!
(si(x) − si(0)),

where si(x) is the umbral basis for (L, Da).
7.2.1. Abel–Gontscharoff interpolation [10, 12]. Let L(f) = f(x0), x0 ∈ [a, b].

Then the umbral basis for (L, Da) is the sequence

G̃0(x) = 1, G̃n(x, a) = (x − x0)(x − x0 − an)n−1, n = 1, 2, . . . ,

that is the classical Abel–Gontscharoff sequence [12] on the equidistant points
xi = x0 + ai, i = 0, . . . , n. Interpolation polynomial (6.1) becomes

G̃n[f ](x) =
n∑

i=0

f (i)(x0 + ai)

i!
G̃i(x, a)

i.e., the Umbral interpolation is the well known Abel–Gontscharoff interpolation
[12, 25] on the equidistant points xi = x0 + ai, i = 0, . . . , n. Therefore (7.4) can
be seen as a generalization of Abel–Gontscharoff interpolation on the equidistant
points.
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7.2.2. Abel–Bernoulli interpolation [10]. Let L(f) =
∫ 1

0 f(x) dx. Then the

umbral basis for (L, Da) is the Bernoulli–Abel sequence B̃n(x, a) [9]. Interpolation
polynomials (6.1) and (6.2) become

B̃n[f ](x) =

∫ 1

0
f(x) dx +

n∑

i=1

f (i−1)(1 + ai) − f (i−1)(ai)

i!
B̃i(x, a),

B̃n[f, 0](x) = f(0) +

n∑

i=1

f (i−1)(1 + ai) − f (i−1)(ai)

i!
(B̃i(x, a) − B̃i(0, a)).(7.5)

7.2.3. Abel–Euler interpolation [10]. We consider L(f) = 1
2 (f(0)+f(1)). Then

the umbral basis for (L, Da) is the Euler–Abel sequence Ẽn(x, a) [9]. Interpolation
polynomials (6.1) and (6.2) become

Ẽn[f ](x) =
f(0) + f(1)

2
+

n∑

i=1

f (i)(ai) + f (i)(1 + ai)

2i!
Ẽi(x, a),(7.6)

Ẽn[f, 0](x) = f(0) +

n∑

i=1

f (i)(ai) + f (i)(1 + ai)

2i!
(Ẽi(x, a) − Ẽi(0, a)).

7.3. ∆h-Appell interpolation [8]. Let Qf = ∆hf(x) = f (x + h) − f(x).
Moreover, let ∆−1

h be the inverse operator of ∆h, such that

∆−1
h ϕ(x) = f(x) ⇔ ∆hf(x) = ϕ(x).

Then the associated sequence to ∆h is the falling factorial sequence [19]

(x)0 = 1, (x)n = x(x − h)(x − 2h) · · · (x − (n − 1)h), n = 1, 2, . . . .

Now, let L be a linear functional verifying L(1) 6= 0. Then umbral interpolation
polynomials (6.1) and (6.2) become

Pn[f ](x) =
n∑

i=0

L(∆i
hf)

hii!
Ai(x),(7.7)

P n[f, 0](x) = f(0) +

n∑

i=1

L(∆i
hf)

hii!
(Ai(x) − Ai(0)),

where Ai(x) is the umbral basis for (L, ∆h) and, in particular, it is a ∆h-Appell
sequence [8].

As in the previous example we can consider the following cases.
7.3.1. Newton interpolation on equidistant points [8, 12]. Let L(f) = f(x0).

The umbral basis for (L, ∆h) is (x − x0)n. Interpolation polynomial (6.1) becomes

Pn[f ](x) = f(x0) +
n∑

i=1

∆i
hf(x0)

hii!
(x − x0)i.

It is known as Newton interpolation on equidistant points, therefore (7.7) can be
seen as a generalization of Newton interpolation on equidistant points.
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7.3.2. Bernoulli interpolation of second kind [8]. Let L(f) = (D∆−1
h f)x=0.

We call the umbral basis for (L, ∆h) Bernoulli polynomial sequence of second kind
BII

n (x) [8]. Interpolation polynomials (6.1) and (6.2) become

BII
n [f ](x) = (D∆−1

h f)x=0 +

n∑

i=1

∆i−1
h f ′(0)

hii!
BII

i (x),

B
II

n [f, 0](x) = f(0) +

n∑

i=1

∆i−1
h f ′(0)

hii!
(BII

i (x) − BII
i (0)).(7.8)

7.3.3. Boole interpolation [8]. Let L(f) = (Mhf)x=0 = 1
2 (f(0)+f(h)). We call

the umbral basis for (L, ∆h) Boole polynomial sequence EII
n (x) [8]. Interpolation

polynomials (6.1) and (6.2) become

EII
n [f ](x) =

f(0) + f(h)

2
+

n∑

i=1

∆i
h(f(0) + f(h))

2hii!
EII

i (x),(7.9)

E
II

n [f, 0](x) = f(0) +

n∑

i=1

∆i
h(f(0) + f(h))

2hii!
(EII

i (x) − EII
i (0)).

