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THE COBURN–SIMONENKO THEOREM

FOR SOME CLASSES OF

WIENER–HOPF PLUS HANKEL OPERATORS

Victor D. Didenko and Bernd Silbermann

Abstract. Wiener–Hopf plus Hankel operators W (a) + H(b) : Lp(R+) →

Lp(R+) with generating functions a and b from a subalgebra of L∞(R) con-
taining almost periodic functions and Fourier images of L1(R)-functions are
studied. For a and b satisfying the so-called matching condition

a(t)a(−t) = b(t)b(−t), t ∈ R,

we single out some classes of operators W (a) + H(b) which are subject to the
Coburn–Simonenko theorem.

1. Introduction

The classical Coburn–Simonenko Theorem states that for a Toeplitz or Wiener–
Hopf operator A with a scalar nonzero generating function, at least one of the
numbers dim kerA or dim cokerA is equal to zero. Thus if it is known that the cor-
responding operator is Fredholm with index zero, the Coburn–Simonenko Theorem
implies that this operator is invertible. Note that Fredholmness of such operators
with generating functions from various classes is well understood. On the other
hand, for Toeplitz plus Hankel operators T (a) + H(b) with piecewise continuous
generating functions a and b their Fredholm properties can be derived by a direct
application of results [4, Sections 4.95–4.102], [12, Sections 4.5 and 5.7], [13]. The
case of quasi piecewise continuous generating functions has been studied in [15],
whereas formulas for the index of the operators T (a) + H(b) considered on vari-
ous Banach and Hilbert spaces and with various assumptions about the generating
functions a and b have been established in [8,14]. It is also worth mentioning that
lately a lot of effort has been spent to obtain information concerning the kernel
and cokernel dimensions of Toeplitz plus Hankel or Wiener–Hopf plus Hankel oper-
ators. Here we are not going to discuss the history of these investigations in much
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detail, but just mention a few important developments. For example, in the works
of Ehrhardt [9,10] and Ehrhardt and Basor [1–3], Toeplitz plus Hankel operators
have been studied in Hp-spaces on the unit circle T mainly under the assumption
that the generating functions of these operators are piecewise continuous, satisfy an
algebraic relation, and that the operators are Fredholm. Wiener–Hopf plus Hankel
operators have received less attention in the literature and results are scarce (see,
for example, [5] and references there). In addition, in most cases the conditions im-
posed on the generating functions are very restrictive and ensure that the problem
can be handled in a more or less straightforward way.

Let us now describe the problem studied in the present paper. Consider the
set G of all functions of the form

(1.1) a(t) =

∞∑

j=−∞

aje
iδjt +

∫ ∞

−∞

k(s)eits ds, −∞ < t < ∞,

where δj ∈ R are pairwise distinct and

∞∑

j=−∞

|aj | < ∞,

∫ ∞

−∞

|k(s)| ds < ∞.

The set G actually forms a commutative unital Banach algebra under pointwise
operations and the norm

‖a‖ :=

∞∑

j=−∞

|aj | +

∫ ∞

−∞

|k(s)| ds.

This algebra G contains both the algebra APw of all almost periodic functions with
absolutely convergent Fourier series and the algebra L0 of all Fourier transforms
of functions from L1(R). Moreover, the algebra G is the direct sum of APw and
L0, and L0 is an ideal in G. A function a ∈ G is invertible in G if and only if it
satisfies the condition inft∈R |a(t)| > 0. Moreover, if b ∈ APw , k ∈ L0, and b+ k is
invertible in G, then b is also invertible in APw (see [11, Chapter VII]). Further,
let us introduce the subalgebra G+ (G−) of the algebra G, which consists of all
functions (1.1) such that all numbers δj are nonnegative (nonpositive) and function
k vanishes on the negative (positive) semi-axis. It is clear that the functions from
G+ and G− admit holomorphic extensions to the upper and to the lower half-plane,
respectively, and the intersection of the sets G+ and G− contains constant functions
only.

If b ∈ APw, k ∈ L0, and the element a = b + k is invertible in G, then the
numbers

ν(a) := lim
l→∞

1

2l
[arg b(t)]l−l, and n(a) :=

1

2π
[arg(1 + b−1(t)k(t)]∞t=−∞,

are well defined. In particular, the first limit exists because b is an almost periodic
function.

Let R+ := (0,∞) and let P be the projection operator from Lp(R), 1 6 p 6 ∞
onto Lp(R+), that is P : f 7→ f |R+ . Analogously, Q is the projection operator from
Lp(R) onto Lp(R−), R− := (−∞, 0). In what follows we will identify the space
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Lp(R+) (Lp(R−)) with the subspace of Lp(R) consisting of all functions vanishing
on R− (R+). Note that P 2 = P and Q2 = Q.

Each function a ∈ G,

a(t) =

∞∑

j=−∞

aje
iδjt +

∫ ∞

−∞

k(s)eits ds,

generates two operators W 0(a) : Lp(R) → Lp(R) and W (a) : Lp(R+) → Lp(R+)
defined by

(W 0(a)f)(t) :=
∞∑

j=−∞

ajf(t− δj) +

∫ ∞

−∞

k(t− s)f(s) ds,(1.2)

W (a)f := PW 0(a)f.

These operators belong to the spaces L(Lp(R)) and L(Lp(R+)), respectively, i.e.,
they are linear bounded operators. Moreover, the mappings G → L(Lp(R)) and
G → L(Lp(R+)) defined, respectively, by

a 7→ W 0(a) and a 7→ W (a) ,

are injective linear bounded mappings. The function a is referred to as the gener-
ating function, or the symbol, for both operators W 0(a) and W (a). The Fredholm
theory for the operators W 0(a), a ∈ G is relatively simple. An operator W 0(a) is
semi-Fredholm if and only if a is invertible in G. A proof of this result is implicitly
contained in the proof of Theorem 2.4, §2, Chapter VII in [11].

