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NEW MODULI OF SMOOTHNESS

K. A. Kopotun, D. Leviatan, and I. A. Shevchuk

Abstract. We discuss various properties of the new modulus of smoothness

ωϕ
k,r

(f(r), t)p := sup
0<h6t

‖Wr
kh(·)∆k

hϕ(·)(f(r), ·)‖Lp [−1,1],

where ϕ(x) :=
√

1 − x2 and Wδ(x) =
(

(1−x−δϕ(x)/2)(1+x−δϕ(x)/2)
)1/2

.
Related moduli with more general weights are also considered.

1. Introduction

1.1. Trigonometric approximation. Let L̃p, 1 6 p 6∞, denote the space

of 2π-periodic measurable functions for which the norm ‖f‖
L̃p

:=
( ∫ π

−π |f(x)|pdx
)1/p

is finite. Here, by L̃∞ we mean the space of continuous 2π-periodic functions C̃

equipped with the uniform norm, i.e., ‖f‖
C̃

:= maxx∈[−π,π] |f(x)|.

Let Tn, n ∈ N, be the space of (n− 1)st degree trigonometric polynomials

Tn(x) =

n−1∑

j=0

(aj cos jx + bj sin jx).

For f ∈ L̃p, denote by

(1.1) ∆k
h(f, x) =

k∑

i=0

(k

i

)
(−1)k−if(x + (i− k/2)h)

the kth symmetric difference of the function f , and by

ωk(f, t)p := inf
h∈[0,t]

‖∆k
h(f, ·)‖

L̃p

its kth modulus of smoothness. Finally, let Ẽn(f)p := infTn∈Tn
‖f − Tn‖

L̃p
denote

the degree of approximation of f by trigonometric polynomials from Tn.
In 1908, de la Vallée Poussin (see [20, Section 7], for example) posed a problem

on a connection between the rate of polynomial approximation of functions and
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their differential properties. To quote de la Vallée Poussin [20, p. 119], “It is the
memoir by D. Jackson [9] which answers most completely the direct question, and
that of S. Bernstein [3] which answers most completely the inverse problem”. These
results were generalized by de la Vallée Poussin in [21], though as he writes in [20,
p. 119], “I combined the results obtained by the two authors above named, and filled
them out in many points; I changed or simplified the proofs; but I contributed little
in the way of new materials to the construction”.

In 1911, Jackson [9, Theorem VIII] (see also [8, p. 428]) proved the following
inequality (which is now commonly known as one of “Jackson’s inequalities”):

Ẽn(f)∞ 6 cω1(f, n−1)∞, n > 1.

This result was later extended by Zygmund [22, Theorems 8 and 8′], Bernstein [2],
Akhiezer [1, Section 89], and Stechkin [15, Theorem 1] as follows.

Theorem D̃0 (Direct theorem, r = 0). Let k ∈ N. If f ∈ L̃p, 1 6 p 6 ∞,

then Ẽn(f)p 6 c(k)ωk(f, n−1)p, n > 1.

We note that “r = 0” and the subscript “0” in “D̃0” will become clear once one

compares this result with Theorem D̃r below.
Matching inverse theorems are due to Bernstein [3], de la Vallée Poussin [21,

Section 39], Quade [19, Theorem 1], Salem [14, Chapter V], Zygmund [22, Theo-
rems 8, 8′, 9, and 9′], the Timan brothers [18], and Stechkin [15, Theorem 8].

Theorem 1.1. Let k ∈ N and f ∈ L̃p, 1 6 p 6∞. Then

ωk(f, n−1)p 6
c(k)

nk

n∑

ν=1

νk−1Ẽν(f)p, n > 1.

This theorem can be restated in the following form.

Theorem Ĩ0 (Inverse theorem, r = 0). Let k ∈ N and let φ : [0, 1]→ [0,∞) be

a nondecreasing function such that φ(0+) = 0. If a function f ∈ L̃p, 1 6 p 6 ∞,

is such that Ẽn(f)p 6 φ
(
n−1

)
, n > 1, then

ωk(f, t)p 6 c(k)tk

∫ 1

t

φ(u)

uk+1 du, 0 < t 6 1/2.