7.4. δh-Sheffer interpolation [10]. Let

Qf = δhf(x) =
1

h

(
f

(
x +

1

2
h

)
− f

(
x −

1

2
h

))

and let δ−1
h be the inverse operator of δh, such that

δ−1
h ϕ(x) = f(x) ⇔ δhf(x) = ϕ(x).

Then the associated sequence to δh is the sequence [19]

x[0] = 1, x[n] ≡ x
(

x +
(n

2
− 1

)
h

)
n−1

= x
(

x +
(n

2
− 1

)
h

)
· · ·

(
x +

(
−

n

2
+ 1

)
h

)
,

n = 1, 2, . . . . Now, let L be a linear functional verifying L(1) 6= 0. Then umbral
interpolation polynomials (6.1) and (6.2) become

Pn[f ](x) =

n∑

i=0

L(δi
hf)

i!
si(x),(7.10)

P n[f, 0](x) = f(0) +
n∑

i=1

L(δi
hf)

i!
(si(x) − si(0)),

where si(x) is the umbral basis for (L, δh).
As in the previous example we can consider the following cases.
7.4.1. δh-central interpolation [10,12]. Let L(f) = f(0). The umbral basis for

(L, δh) is sn(x) = x[n]. Interpolation polynomial (6.1) becomes

Pn[f ](x) = f(0) +
n∑

i=1

δi
hf(0)

i!
x[i].

It is known as interpolation formula with central differences [23, p. 32], therefore
(7.10) can be seen as a generalization of central interpolation.



80 COSTABILE AND LONGO

7.4.2. δh-Bernoulli interpolation [10]. Let L(f) =
(
Dδ−1

h f
)

x=0. We call the

umbral basis for (L, δh) δh-Bernoulli polynomial sequence B̂n(x). Interpolation
polynomials (6.1) and (6.2) become

B̂n[f ](x) =
(
Dδ−1

h f
)

x=0 +

n∑

i=1

δi−1
h f ′(0)

i!
B̂i(x),

B̂n[f ](x) = f(0) +
n∑

i=1

δi−1
h f ′(0)

i!

(
B̂i(x) − B̂i(0)

)
.(7.11)

7.4.3. δh-Euler interpolation [10]. Let

L(f) = (Mhf)x=0 =
1

2

(
f(h/2) + f(−h/2)

)
.

We call the umbral basis for (L, δh) δh-Euler polynomial sequence Ên(x). Interpo-
lation polynomials (6.1) and (6.2) become

Ên[f ](x) =
f(h/2) + f(−h/2)

2
+

n∑

i=1

δi
h

(
f(h/2) + f(−h/2)

)

2i!
Êi(x),(7.12)

Ên[f, 0](x) = f(0) +

n∑

i=1

δi
h

(
(h/2) + f(−h/2)

)

2i!

(
Êi(x) − Êi(0)

)
.

8. Numerical examples

Now we consider some interpolation test problem and report the numerical
results obtained by using an ad hoc “Mathematica" code. We compare the er-
ror in approximating a given function with Appell, Abel–Sheffer, ∆h-Appell and
δh-Sheffer interpolation polynomials. In particular we compare numerical results
obtained by applying:

• Abel-Bernoulli interpolation polynomial B̃n[f, 0](x) (7.5)
• Bernoulli interpolation polynomial Bn[f, 0](x) (7.2)

• δh-Bernoulli interpolation polynomial B̂n[f, 0](x) (7.11)

• Bernoulli interpolation polynomial of second kind B
II

n [f, 0](x) (7.8)

• Abel-Euler interpolation polynomial Ẽn[f ](x) (7.6)
• Euler interpolation polynomial En[f ](x) (7.3)

• δh-Euler interpolation polynomial Ên[f ](x) (7.12)
• Boole interpolation polynomial EII

n [f ](x) (7.9)

We emphasize that the compared polynomials of the same degree have the same
degree of exactness.