Note that the convolution operator (1.2) is shift invariant that is W 0(a)τv =
τvW

0(a) for any v ∈ R, where τv is the operator defined by (τvf)(t) := f(t − v).
The operator W (a) is called integro-difference operator [11, Chapter VII]. It is
shown in [4, Sections 9.4 and 9.21] that integro-difference operators are indeed
Wiener–Hopf integral operators. If a does not vanish identically, then W (a) has a
trivial kernel or a dense range in Lp(R+) at least for 1 < p < ∞ and this is the
Coburn–Simonenko Theorem for such class of operators (see [4, Section 9.5 (d)]).

Now we can formulate the following result.

Theorem 1.1 (Gohberg/Feldman [11]). If a ∈ G, then the operator W (a) is
one-sided invertible in Lp(R+) for 1 6 p 6 ∞ if and only if a is invertible in G.
Further, if a ∈ G is invertible in G, then the following assertions are true.

(i) If ν(a) > 0, then the operator W (a) is invertible from the left and
dim cokerW (a) = ∞.

(ii) If ν(a) < 0, then the operator W (a) is invertible from the right and
dim kerW (a) = ∞.

(iii) If ν(a) = 0, then the operator W (a) is invertible from the left (right) if
n(a) > 0 (n(a) 6 0) and

dim cokerW (a) = n(a) (dim kerW (a) = −n(a)).

(iv) If a ∈ G is not invertible in G, then W (a) is not a semi-Fredholm oper-
ator.
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Remark 1.1. Using the Coburn–Simonenko Theorem, one can show that if
W (a) is normally solvable and a 6= 0, then a is invertible in G, at least in the case
where the operator W (a) acts on the space Lp(R+), p ∈ (1,∞).

Let us introduce Hankel operators. For, consider the operator J : Lp(R) →
Lp(R) defined by Jϕ := ϕ̃, where ϕ̃(t) := ϕ(−t). If a ∈ G and 1 6 p 6 ∞, then on
the space Lp(R+) the Hankel operators H(a) and H(ã) are defined as follows

H(a) : ϕ 7→ PW 0(a)QJϕ,

H(ã) : ϕ 7→ JQW 0(a)Pϕ.

Note that JQW 0(a)P = PW 0(ã)QJ , and the last identity is the consequence of
the following relations

(1.3) J2 = I, JQ = PJ, JP = QJ, JW 0(a)J = W 0(ã).

On the space Lp(R), 1 6 p 6 ∞ we also consider the operators U and U−1

defined by

(Uϕ)(t) := ϕ(t) − 2

∫ t

−∞

es−tϕ(s) ds, −∞ < t < ∞,

(U−1ϕ)(t) := ϕ(t) − 2

∫ ∞

t

et−sϕ(s) ds, −∞ < t < ∞.

It is well known [11] that

U = W 0(χ), U−1 = W 0(χ−1),

where χ(t) := (t − i)/(t + i), χ−1(t) := (t + i)/(t − i), t ∈ R. Moreover, since
W 0(χ)W 0(χ−1) = W 0(χχ−1), we get UU−1 = U−1U = I.

One of the aims of this work is to establish a Coburn–Simonenko Theorem for
the operatorsW (a)+H(aχ) and W (a)−H(aχ−1), where a ∈ G is invertible. Recall
that the semi-Fredholmness of the operators W (b) + H(c) : Lp(R+) → Lp(R+),
b, c ∈ G implies that the element b is invertible in G at least in the case where
1 < p < ∞. Indeed, the proof of Theorem 2.30 in [4] with the shifts U±n and the
Toeplitz operators T (a) replaced, respectively, by the translations τ±ν , ν ∈ R

+ and
the operators W (b) +H(c) implies that ‖W 0(b)f‖ > c‖f‖ for all f ∈ Lp(R). But
then W 0(b) is semi-Fredholm and, therefore, b is invertible in G. For p = 1 this
proof does not work. Nevertheless, we conjecture that for p = 1 the result is also
true. Therefore, the above requirement of the invertibility of the element a is not
too restrictive.

Finally, let us also mention that if a, b ∈ G, then W 0(ab) = W 0(a)W 0(b), and
if a ∈ G−, c ∈ G+, and b ∈ G, then W (abc) = W (a)W (b)W (c). Moreover, in the
following we will make use of the identities

(1.4)
W (ab) = W (a)W (b) +H(a)H (̃b),

H(ab) = W (a)H(b) +H(a)W (̃b).
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2. Kernels of Wiener–Hopf plus Hankel operators.

General properties

In this section we establish certain relations between the kernels of Wiener–
Hopf plus Hankel operators and matrix Wiener-Hopf operators in the case where
the generating functions a, b ∈ G. The corresponding results for Toeplitz plus
Hankel operators T (a) + H(b), a, b ∈ L∞ have been obtained recently [7]. Taking
into account Theorem 1.1 we can always assume that a is invertible in G. Along
with the operator W (a) +H(b) let us also consider the Wiener–Hopf minus Hankel
operator W (a) − H(b) and the Wiener–Hopf operator W (V (a, b))) defined by the
matrix

V (a, b) :=

(
a− bb̃ã−1 d

−c ã−1

)
,

where c := b̃ã−1, d := bã−1.
The following lemma describes connections between the solutions of homoge-

neous equations with Wiener–Hopf plus/minus Hankel operators and the solutions
of the associated homogeneous equation with the matrix Wiener–Hopf operator
W (V (a, b)).

Lemma 2.1. Assume that a, b ∈ G, a is invertible in G, and the operators
W (a) ±H(b) are considered on the space Lp(R+), 1 6 p 6 ∞.

• If (ϕ, ψ)T ∈ kerW (V (a, b)), then

(2.1)

(Φ,Ψ)T =
1

2

(
ϕ− JQW 0(c)ϕ+ JQW 0(ã−1)ψ, ϕ+JQW 0(c)ϕ− JQW 0(ã−1)ψ

)T

∈ ker diag
(
W (a) +H(b),W (a) −H(b)

)

• If (Φ,Ψ)T ∈ ker diag
(
W (a) +H(b),W (a) −H(b)

)
, then

(2.2)
(
Φ + Ψ, P (W 0(̃b)(Φ + Ψ) +W 0(ã)JP (Φ − Ψ))

)T
∈ kerW (V (a, b)).