These direct and inverse theorems yield a constructive characterization of the

class L̃ip(α, p) =
{

f ∈ L̃p | ω⌊α⌋+1(f, t)p 6 ctα
}

.

Theorem C̃0 (Constructive characterization, r = 0). Let f ∈ L̃p, 1 6 p 6∞,

and α > 0. If ωk(f, t)p 6 tα, then Ẽn(f)p 6 c(k)n−α, n > 1.

Conversely, if 0 < α < k and Ẽn(f)p 6 n−α, n > 1, then ωk(f, t)p 6 c(k, α)tα.

Jackson’s inequalities of the second type involve differentiable functions.

Let W̃r
p, r ∈ N, be the space of 2π-periodic functions f such that f (r−1) is

absolutely continuous and f (r) ∈ L̃p, where by W̃r
∞ we mean C̃r.

The following result is an immediate consequence of Theorem D̃0 and the well
known property ωk+r(f, t)p 6 trωk(f (r), t)p, t > 0.
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Theorem D̃r (Direct theorem, r ∈ N). Let k ∈ N and r ∈ N. If f ∈ W̃r
p, then

Ẽn(f)p 6 c(k, r)n−rωk(f (r), n−1)p, n > 1.

The following inverse theorems are due to Bernstein [3], de la Vallée Poussin
[21, Section 39], Quade [19, Theorem 1], Zygmund [22, Theorems 8, 8′, 9 and 9′],
Stechkin [15, Theorem 11], and A. Timan [17], [16, Theorem 6.1.3].

Theorem 1.2. Let r ∈ N and f ∈ L̃p, 1 6 p 6∞. If
∑∞

ν=1 νr−1Ẽν(f)p <∞,

then f is a.e. identical with a function from W̃r
p. In addition, for any k ∈ N,

ωk(f (r), n−1)p 6
c(k, r)

nk

n∑

ν=1

νk+r−1Ẽν(f)p + c(k, r)
∞∑

ν=n+1

νr−1Ẽν(f)p, n > 1.

This theorem can be restated as follows.

Theorem Ĩr 1 (Inverse theorem, r ∈ N). Let k ∈ N, r ∈ N and φ : [0, 1] →
[0,∞) be a nondecreasing function such that φ(0+) = 0 and

∫ 1

0

φ(t)

tr+1 dt <∞.

If f ∈ L̃p be such that Ẽn(f)p 6 φ
(
n−1

)
, n > 1, then f is a.e. identical with a

function from W̃r
p, and

ωk(f (r), t)p 6 c(k, r)

( ∫ t

0

φ(u)

ur+1 du + tk

∫ 1

t

φ(u)

uk+r+1 du

)
, 0 < t 6 1/2.

Finally, we have a constructive characterization of functions f ∈ W̃r such that

f (r) ∈ L̃ip(α− r, p).

Theorem C̃r (Constructive characterization, r ∈ N). Let r ∈ N, α > r,

f ∈ W̃r
p, 1 6 p 6∞, and ωk(f (r), t)p 6 tα−r. Then Ẽn(f)p 6 c(k, r)n−α, n > 1.

Conversely, if f ∈ L̃p, 1 6 p 6 ∞, r < α < k + r, and Ẽn(f)p 6 n−α, n > 1,

then f is a.e. identical with a function from W̃r
p and ωk(f (r), t)p 6 c(k, r, α)tα−r.

1.2. Algebraic approximation. Let Lp[−1, 1], 1 6 p 6∞ denote the usual

Lp space equipped with the norm ‖f‖p :=
( ∫ 1

−1 |f(x)|pdx
)1/p

, where by L∞[−1, 1]

we mean C[−1, 1] equipped with the uniform norm.
Let Pn denote the space of algebraic polynomials of degree < n and set

En(f)p := inf
Pn∈Pn

‖f − Pn‖p

the degree of best approximation of f by algebraic polynomials in Lp.
Define

∆k
h(f, x; [−1, 1]) :=

{
∆k

h(f, x), x± kh/2 ∈ [−1, 1],
0, otherwise

,

where ∆k
h(f, x) was defined in (1.1).
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Finally, define the Ditzian–Totik (DT) moduli of smoothness [6], by

(1.2) ωϕ
k (f, t)p := sup

0<h6t
‖∆k

hϕ(·)(f, ·; [−1, 1])‖p

where ϕ(x) := (1− x2)1/2.
It is well known that the DT moduli of smoothness yield results which are

completely analogous to Theorems D̃0, Ĩ0 and C̃0. Namely, we have the following
results (see [6]).