Example 8.1. For the function f(x) = e(x+1)/2, x ∈ [0, 1], the interpolation
error is reported in the following tables.
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B̃n[f, 0](x) Bn[f, 0](x) B̂n[f, 0](x) B
II

n [f, 0](x)

n = 5 2.774 ∗ 10−6 1.102 ∗ 10−6 1.628 ∗ 10−5 6.949 ∗ 10−7

n = 6 1.460 ∗ 10−7 8.619 ∗ 10−8 8.814 ∗ 10−7 1.733 ∗ 10−8

n = 7 1.463 ∗ 10−8 6.885 ∗ 10−9 4.160 ∗ 10−8 4.354 ∗ 10−10

n = 8 7.589 ∗ 10−10 5.458 ∗ 10−10 1.742 ∗ 10−9 8.609 ∗ 10−12

Ẽn[f ](x) En[f ](x) Ên[f ](x) EII
n [f ](x)

n = 5 5.978 ∗ 10−5 4.460 ∗ 10−5 2.606 ∗ 10−6 1.318 ∗ 10−7

n = 6 9.432 ∗ 10−6 7.103 ∗ 10−6 1.171 ∗ 10−7 2.925 ∗ 10−9

n = 7 1.483 ∗ 10−6 1.130 ∗ 10−6 4.715 ∗ 10−9 5.817 ∗ 10−11

n = 8 2.354 ∗ 10−7 1.799 ∗ 10−7 1.726 ∗ 10−10 1.041 ∗ 10−12

Example 8.2. For the function f(x) = ln(x2 +10), x ∈ [0, 1], the interpolation
error is reported in the following tables.

B̃n[f, 0](x) Bn[f, 0](x) B̂n[f, 0](x) B
II

n [f, 0](x)

n = 5 1.994 ∗ 10−6 4.526 ∗ 10−6 1.311 ∗ 10−4 2.823 ∗ 10−6

n = 6 2.482 ∗ 10−6 1.760 ∗ 10−6 1.737 ∗ 10−6 3.744 ∗ 10−7

n = 7 5.442 ∗ 10−7 3.457 ∗ 10−7 5.477 ∗ 10−6 1.579 ∗ 10−8

n = 8 1.267 ∗ 10−7 2.559 ∗ 10−7 6.832 ∗ 10−8 4.487 ∗ 10−9

Ẽn[f ](x) En[f ](x) Ên[f ](x) EII
n [f ](x)

n = 5 1.183 ∗ 10−4 2.138 ∗ 10−4 1.974 ∗ 10−5 4.435 ∗ 10−7

n = 6 1.257 ∗ 10−4 1.410 ∗ 10−4 1.559 ∗ 10−6 6.225 ∗ 10−8

n = 7 6.482 ∗ 10−5 8.666 ∗ 10−5 5.843 ∗ 10−7 1.624 ∗ 10−9

n = 8 5.736 ∗ 10−5 7.829 ∗ 10−5 4.823 ∗ 10−8 5.279 ∗ 10−10

Example 8.3. For the function f(x) = 10 cos(x) + 1
10 sin2(x), x ∈ [0, 1], the

interpolation error is reported in the following tables.

B̃n[f, 0](x) Bn[f, 0](x) B̂n[f, 0](x) B
II

n [f, 0](x)

n = 5 4.652 ∗ 10−4 2.319 ∗ 10−4 4.227 ∗ 10−3 1.483 ∗ 10−4

n = 6 1.882 ∗ 10−5 2.451 ∗ 10−6 3.613 ∗ 10−6 5.090 ∗ 10−7

n = 7 1.3378 ∗ 10−5 2.695 ∗ 10−6 1.224 ∗ 10−5 9.767 ∗ 10−8

n = 8 1.981 ∗ 10−6 2.058 ∗ 10−6 4.386 ∗ 10−7 3.399 ∗ 10−8

Ẽn[f ](x) En[f ](x) Ên[f ](x) EII
n [f ](x)

n = 5 9.016 ∗ 10−3 9.265 ∗ 10−3 6.613 ∗ 10−4 2.737 ∗ 10−5

n = 6 1.880 ∗ 10−3 3.195 ∗ 10−4 2.770 ∗ 10−6 6.299 ∗ 10−8

n = 7 1.490 ∗ 10−3 7.061 ∗ 10−4 1.201 ∗ 10−6 1.661 ∗ 10−8

n = 8 6.494 ∗ 10−4 6.746 ∗ 10−4 3.200 ∗ 10−7 4.111 ∗ 10−9
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9. Conclusions

We have given a construction of Sheffer sequences via determinantal form,
proving the equivalence with previous theories (Rota et al., Sheffer). Moreover,
all the main known and some new properties have been shown. Another recent
determinantal form has been mentioned. Afterwards, a general linear interpolation
problem has been proposed and solved, giving many examples. Further develop-
ments both in the multivariate case and in computational applications (stability,
conditioning, etc.) are possible.
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