Moreover, the operators

E1 : kerW (V (a, b)) → ker diag
(
W (a) +H(b),W (a) −H(b)

)
,

E2 : ker diag
(
W (a) +H(b),W (a) −H(b)

)
→ kerW (V (a, b)),

defined, respectively, by relations (2.1) and (2.2) are mutually inverse.

Proof. Consider the operators

A :=

(
I 0

W 0(̃b) W 0(ã)

) (
I I
J −J

)
, B1 := 2

(
I J
I −J

)
,(2.3)

B2 := diag(I, I) − diag(P,Q)

(
W 0(a) W 0(b)

W 0(̃b) W 0(ã)

)
diag(Q,P ),

B3 := diag(I, I) + diag(P, P )

(
W 0(a− bb̃ã−1) W 0(d)

−W 0(c) W 0(ã−1)

)
diag(Q,Q).
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Elementary but tedious computations show that the the operator

diag
(
W (a) +H(b) +Q,W (a) −H(b) +Q

)

can be represented as the product of three matrix operators, viz.

(2.4)

(
W (a) +H(b) +Q 0

0 W (a) −H(b) +Q

)
= B(W (V (a, b))) + diag(Q,Q)A ,

where B := B1B2B3. The operator A : Lp(R) × Lp(R) → Lp(R) × Lp(R) is
invertible because a is invertible in G, and it is well known that all the operators
B1, B2, B3 are invertible as well. Therefore, relations (2.3)–(2.4) imply that for any
(ϕ, ψ)T ∈ kerW (V (a, b))), the element A−1((ϕ, ψ)T ) belongs to the set

ker diag
(
W (a)+H(b)+Q,W (a)−H(b)+Q

)
= ker diag

(
W (a)+H(b),W (a)−H(b)

)
.

Hence

diag(P, P )A−1((ϕ, ψ)T ) = A−1((ϕ, ψ)T ).

Computing the left-hand side of the last equation, one obtains relation (2.1). Anal-
ogously, if (Φ,Ψ)T ∈ ker diag

(
W (a) + H(b),W (a) − H(b)

)
, then A((Φ,Ψ)T ) ∈

kerW (V (a, b)) and diag(P, P )A((Φ,Ψ)T ) = A((Φ,Ψ)T ), so representation (2.2)
follows.

Now let (ϕ, ψ) and (Φ,Ψ) be as above. Then

diag(P, P )Adiag(P, P )A−1((ϕ, ψ)T ) = AA−1((ϕ, ψ)T ),

diag(P, P )A−1 diag(P, P )A((Φ,Ψ)T ) = A−1A((Φ,Ψ)T ),

which completes the proof. �

From now on we will always assume that the generating functions a and b
satisfy the condition

(2.5) aã = bb̃.

Analogously to [6], relation (2.5) is called matching condition, and if a and b satisfy
(2.5), then the duo (a, b) is called a matching pair. For each matching pair (a, b)

one can assign another matching pair (c, d) with c := b̃ã−1 and d := bã−1. Such
a pair (c, d) is called the subordinated pair for (a, b), and it is easily seen that the
functions which constitutes a subordinated pair have a specific property, namely

cc̃ = 1 = dd̃. Throughout this paper any function g ∈ G satisfying the condition

gg̃ = 1,

is called matching function. In passing note that the matching functions c and d
can also be expressed in the form

c = ab−1, d = b̃−1a.

Besides, if (c, d) is the subordinated pair for a matching pair (a, b), then (d, c) is the

subordinated pair for the matching pair (a, b̃) which defines the adjoint operator

(2.6) (W (a) +H(b))∗ = W (a) +H (̃b)
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for the operator W (a) + H(b). Further, a matching pair (a, b) is called Fredholm,
if the Wiener–Hopf operators W (c) and W (d) are Fredholm.

If (a, b) is a matching pair, then the corresponding matrix–function V (a, b)
takes the form

V (a, b) =

(
0 d

−c ã−1

)
,

where (c, d) is the subordinated pair for the pair (a, b). Moreover, similarly to the
corresponding representation of the matrix Toeplitz operator T (V (a, b)) from [6],
the operatorW (V (a, b))) can be represented as the product of three matrix Wiener–
Hopf operators

W (V (a, b))) =

(
0 W (d)

−W (c) W (ã−1)

)
(2.7)

=

(
−W (d) 0

0 I

) (
0 −I
I W (ã−1)

) (
−W (c) 0

0 I

)
,

where the operator

D :=

(
0 −I
I W (ã−1)

)

in the right-hand side of (2.7) is invertible and

D−1 =

(
W (ã−1) I

−I 0

)
.

Note that a useful representation for the kernel of the block Toeplitz operator
T (V (a, b))) defined by a matching pair (a, b), has been derived recently. Following
[7, Proposition 3.3], one can also obtain a similar result for the block Wiener-Hopf
operator W (V (a, b)).

Proposition 2.1. Let (a, b) ∈ G×G be a matching pair such that the operator
W (c), c = ab−1, is invertible from the right. Then

kerW (V (a, b))) = Ω(c) ∔ Ω̂(d)

where

Ω(c) :=
{

(ϕ, 0)T : ϕ ∈ kerW (c)
}
,

Ω̂(d) :=
{

(W−1
r (c)W (ã−1)s, s)T : s ∈ kerW (d)

}
,

and W−1
r (c) is one of the right inverses for the operator W (c).

Proof. It is clear that Ω(c) and Ω̂(d) are closed subspaces of kerW (V (a, b))

and Ω(c) ∩ Ω̂(d) = {0}.
If (y1, y2)T ∈ kerW (V (a, b)), then W (d)y2 = 0, and W (c)y1 = W (ã−1)y2.