Theorem D0. Let k ∈ N. If f ∈ Lp[−1, 1], 1 6 p 6∞, then

En(f)p 6 c(k)ωϕ
k (f, n−1)p, n > k.

Theorem I0. Let k ∈ N and φ : [0, 1] → [0,∞) be a nondecreasing function

such that φ(0+) = 0. If a function f ∈ Lp[−1, 1], 1 6 p 6 ∞, is such that

En(f)p 6 φ(n−1, n > k, then

ωϕ
k (f, t)p 6 c(k)tk

∫ 1

t

φ(u)

uk+1 du, t ∈ [0, 1/2].

Theorem C0. Let α > 0 and f ∈ Lp[−1, 1], 1 6 p 6 ∞. If ωϕ
k (f, t)p 6 tα,

then En(f)p 6 c(k)n−α, n > k.

Conversely, if 0 < α < k and En(f)p 6 n−α, n > k, then ωϕ
k (f, t)p 6 c(k, α)tα.

The purpose of this paper is to discuss our new moduli of smoothness (intro-

duced in [10]) that allow to obtain the analogs of Theorems D̃r, Ĩr and C̃r.

2. New moduli of smoothness

2.1. Definitions. For 1 6 p <∞ and r ∈ N, denote

B
r
p := {f : f (r−1) ∈ ACloc(−1, 1) and ‖f (r)ϕr‖p < +∞}.

If p =∞, then

B
r
∞ := {f : f ∈ Cr(−1, 1) and lim

x→±1
f (r)(x)ϕr(x) = 0}.

Finally, if r = 0, then B
0
p := Lp[−1, 1], 1 6 p <∞ and B

0
∞ := C[−1, 1].

For f ∈ Br
p, define

ωϕ
k,r(f (r), t)p := sup

0<h6t
‖Wr

kh(·)∆k
hϕ(·)(f

(r), ·)‖p,

where

Wδ(x) :=





(
(1− x− δϕ(x)/2)(1 + x− δϕ(x)/2)

)1/2
,

1± x− δϕ(x)/2 ∈ [−1, 1],

0, otherwise.

Note that, if r = 0, then ωϕ
k,0(f, t)p = ωϕ

k (f, t)p are the usual DT moduli defined in

(1.2).
It turns out (see [10, Lemma 3.2]) that if f ∈ Br

p, then limt→0+ ωϕ
k,r(f (r), t)p = 0.
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2.2. Weighted DT moduli of smoothness. Let

−→
∆k

hf(x) :=

{∑k
i=0

(
k
i

)
(−1)k−if(x + ih), if x, x + kh ∈ [−1, 1],

0, otherwise,

←−
∆k

hf(x) :=

{∑k
i=0

(
k
i

)
(−1)if(x− ih), if x− kh, x ∈ [−1, 1],

0, otherwise,

be the forward and backward kth differences, respectively. Note that
−→
∆k

hf(x) := ∆k
h(f, x + kh/2) and

←−
∆k

hf(x) := ∆k
h(f, x− kh/2).

Let

(2.1) w(x) := wα,β(x) := (1− x)α(1 + x)β , α, β > 0,

and denote Lp(w) := Lp(wα,β) := {f : [−1, 1]→ R | ‖wα,βf‖p <∞}. For f ∈
Lp(w), the weighted DT moduli of smoothness were defined (see [6, (8.2.10) and
Appendix B]) by

ωϕ
k (f, t)w,p := sup

0<h6t
‖w∆k

hϕf‖Lp[−1+2k2h2,1−2k2h2](2.2)

+ sup
0<h62k2t2

‖w
−→
∆k

hf‖Lp[−1,−1+2k2t2]

+ sup
0<h62k2t2

‖w
←−
∆k

hf‖Lp[1−2k2t2,1].