Since W−1
r (c) is left-invertible, the space Lp(R+) is the direct sum of the closed

subspaces kerW (c) and imW−1
r (c), i.e., Lp(R+) = kerW (c) ∔ imW−1

r (c). Conse-
quently, the element y1 can be represented in the form y1 = y10 + y11, where y10 ∈
kerW (c) and y11 ∈ imW−1

r (c). Moreover, there is a unique vector y3 ∈ Lp(R+)
such that y11 = W−1

r (c)y3, so we get

W (c)y1 = W (c)(W−1
r (c)y3 + y10) = y3 = W (ã−1)y2.
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It implies that y1 = W−1
r (c)W (ã−1)y2 + y10, what leads to the representation

(y1, y2)T = (W−1
r (c)W (ã−1)y2, y2)T + (y10, 0)T ,

with (W−1
r (c)W (ã−1)y2, y2)T ∈ Ω̂(d) and (y10, 0)T ∈ Ω(c). �

Thus ϕ ∈ kerW (c) implies that (ϕ, 0)T ∈ kerW (V (a, b))) and by Lemma 2.1

(2.8)
ϕ− JQW 0(c)Pϕ ∈ ker(W (a) +H(b)),

ϕ+ JQW 0(c)Pϕ ∈ ker(W (a) −H(b)).

It is even more remarkable that the functions ϕ−JQW 0(c)Pϕ and ϕ+JQW 0(c)Pϕ
belong to the kernel of the operator W (c) as well.

Proposition 2.2. Let g ∈ G be a matching function, i.e., gg̃ = 1. If f ∈
kerW (g), then JQW 0(g)Pf ∈ kerW (g) and (JQW 0(g)P )2f = f .

Proof. If gg̃ = 1 and f ∈ kerW (g), then

W (g)(JQW 0(g)Pf) = PW 0(g)PJQW 0(g)Pf = JQW 0(g̃)QW 0(g)Pf

= JQW 0(g̃)W 0(g)Pf − JQW 0(g̃)PW 0(g)Pf = 0,

and assertion (i) follows. On the other hand, for any f ∈ kerW (g) one has

(JQW 0(g)P )2f = JQW 0(g)PJQW 0(g)Pf = PW 0(g̃)QW 0(g)Pf

= PW 0(g̃)W 0(g)Pf − PW 0(g̃)PW 0(g)Pf = f,

which completes the proof. �

Consider now the operator P(g) := JQW 0(g)P
∣∣
ker W (g). Proposition 2.2 im-

plies that P(g) : kerW (g) → kerW (g) and P2(g) = I. Thus on the space kerW (g)
the operators P−(g) := (1/2)(I − P(g)) and P+(g) := (1/2)(I + P(g)) are comple-
mentary projections generating a decomposition of kerW (g). Moreover, relations
(2.8) lead to the following result.

Corollary 2.1. Let (c, d) be the subordinated pair for a matching pair (a, b) ∈
G×G. Then kerW (c) = im P−(c) ∔ im P+(c), and the following relations hold

(2.9) im P−(c) ⊂ ker(W (a) +H(b)), im P+(c) ⊂ ker(W (a) −H(b)).

Relations (2.9) show the influence of the operator W (c) on the kernels of the
operators W (a) + H(b) and W (a) − H(b). Let us now clarify the role of another
operator–viz. the operator W (d), in the structure of the kernels of the operators
W (a) + H(b) and W (a) − H(b). Assume additionally that the operator W (c) is
invertible from the right. If s ∈ kerW (d), then the element (W−1

r (c)W (ã−1)s, s)T ∈
kerW (V (a, b))). By Lemma 2.1, the element

2ϕ±(s) := W−1
r (c)W (ã−1)s∓ JQW 0(c)PW−1

r (c)W (ã−1)s± JQW 0(ã−1)s

belongs to the null space ker(W (a) ±H(b)) of the corresponding operator W (a) ±
H(b).
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Lemma 2.2. Let (c, d) be the subordinated pair for a matching pair (a, b) ∈
G × G. If the operator W (c) is right-invertible, then for every s ∈ kerW (d) the
following relations

(W (̃b) +H(ã))ϕ+(s) = P+(d)s, (W (̃b) −H(ã))ϕ−(s) = P−(d)s,

hold. Thus the corresponding mappings ϕ+ : im P+(d) → im P+(d) and ϕ− :
im P−(d) → im P−(d), are injective operators.

Proof. Assuming that s ∈ kerW (d), one can show that the operator W (̃b) +

H(ã) sends ϕ+(s) into P+(d)s and the operator W (̃b) − H(ã) sends ϕ−(s) into
P−(d)s. The proof of these facts is based on relations (1.3) and runs similarly to
the proof of [7, Lemma 3.6]. �

Proposition 2.3. Let (c, d) be the subordinated pair for a matching pair (a, b) ∈
G×G. If the operator W (c) is right-invertible, then

ker(W (a) +H(b)) = ϕ+(im P+(d)) ∔ im P−(c),

ker(W (a) −H(b)) = ϕ−(im P−(d)) ∔ im P+(c).

Proof. Using the invertibility of the operator E1 and Proposition 2.1, one
obtains

ker diag(W (a) +H(b),W (a) −H(b)) = E1(Ω̂(d)) ∔ E1(Ω(c)).

Apparently, Ω̂(d) = Ω̂+(d) ∔ Ω̂−(d), Ω(c) = Ω+(c) ∔ Ω−(c), where

Ω̂+(d) =
{

(W−1
r (c)W (ã−1)s, s)T : s ∈ im P+(d)

}
,

Ω̂−(d) =
{

(W−1
r (c)W (ã−1)s, s)T : s ∈ im P−(d)

}
,

Ω+(c) =
{

(s, 0)T : s ∈ im P+(c)
}
,

Ω−(c) =
{

(s, 0)T : s ∈ im P−(c)
}
.

Hence

ker diag(W (a) +H(b),W (a) −H(b))

= E1(Ω̂+(d)) ∔ E1(Ω̂−(d)) ∔ E1(Ω+(c)) ∔ E1(Ω−(c)) = E1(kerW (V (a, b)).

It is clear that if φ ∈ ker(W (a)+H(b)), then (φ, 0)T ∈ ker diag(W (a)+H(b),W (a)−
H(b)). Now we want to find that uniquely defined element (α, β)T from the kernel
of the operator W (V (a, b)), which is sent into the element (φ, 0) by the operator
E1. It can be uniquely represented in the form

(α, β)T= (W−1
r (c)W (ã−1)s+, s+)T+ (W−1

r (c)W (ã−1)s−, s−)T+ (v+, 0)T+ (v−, 0)T ,

where s± ∈ im P±(d), v± ∈ im P±(c). Then

(φ, 0)T = E1((α, β)T )

= E1((W−1
r (c)W (ã−1)s+, s+)T ) + E1((W−1

r (c)W (ã−1)s−, s−)T )

+ E1((v+, 0)T ) + E1((v−, 0)T )

= (ϕ+(s+), ϕ−(s+))T + (ϕ+(s−), ϕ−(s−))T + (0, v+)T + (v−, 0)T .
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Thus

φ = ϕ+(s+) + ϕ+(s−) + v−, 0 = ϕ−(s+) + ϕ−(s−) + v+.

However, since ϕ+(s−) ∈ ker(W (a) + H(b)) and E2((ϕ+(s−), 0)T ) = (ϕ+(s−), 0)T

according to Lemma 2.2, we get ϕ+(s−) ∈ im P−(c). Analogously, one can show
that ϕ−(s+) ∈ P+(c). It implies that ϕ−(s−) = −(ϕ−(s+) + v+) ∈ im P+(c) and
E2((0, ϕ−(s−))T ) = (ϕ−(s−), 0)T because ϕ−(s−) ∈ im P+(c). On the other hand,
due to Lemma 2.2, one has E2((0, ϕ−(s−))T ) = (ϕ−(s−), s−)T . The comparison of
the two expressions for the element E2((0, ϕ−(s−))T ) gives s− = 0, and therefore
ϕ−(s−) = 0. This implies ϕ−(s+) = −v+. Consequently,

(α, β)T = (W−1
r (c)W (ã−1)s+, s+)T − (ϕ−(s+), 0)T + (v−, 0)T ,

which leads to the relation

E1((α, β)T ) = (ϕ+(s+), ϕ−(s+))T − (0, ϕ−(s+))T + (v−, 0)T = (ϕ+(s+) + v−, 0)T .

Thus ϕ+(s+) + v− ∈ ker(W (a) + H(b)). This result shows that ker(W (a) +
H(b)) is the sum of its subspaces ϕ+(im P+(d)) and im P−(c). Recalling that

(W−1
r (c)W (ã−1)s+, s+)T − (ϕ−(s+), 0)T ∈ Ω̂+(d) ∔ Ω+(c) and (v−, 0)T ∈ Ω−(c),

one finally obtains

ker(W (a) +H(b)) = ϕ+(im P+(d)) ∔ im P−(c).

The relation

ker(W (a) −H(b)) = ϕ−(im P−(d)) ∔ im P+(c)

can be verified analogously. �

Corollary 2.2. Let (c, d) be the subordinated pair for a matching pair (a, b) ∈
G×G satisfying the conditions of Proposition 3.1. Then

dim ker(W (a) +H(b)) = dim im P+(d) + dim im P−(c),

dim ker(W (a) −H(b)) = dim im P−(d) + dim im P+(c).

Remark 2.1. If (a, b) ∈ G×G is a Fredholm matching pair, i.e., if W (c),W (d)
are Fredholm operators, then W (a) ±H(b) are Fredholm operators and

(2.10) ind(W (a) + H(b)) + ind(W (a) −H(b)) = indW (c) + indW (d).

We conjecture that if one of the operatorsW (a)+H(b) or W (a)−H(b) is Fredholm,
then so is the other and relation (2.10) holds.

3. Kernels of Wiener–Hopf plus Hankel operators. Specification

In this section we study the kernels of Wiener–Hopf plus Hankel operators
W (a) + H(b) in the case where the generating functions a, b ∈ G satisfy matching
condition (2.5) and W (c),W (d) are mainly Fredholm operators such that

0 6 | indW (c)|, | indW (d)| 6 1.

Recall that a is supposed to be invertible in G. In view of Theorem 1.1, on has
ν(c) = ν(d) = 0 and 0 6 |n(c)|, |n(d)| 6 1.

In order to formulate our first result we need the following lemma.
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Lemma 3.1. Let χ(t) := (t− i)/(t+ i), t ∈ R.

(i) If the function ψ is defined by

ψ(t) :=
{
e−t if t > 0,
0 if t < 0,

then W 0(χ−1)ψ = −ψ̃.
(ii) On each space Lp(R+), 1 6 p 6 ∞ the operator W (χ−1) has a one-

dimensional kernel generated by the function ψ0(t) = e−t, t > 0.

Proof. Assertion (i) can be obtained by using the relation

(W 0(χ−1)g)(t) = g(t) − 2

∫ ∞

t

et−sg(s) ds, −∞ < t < ∞,

which is valid for all g ∈ Lp(R), 1 6 p 6 ∞, [11].
Assertion (ii) is well known. It can be proved by the differentiation of the

identity

ϕ(t) = 2

∫ ∞

t

et−sϕ(s) ds.

Moreover, one has

(W (χ−1)g)(t) = g(t) − 2

∫ ∞

t

et−sg(s) ds, 0 < t < ∞,

(see [11]). Note that assertion (ii) also follows from assertion (i). �

Now we can derive the following version of the Coburn–Simonenko Theorem.

Theorem 3.1. Let a ∈ G be invertible and let A denote any of the four op-
erators W (a) − H(aχ), W (a) + H(aχ−1), W (a) ± H(a). Then at least one of the
spaces kerA or cokerA is trivial.

Proof. Part 1: Let us start with the operator W (a) +H(aχ). The function χ
satisfies the relation χ̃ = χ−1, so the duo (a, aχ) is a matching pair with the subor-
dinated pair (c, d) with c = χ−1 and d = aã−1χ. Moreover, the operator W (χ−1)
is invertible from the right and one of its right inverses is the operator W (χ). Thus
the theory of Section 2 applies. As it was pointed out earlier, the kernel of this
operator is kerW (χ−1) = {cψ0 : c ∈ C}, where ψ0(t) = e−t, t > 0. In order to
apply Proposition 2.3 we have to identify, in particular, the projections P±(χ−1)
acting on the space kerW (χ−1). But P+(χ−1) and P−(χ−1) are complimentary
projections on the one-dimensional space kerW (χ−1). Therefore, one of these pro-
jections is just the identity operator whereas the other one is the zero operator.
Consider next the expression JQW 0(χ−1)Pψ0. By Lemma 3.1(i) one has

JQW 0(χ−1)Pψ0 = JQW 0(χ−1)ψ = −JQψ̃,

so that JQW 0(χ−1)Pψ0 = −ψ0 and P−(χ−1) = I on kerW (χ−1).