The first term on the right-hand side of (2.2) is the main part modulus which is
denoted by Ωϕ

k (f, t)w,p (see [6, (8.1.2)]) and is further discussed in Section 5.
It was shown in [6, Theorem 6.1.1] that ωϕ

k (f, t)w,p is equivalent to the following

weighted K-functional Kk,ϕ(f, tk)w,p (with 0 < t 6 t0):

Kk,ϕ(f, tk)w,p := inf
g(k−1)∈ACloc

(
‖(f − g)w‖p + tk‖wϕkg(k)‖p

)
.

2.3. Properties of the new moduli. For r > 0 and f ∈ Br
p, we denote

Kϕ
k,r(f (r), tk)p := inf

g∈B
k+r
p

(‖(f (r) − g(r))ϕr‖p + tk‖g(k+r)ϕk+r‖p).

Then, we have the following equivalence results (see [10, Theorem 2.7]).

Theorem 2.1. If k ∈ N, r ∈ N0, 1 6 p 6 ∞ and f ∈ Br
p, then, for all

0 < t 6 2/k,

cKϕ
k,r(f (r), tk)p 6 ωϕ

k,r(f (r), t)p 6 cKϕ
k,r(f (r), tk)p,

where constants c > 0 and may depend only on k, r and p.

Corollary 2.1. If k ∈ N, r ∈ N0, 1 6 p 6 ∞ and f ∈ Br
p, then, for all

0 < t 6 2/k,

cKk,ϕ(f (r), tk)ϕr ,p 6 ωϕ
k,r(f (r), t)p 6 cKk,ϕ(f (r), tk)ϕr,p.

Also, the following was proved in [10, Theorem 7.1].
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Theorem 2.2. If f ∈ Br+1
p , 1 6 p 6∞, r ∈ N0 and k > 2, then

ωϕ
k,r(f (r), t)p 6 ctωϕ

k−1,r+1(f (r+1), t)p.

The following sharp Marchaud inequality was proved in [4].

Theorem 2.3. [4, Theorem 7.5] For α > −1/p, β > −1/p, 1 < p <∞, m ∈ N

and a weight w defined in (2.1), we have

Km,ϕ(f, tm)w,p 6 Ctm

( ∫ 1

t

Km+1,ϕ(f, um+1)q
w,p

umq+1 du + Em(f)q
w,p

)1/q

Km,ϕ(f, tm)w,p 6 Ctm

( ∑

n<1/t

nqm−1En(f)q
w,p

)1/q

,

where q = min(2, p) and En(f)w,p is the degree of best weighted approximation of

f by polynomials from Pn, i.e., En(f)w,p := inf {‖(f − Pn)w‖p | Pn ∈ Pn}.

Corollary 2.2. For 1 < p <∞, r ∈ N0, m ∈ N and f ∈ Br
p, we have

ωϕ
m,r(f (r), t)p 6 Ctm

( ∫ 1

t

ωϕ
m+1,r(f (r), u)q

p

umq+1 du + Em(f (r))q
ϕr,p

)1/q

,

ωϕ
m,r(f (r), t)p 6 Ctm

( ∑

n<1/t

nqm−1En(f (r))q
ϕr,p

)1/q

,

where q = min(2, p).

The following sharp Jackson inequality was proved in [5].

Theorem 2.4. [5, Theorem 6.2] For α > −1/p, β > −1/p, 1 < p <∞, m ∈ N

and a weight w defined in (2.1), we have

2−nm

( n∑

j=j0

2mjsE2j (f)s
w,p

)1/s

6 CKm,ϕ(f, 2−nm)w,p,

2−nm

( n∑

j=j0

2mjsKm+1,ϕ(f, 2−j(m+1))s
w,p

)1/s

6 CKm,ϕ(f, 2−nm)w,p,

where 2j0 > m and s = max(p, 2).