96 DIDENKO AND SILBERMANN

According to Proposition 2.3, the kernels of the operators W (a) + H(aχ) and
W (a) −H(aχ) can be represented in the form

(3.1)
ker(W (a) −H(aχ)) = ϕ−(im P−(d)),

ker(W (a) +H(aχ)) = ϕ+(im P+(d)) ∔ {cψ0 : c ∈ C}.

If dim kerW (d) > 0, then coker(W (a) ± H(aχ)) = {0}. Indeed, relation (2.7)
and the familiar Coburn–Simonenko Theorem for the operator W (d) show that
cokerW (V (a, aχ)) = {0}. Taking into account representation (2.4), one obtains
that the cokernel of each of the operatorsW (a)+H(aχ) and W (a)−H(aχ) contains
the zero element only.

Let us now assume that kerW (d) = {0}. Then the first relation (3.1) implies
that ker(W (a) − H(aχ)) = 0. Hence, the operator W (a) − H(aχ) is subject to
Coburn–Simonenko Theorem.

Part 2: Consider the operator W (a) +H(aχ−1) and note that W (c) = W (χ) is
not right-invertible, so that Proposition 2.3 cannot be directly used in this situation.
Nevertheless, the case at hand can be reduced to the operators studied. Thus the
operators W (a) ±H(aχ−1) can be represented in the form

(3.2) W (a) ±H(aχ−1) = (W (aχ−1) ±H(aχ−1χ))W (χ).

The proof of (3.2) follows from (1.4) and relation H(χ)W (χ) = 0. Setting α :=
aχ−1, we get

(3.3) W (a) ±H(aχ−1) = (W (α) ±H(αχ))W (χ).

The operators of the form W (α) ±H(αχ) in the right-hand side of (3.2) have been
just studied, and we already know that the function ψ0 belongs to the kernels of
both operatorsW (α)+H(αχ) and W (χ−1). Since W (χ−1)W (χ) = I it follows that
ψ0 /∈ imW (χ). Consider now the projection Q0 := W (χ)W (χ−1) which projects
the space Lp(R+), 1 6 p 6 ∞ onto imW (χ) parallel to kerW (χ−1).

Assume first that kerW (d) = {0} and note that for the matching pairs (a, aχ−1)
and (α, αχ), the corresponding subordinated pairs (c, d) have the same element d,
namely, d = aã−1χ. Then (3.3) shows that ker(W (a) + H(aχ−1)) = {0}. Further,
if dim kerW (d) > 0, then the space ker(W (α) +H(αχ)) decomposes as follows

ker(W (α) +H(αχ)) = kerW (χ−1) ⊕Q0(ker(W (α) +H(αχ))).

However, as was already shown, the operator W (α)−H(αχ) is right-invertible and

kerW (χ−1) ⊂ kerW (α) +H(αχ).

Therefore, relation (3.2) implies that the operator W (a) +H(aχ−1) maps Lp(R+)
onto Lp(R+), so it is subject to the Coburn–Simonenko Theorem.

Part 3: It remains to consider the operators W (a) ±H(a). For these operators
the element c in the corresponding subordinated pair is either 1 or −1, and our claim
follows immediately from the Coburn–Simonenko Theorem for scalar Wiener–Hopf
operators and from relations (2.7) and (2.4). �
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Remark 3.1. The proof of Theorem 3.1 shows that this theorem remains true
for more general generating functions, for instance, in the case where a and b belong
to the algebras Gp, 1 6 p 6 ∞ studied in [11, Chapter VII].

The reader can also observe that, in fact, we have proved a bit more than
Theorem 3.1 states. A more detailed result can be formulated as follows.

Corollary 3.1. Let a ∈ G be invertible. Then

(i) If dim kerW (d) = 0, then

ker(W (a) −H(aχ)) = {0}, ker(W (a) +H(aχ)) = {cψ0 : c ∈ C},

and if dim kerW (d) > 0, then coker(W (a) ±H(aχ)) = {0}.
(ii) If dim kerW (d) = 0, then ker(W (a) ±H(aχ−1)) = {0},

and if dim kerW (d) > 0, then coker(W (a) +H(aχ−1)) = {0}.

Let us emphasize that the description of the projections P±(χ−1) did play an
important role in our considerations. In the general case one has to study the
projections P±(g) for the functions g satisfying the relation gg̃ = 1. Because of
the space restriction, we are not going to pursue this matter here. Nevertheless, let
us consider the case where ν(g) = 0 and n(g) = −1, which is one of the simplest
generalization of the situation g = χ−1. In order to handle this case we need a
result from [11, Chapter VII].

Proposition 3.1. Each invertible function g ∈ G admits the factorization of
the form

(3.4) g(t) = g−(t)eiνt
( t− i

t+ i

)n

g+(t), −∞ < t < ∞,

where g±1
+ ∈ G+, g±1

− ∈ G−, ν = ν(g) and n = n(g). Moreover, under the
agreement g−(0) = 1, the factorization factors g+ and g− are uniquely defined.

Note that the proof of Theorem 1.1 is based on Proposition 3.1.

Definition 3.1. Suppose that g ∈ G satisfies the condition gg̃ = 1 and set

ξ(g) = (−1)ng(0), n = n(g).

Theorem 3.2. If g ∈ G and gg̃ = 1, then ξ(g) = ±1 and the factorization (3.4)
takes the form

(3.5) g(t) =
(
ξ(g) g̃−1

+ (t)
)
eiνt

( t− i

t+ i

)n

g+(t)

with g̃±1
+ (t) ∈ G− and g−(t) = ξ(g) g̃−1

+ (t).

Proof. Using the condition g−1 = g̃, we get from (3.4) that

g−1
+ (t)e−iνt

( t− i

t+ i

)−n

g−1
− (t) = g̃−(t)e−iνt

( t− i

t+ i

)−n

g̃+(t),

where ν = ν(g), n = n(g).
Note that g̃±1

− ∈ G+, g̃±1
+ ∈ G−, as easy computations show. Therefore,

g−1
+ g̃−1

− = g−g̃+,
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and g−1
+ g̃−1

− ∈ G+, g−g̃+ ∈ G−. It follows that there is a constant ξ ∈ C such

that g−1
+ g̃−1

− = ξ = g−g̃+, and g− = ξ g̃−1
+ . For the function g0 = g+g− we have

g0g̃0 = 1. Therefore,

1 = g0g̃0 = (ξg+g̃
−1
+ )(ξg̃+g

−1
+ ) = ξ2.

For t = 0, which is one of the fixed points of the operator J , the equation g0 =
ξg+g̃

−1
+ implies g0(0) = ξ, and g0(0) = g(0)(−1)n (see (3.5)). Thus we obtain that

ξ = g(0)(−1)n which completes the proof. �

Now we again use the notation

χ±1(t) =
( t− i

t+ i

)±1
, t ∈ R.

Theorem 3.3. Let g ∈ G, gg̃ = 1, ν(g) = 0 and n(g) = −1. Then

im P±(g) =

{
c
(1 ∓ ξ(g)

2

)
W (g−1

+ )ψ0 : c ∈ C

}
.

Proof. It is easily seen that kerW (g) =
{

cW (g−1
+ )ψ0 : c ∈ C

}
, According to

the definition of projections P±(g) we have to compute the expression

JQW 0(g)PW (g−1
+ )ψ0.

We have

JQW 0(g)PW (g−1
+ ) = JQW 0(g−)W 0(χ−1)W 0(g+)W 0(g−1

+ )P

= JQW 0(g−)W 0(χ−1)P.

Recall that by Lemma 3.1, W 0(χ−1)Pψ0 = W 0(χ−1)ψ = −ψ̃, and using Theo-
rem 3.2 we get

JQW 0(g)PW (g−1
+ )ψ0 = −JQW 0(g−)ψ̃ = −W 0(g̃−)ψ

= −Pξ(g)W 0(g−1
+ )Pψ0 = −ξ(g)W 0(g−1

+ )ψ0,

and we are done. �

The next result is a generalization of Theorem 3.1.

Theorem 3.4. Let a, b ∈ G constitute a matching pair, a be invertible in G
and let (c, d) be the subordinated pair for (a, b). If A denotes one of the following
operators

(i) W (a) ±H(b) with ν(c) = 0, n(c) = 1 and ξ(c) = ±1;
(ii) W (a) ∓H(b) with ν(c) = 0, n(c) = −1 and ξ(c) = ±1;
(iii) W (a) ±H(b) with ν(c) = 0 and n(c) = 0

considered on the space Lp(R+), then at least one of the spaces kerA or cokerA is
trivial.

Proof. The proof mimics that of Theorem 3.1 with minor modifications.
First, we note that the case ξ(c) = −1 can be reduced to the case ξ(c) = 1 via
rearrangements W (a) +H(b) = W (a) −H(−b) and W (a) −H(b) = W (a) +H(−b).
Therefore, we only consider the situation ξ(c) = 1 in the cases (i) and (ii). Further,
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one has to use Theorem 3.3 instead of the description of the projections P±(χ±1).
Consider the operator W (a) + H(b) in the case where ν(c) = 0 and n(c) = 1.
Representing the operator W (a) ±H(b) in the form

W (a) ±H(b) = (W (aχ−1) ±H(bχ))W (χ),

we observe that (aχ−1, bχ) is a matching pair with the subordinated pair (cχ−2, d)
and indW (cχ−2) = −1, im P+(cχ−2) = kerW (cχ−2) = {cW (c−1

+ )ψ0 : c ∈ C}.

Let us also note that kerW (cχ−2) = kerW (c+χ
−1) and W (c+χ

−1)W (c−1
+ χ) = I.

Hence, kerW (cχ−2)∩ imW (c−1
+ χ) = {0}. Since obviously imW (c−1

+ χ) = imW (χ),

we obtain kerW (cχ−1) ∩ imW (χ) = {0}.
Now one can proceed similarly to Part 2 in the proof of Theorem 3.1. �

Corollary 3.2. Assume that a, b ∈ G constitute a matching pair with the
subordinated pair (c, d) such that ξ(c) = 1. Then

(i) If dim kerW (d) = 0, and indW (c) = 1, then

ker(W (a) −H(b)) = {0}, ker(W (a) +H(b)) = {cW (c−1
+ )ψ0 : c ∈ C},

and if dim kerW (d) > 0, then coker(W (a) ±H(b)) = {0}.
(ii) If dim kerW (d) = 0, and indW (c) = −1, then ker(W (a) ±H(b)) = {0},

and if dim kerW (d) > 0, then coker(W (a) +H(b)) = {0}.

An interesting and important subclass of the operators considered in this paper
comprises the identity plus Hankel operators. Let us specify the above results in
this situation

Corollary 3.3. If b ∈ G is a matching function, then (1, b) is a matching

pair with the subordinated pair (̃b, b), and if A denotes any of the operators

(i) I −H(b) with ν (̃b) = 0, n(̃b) = −1 and ξ(̃b) = 1;

(ii) I +H(b) with ν (̃b) = 0, n(̃b) = 1 and ξ(̃b) = 1;

(iii) I ±H(b) with ν (̃b) = 0 and n(̃b) = 0,

considered on the space Lp(R+), then kerA or cokerA is trivial.

Now we revisit Theorem 3.1 and consider the operators W (a) ± H(aχ) and
W (a) ±H(aχ−1) under additional assumptions.

10. Suppose that ν(a) = n(a) = 0 and b = aχ. The subordinated pair (c, d) is
given by the elements c = χ−1 and d = aã−1χ. Thus

indW (c) = 1, indW (d) = −1, ξ(c) = ξ(d) = 1.