Corollary 2.3. For 1 < p <∞, r ∈ N0, m ∈ N and f ∈ Br
p, we have

2−nm

( n∑

j=j0

2mjsE2j (f (r))s
ϕr ,p

)1/s

6 Cωϕ
m,r(f (r), 2−n)p

, 2−nm

( n∑

j=j0

2mjsωϕ
m+1,r(f (r), 2−j)s

p

)1/s

6 Cωϕ
m,r(f (r), 2−n)p,

where 2j0 > m and s = max(p, 2).
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Corollary 2.4. For 1 < p <∞, r ∈ N0, m ∈ N and f ∈ Br
p, we have

tm

( ∫ 1/m

t

ωϕ
m+1,r(f (r), u)s

p

ums+1 du

)1/s

6 Cωϕ
m,r(f (r), t)p, 0 < t 6 1/m,

where s = max(p, 2).

3. Algebraic polynomial approximation in Lp

In [10], we proved the following results analogous to Theorems D̃r, Ĩr and C̃r

(see also [11, Theorem 3.2] for the inverse result for p =∞).

Theorem Dr. If f ∈ Br
p, 1 6 p 6∞, then

(3.1) En(f)p 6 c(k, r)n−rωϕ
k,r(f (r), n−1)p, n > k + r.

Note that it follows from the DT estimates that if f ∈ Br
p, then

En(f)p 6 c(r)n−r‖f (r)ϕr‖p, n > r,

which is asymptotically weaker than (3.1).
It is also known that if, for some r > 1, f (r) ∈ Lp[−1, 1], 1 6 p 6∞, then

En(f)p 6 c(k, r)n−rωϕ
k (f (r), n−1)p, n > k + r.

But we should emphasize that here we have to assume that f (r) ∈ Lp[−1, 1], as
the DT-moduli are not well defined if the function is not in Lp[−1, 1] and, clearly,

ωϕ
k,r(f (r), n−1)p is smaller than ωϕ

k (f (r), n−1)p.

Theorem Ir. Let r ∈ N0, k > 1, and N ∈ N, and let φ : [0, 1] → [0,∞) be a

nondecreasing function such that φ(0+) = 0 and
∫ 1

0
r

φ(u)

ur+1 du <∞.

If f ∈ Lp[−1, 1], 1 6 p 6 ∞, and En(f)p 6 φ(n−1), for all n > N , then f is

a.e. identical with a function from Br
p, and

ωϕ
k,r(f (r), t)p 6 c(k, r)

∫ t

0
r

φ(u)

ur+1 du + c(k, r)tk

∫ 1

t

φ(u)

uk+r+1 du

+ c(N, k, r)tkEk+r(f)p, t ∈ [0, 1/2].

If, in addition, N 6 k + r, then

ωϕ
k,r(f (r), t)p 6 c(k, r)

∫ t

0
r

φ(u)

ur+1 du + c(k, r)tk

∫ 1

t

φ(u)

uk+r+1 du, t ∈ [0, 1/2].

Taking N = 1 and appropriately choosing the function φ, we get the following
corollary of Theorem Ir in terms of the degrees of approximation.

Corollary 3.1. Given 16 p <∞, k∈N, r∈N0. If
∑∞

n=1 rnr−1En(f)p <+∞,

then f is a.e. identical with a function from Br
p, and

ωϕ
k,r(f (r), t)p 6 c

∑

n>1/t

rnr−1En(f)p + ctk
∑

16n61/t

nk+r−1En(f)p, t ∈ [0, 1/2].
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Theorem Cr. Let r ∈ N0, α > r, k > 1 and f ∈ Br
p, 1 6 p 6 ∞. If

ωϕ
k,r(f (r), t)p 6 tα−r, then En(f)p 6 cn−α, n > k + r.

Conversely, if r < α < r + k and f ∈ Lp[−1, 1] and En(f)p 6 n−α, n > N ,

then f is a.e. identical with a function from Br
p, and

ωϕ
k,r(f (r), t)p 6 c(α, k, r)tα−r + c(N, k, r)tkEk+r(f)p, t ∈ [0, 1/2].

If, in addition, N 6 k + r, then ωϕ
k,r(f (r), t)p 6 c(α, k, r)tα−r.

4. Further characterizations

In addition to characterizations in the previous section, we can also characterize
certain smoothness classes of functions via the growth of certain weighted norms
of their polynomials of best approximation.

Theorem 4.1. Let f ∈ Lp[−1, 1], 1 6 p 6 ∞, k ∈ N, r ∈ N0, r < α < r + k,

and suppose that Pn denotes the (n− 1)st degree polynomial of best approximation

of f in Lp[−1, 1]. Then

(4.1) ‖ϕr+kP (r+k)
n ‖p 6 cnr+k−α, n > r + k,

if and only if f is a.e. identical with a function from Br
p, and

(4.2) ωϕ
k,r(f (r), t)p 6 ctα−r, t > 0.

Proof. By virtue of [6, Theorem 7.3.1] we conclude that, for every k ∈ N and
r ∈ N0,

‖ϕr+kP (r+k)
n ‖p 6 cnk+rωϕ

k+r(f, n−1)p.

Hence, if f ∈ Br
p and (4.2) is valid, then (4.1) follows immediately from the inequal-

ity

(4.3) ωϕ
k+r(f, t)p 6 ctrωϕ

k,r(f (r), t)p

which is an immediate consequence of Theorem 2.2.
Conversely, if (4.1) holds, then it follows by [6, Theorem 7.3.2] that En(f)p 6

cn−α, n > r + k. Hence (4.2) follows from Theorem Cr. �

We note that while inequality (4.3) cannot be reversed for a general function
f , the following is an immediate consequence of Theorem Cr.

Corollary 4.1. Let r ∈ N0, k > 1, f ∈ Lp[−1, 1], 1 6 p 6∞, r < α < r + k.

If

ωϕ
r+k(f, t)p 6 ctα, t > 0,

then f is a.e. identical with a function from B
r
p, and

ωϕ
k,r(f (r), t)p 6 ctα−r, t > 0.
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5. Further results for Weighted DT moduli

The proofs (and therefore the results) of [10] may be extended to the weighted
DT moduli with weight w which satisfies the conditions of [6, Section 6.1]. So,
in particular, we have the hierarchy relations between the weighted moduli of the
function (of course, provided its derivative exists), extending Theorem 2.2.

Theorem 5.1. Let 0 < r < k, and assume that f is such that f (r−1) is locally

absolutely continuous in (−1, 1) and wϕrf (r) ∈ Lp[−1, 1], 1 6 p 6∞. Then

(5.1) ωϕ
k (f, t)w,p 6 ctrωϕ

k−r(f (r), t)wϕr,p, t > 0.

Remark 5.1. The inequality (5.1) extends [6, Corollary 6.3.3(b)], as we do not
require the condition of β(c) > 1, for c = ±1, that appears there.

Proof. Recall that the main part modulus Ωϕ
k is defined in [6, (8.1.2)] by

Ωϕ
k (f, t)w,p := sup0<h6t

∥∥w∆k
hϕf

∥∥
Lp[−1+2k2h2,−1+2k2h2]. Then, [6, (6.2.9)] implies

that

ωϕ
k (f, t)w,p 6 c

∫ t

0
(Ωϕ

k (f, τ)w,p /τ) dτ.

Also, by [6, (6.3.2)], we have Ωϕ
k (f, t)w,p 6 ctΩϕ

k−1(f ′, t)wϕ,p. Hence,

ωϕ
k (f, t)w,p 6 c

∫ t

0
Ωϕ

k−1(f ′, τ)wϕ,p dτ

6 ctΩϕ
k−1(f ′, t)wϕ,p 6 ctωϕ

k−1(f ′, t)wϕ,p,

where for the second inequality we used the monotonicity of Ωϕ
k−1(f ′, t)wϕ,p, and

for the third one we applied [6, (6.2.9)]. Applying this inequality r times we get
the desired estimate. �

For the Jacobi weights w = wα,β defined in (2.1), it was proved by Ky [12,
Theorem 4] (see also Luther and Russo [13, Corollary 2.2]) that there is an n0 ∈ N

such that

(5.2) En(f)w,p 6 cωϕ
k (f, n−1)w,p, n > n0.