According to (2.10) we have

(3.6) ind(W (a) +H(aχ)) + ind(W (a) −H(aχ)) = 0.

Further, by Corollary 3.1(i) we also have

ker(W (a) −H(aχ)) = 0, ker(W (a) +H(aχ)) = {cψ0 : c ∈ C}.

In order to describe the cokernels of the above operators we make use of the adjoint
operators. If p ∈ [1,∞), then according to (2.6) the adjoint operators have the form

W (a) ±H(ãχ), and the duo (a, ãχ) is a matching pair with the subordinated pair
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(d, c), so that indW (d) = 1, indW (c) = −1 and ξ(d) = 1. By Corollary 3.2(ii),

ker(W (a) − H(ãχ)) = {0}, which finally proves that the operator W (a) − H(aχ)
is invertible. Note that this result is also true for the space L∞(R+). Indeed, the

operator W (a) − H(ãχ) acts on the space L1(R+) and the above considerations

show that dim ker(W (a) − H(ãχ)) = 0. The adjoint of this operator acts on the
space L∞(R+) and is equal to the operator W (a) − H(aχ), the kernel of which is

trivial. Therefore, the operator W (a) − H(ãχ) is invertible on the space L1(R+).
Consequently, its adjoint W (a) − H(aχ) is invertible on L∞(R+). Then relation
(3.6) immediately implies that ind(W (a) + H(aχ)) = 0. Note that the operator
W (a) + H(aχ) provides an example of operators where both spaces ker(W (a) +
H(aχ)) and coker(W (a) +H(aχ)) are nontrivial.

20. Suppose that ν(a) = 0, n(a) = −1 and b = aχ. For the subordinated pair
(c, d) we have c = χ−1 and d = aã−1χ so that indW (c) = 1, indW (d) = 1, ξ(d) = 1.
Since indW (d) = 1, Corollary 3.1(i) indicates that coker(W (a) ± H(aχ)) = {0}.
besides, dim ker(W (a) ±H(aχ)) = 1 by Proposition 2.3.

30. Suppose that ν(a) = n(a) = 0 and b = aχ−1. Since c = χ, the operator
W (c) is not invertible from the right. Write

(3.7) W (a) ±H(aχ−1) = (W (aχ−1) ±H(aχ−1χ))W (χ),

and set α := aχ−1. The operators W (α) ±H(αχ) are considered in 20, so we have

dim ker(W (α) ±H(αχ)) = 1

dim coker(W (α) ±H(αχ)) = 0.

According to the Part 2 in the proof of Theorem 3.1, one has ker(W (a)+H(aχ−1)) =
{0}. This and the relation dim coker(W (α) + H(αχ)) = 0 show the invertibility
of the operator W (a) +H(aχ−1). Due to Proposition 2.3 (see also (3.1)) we know
that the kernel of the operator W (α) −H(αχ) is spanned on the element

(3.8) κ = W (χ)W (α̃−1)W (d−1
+ )ψ0 + JQW 0(χ−1)PW 0(χ)PW (α̃−1)W (d−1

+ )ψ0

− JQW 0(α̃−1)PW (d−1
+ )ψ0,

where we used the fact that W (χ) is a right inverse for the operator W (χ−1) and
where d−1

+ arises from the factorization (3.5) of the function d = aã−1χ−1. Note
that the first term in (3.8) belongs to the set imW (χ), whereas the second one
is equal to zero. Thus the operator W (a) − H(aχ−1) is invertible if and only if
H(α−1)W (d−1

+ )ψ0 /∈ imW (χ). On the other hand, if this condition is not satisfied,

the operator W (a) −H(aχ−1) presents an example of a Wiener–Hopf plus Hankel
operator with one-dimensional kernel and cokernel.

40. Suppose that ν(a) = 0, n(a) = 1 and b = aχ−1. Let us use representation
(3.7) and set α = aχ−1. It follows from Part 10 that W (α) − H(αχ) is invertible
whereas the operatorW (α)+H(αχ) has one-dimensional kernel and cokernel. Since

ker(W (α) +H(αχ)) = {cψ0 : c ∈ C} ∩ imW (χ) = {0},

we conclude that the operator W (a) +H(aχ−1) has trivial kernel and a cokernel of
dimension 1. Of course, the same conclusion is valid for the operatorW (a)−H(aχ).
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It is worth noting that a similar consideration with natural amendments can
be used in the contest of Theorem 3.4. Let us restrict ourselves to the operators

I+H(b) with the generating function b satisfying the condition bb̃ = 1. Then (1, b)

is a matching pair with the subordinated pair (̃b, b).

50. Suppose that ν(b) = n(b) = 0. Then the operators W (b) and W (̃b) are
invertible and relations (2.4), (2.7) already show that I + H(b) and I − H(b) are
invertible operators.

Assume next that ν(b) = 0 but n(b) = 1 and ξ(̃b) = 1. Then indW (̃b) = 1 and
indW (b) = −1. By Corollary 3.2(i), one has

ker(I −H(b)) = {0}, ker(I +H(b)) = {cW (b+)ψ0 : c ∈ C}.

Similarly to Part 10 one shows that the operator I −H(b) is invertible and ind(I +
H(b)) = 0.

Finally, let us assume that ν(b) = 0, n(b) = −1 and ξ(̃b) = 1. Since indW (̃b) =
−1, we will use the relation I ± H(b) = (W (χ−1) ± H(bχ))W (χ). It is clear that

(χ−1, bχ) is a matching pair with the subordinated pair (̃bχ−2, b) and indW (̃bχ−2)=
indW (b) = 1. Analogously to Part 20 we obtain that

coker(W (χ−1) ±H(bχ)) = {0}.

Moreover, by Proposition 2.3, dim ker(W (χ−1) ±H(bχ)) = 1 and since

ker(W (χ−1) +H(bχ)) = {cW (b+)ψ0 : c ∈ C} ∩ imW (χ) = {0},

the operator I +H(b) is invertible. If kerW (χ−1) −H(bχ) ∩ imW (χ) = {0}, then
I − H(b) is invertible. Otherwise, ind(I − H(b)) = 0, but this operator is not
invertible.
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