Thus, by (5.1), we have the following Jackson-type result.

Theorem 5.2. Let 0 < r < k and assume that f (r−1) is locally absolutely

continuous in (−1, 1) and wϕrf (r) ∈ Lp[−1, 1], 1 6 p 6∞. Then

En(f)w,p 6 cn−rωϕ
k−r(f (r), n−1)wϕr,p, n > n0.

It was proved in [6, Theorem 8.2.4] that

ωϕ
k (f, t)w,p 6 ctk

∑

0<n61/t

nk−1En(f)w,p, t 6 t0.

This readily implies that, if 0 < α < k and En(f)w,p 6 n−α, for n > 1, then

ωϕ
k (f, t)w,p 6 ctα, t 6 t0.

In fact, it is possible to prove the following more general result.



178 KOPOTUN, LEVIATAN, AND SHEVCHUK

Theorem 5.3. Let 0 6 r < α < k, and let f be such that wf ∈ Lp[−1, 1],
1 6 p 6∞. If, for an N ∈ N,

(5.3) En(f)w,p 6 n−α, n > N,

then f is a.e. identical with a function that has a locally absolutely continuous

derivative f (r−1) in (−1, 1), and

ωϕ
k−r(f (r), t)wϕr,p 6 c(w, α, k, r)tα−r + c(w, N, k, r)tk−rEk(f)w,p, t > 0.

In particular, if N 6 k, then ωϕ
k−r(f (r), t)wϕr,p 6 c(w, α, k, r)tα−r , t > 0.

Proof. Let Pk ∈ Pk be a polynomial of best approximation to f in the
weighted norm ‖w · ‖p, and set F := f −Pk. Then En(F )w,p = ‖wF‖p = Ek(f)w,p,
n < k, and En(F )w,p = En(f)w,p, n > k. Hence, in particular, En(F )w,p 6

Ek(f)w,p, for all n ∈ N.
Combining [6, Theorem 8.2.1] and (5.3), we obtain

Ωϕ
k (F, t)w,p 6 ctk

∑

0<n61/t

nk−1En(F )w,p

6 ctkNkEk(f)w,p + ctk
∑

N6n61/t

nk−1En(f)w,p

6 c(N)tkEk(f)w,p + ctα, t > 0.

Hence,
∫ 1

0
(Ωϕ

k (F, τ)w,p /τr+1) dτ 6

∫ 1

0

(
cτα−r−1 + c(N)tk−r−1Ek(f)w,p

)
dτ <∞,

which, by [6, Theorem 6.3.1(a)], implies that F (r−1) is locally absolutely continuous
in (−1, 1) and

Ωϕ
k−r(F (r), t)wϕr,p 6 c

∫ t

0
(Ωϕ

k (F, τ)w,p /τr+1) dτ

6 c

∫ t

0

(
cτα−r−1 + c(N)τk−r−1Ek(f)w,p

)
dτ

6 ctα−r + c(N)tk−rEk(f)w,p, t > 0.

Finally, taking into account that

ωϕ
k−r(F (r), t)wϕr,p = ωϕ

k−r(f (r), t)wϕr,p, t > 0,

we apply [6, (6.2.9)] to get

ωϕ
k−r(f (r), t)wϕr,p = ωϕ

k−r(F (r), t)wϕr,p

6 c

∫ t

0
(Ωϕ

k−r(F (r), τ)wϕr ,p /τ) dτ

6 ctα−r + c(N)tk−rEk(f)w,p.

This completes the proof. �
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Finally, we have the following result analogous to Corollary 4.1 which immedi-
ately follows from (5.2) and Theorem 5.3.

Theorem 5.4. Let wf ∈ Lp[−1, 1], 1 6 p 6∞ and 0 6 r < α < k. If

ωϕ
k (f, t)w,p 6 ctα, t > 0,

then f is a.e. identical with a function that has a locally absolutely continuous

derivative f (r−1) in (−1, 1), and ωϕ
k−r(f (r), t)wϕr,p 6 ctα−r, t > 0.
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