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TRIGONOMETRIC MULTIPLE ORTHOGONAL

POLYNOMIALS OF SEMI-INTEGER DEGREE AND

THE CORRESPONDING QUADRATURE FORMULAS

Gradimir V. Milovanović, Marija P. Stanić,

and Tatjana V. Tomović

Abstract. An optimal set of quadrature formulas with an odd number of
nodes for trigonometric polynomials in Borges’ sense [Numer. Math. 67
(1994), 271–288], as well as trigonometric multiple orthogonal polynomials
of semi-integer degree are defined and studied. The main properties of such
a kind of orthogonality are proved. Also, an optimal set of quadrature rules
is characterized by trigonometric multiple orthogonal polynomials of semi-
integer degree. Finally, theoretical results are illustrated by some numerical
examples.

1. Introduction

Motivated by a problem that arises in the evaluation of computer graphics
illumination models, Carlos Borges [4] examined a more abstract problem of nu-
merically evaluating a set of p definite integrals taken with respect to p distinct
weight functions, but related to a common integrand and the same interval of in-
tegration. For such a problem it is not efficient to use a set of p Gauss–Christoffel
quadrature rules, because valuable information is wasted.

Borges in [4] introduced a performance ratio in the following way:

R =
Overall algebraic degree of precision + 1

Number of integrand evaluation
.

Taking the set of p Gauss–Christoffel quadrature rules, one has R = 2/p and, hence,
R < 1 for all p > 2.

If we select a set of n distinct nodes, common for all quadrature rules, then
weight coefficients for each of p quadrature rules can be chosen in such a way
that R = 1. Of course, an arbitrary selection of nodes does not lead us to the
best possible quadrature rules. The optimal quadrature rules could be obtained
by simulating the development of the Gauss–Christoffel quadrature rules. It was
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proved that the common nodes of an optimal set of quadrature rules are zeros of the
corresponding type II multiple orthogonal polynomials, defined using orthogonality
conditions spread out over p different measures [12,13]. A stable numerical method
for construction of type II multiple orthogonal polynomials, as well as of optimal
set of quadrature rules was given in [12].

Let us notice that multiple orthogonal polynomials arise naturally in the theory
of simultaneous rational approximation, in particular in the Hermite–Padé approx-
imation of a system of p Markov functions. When the Hermite–Padé approxima-
tion and multiple orthogonal polynomials are in question, we refer readers to the
book by Nikishin and Sorokin [14, Chapter 4], the surveys by Aptekarev [1], de
Bruin [6], and Milovanović and Stanić [13], as well as the papers by Piñeiro [16],
Sorokin [17–19], Van Assche [22], Van Assche and Coussement [23], and Chap-
ter 23 of Ismail’s book [7].

Type II multiple orthogonal polynomials are also connected with the general-
ized Birkhoff–Young quadrature rules [8,11,13].

Here we investigate the optimal set of quadrature rules in Borges’ sense for
trigonometric polynomials. From the theory of Gaussian type quadrature rules,
it is known that it is necessary to consider two different trigonometric orthogo-
nal systems – standard trigonometric orthogonal polynomials and trigonometric
orthogonal polynomials of semi-integer degree. As a matter of fact, for a quadra-
ture rule with an even number of nodes and the maximal trigonometric degree of
exactness one must consider orthogonality in the subspace of trigonometric poly-
nomials, but in the case of an odd number of nodes and the maximal trigonometric
degree of exactness orthogonality in subspace of trigonometric polynomials of semi-
integer degree must be considered [2, 3, 5, 9, 10, 15, 20]. We restrict our attention
to an optimal set of quadrature rules with an odd number of nodes. Therefore,
here we introduce a concept of multiple orthogonality in the space of trigonometric
polynomials of semi-integer degree. The paper is organized as follows. Trigonomet-
ric multiple orthogonal polynomials of semi-integer degree are defined in Section 2,
where their main properties are proved. Section 3 is devoted to definition and char-
acterization of an optimal sets of quadrature rules for trigonometric polynomials.
Finally, numerical examples are presented in Section 4.

2. Trigonometric multiple orthogonal polynomials

of semi-integer degree

For a nonnegative integer m and γ ∈ {0, 1/2}, we by T
γ
m denote the linear span

of the set {cos(k + γ)x, sin(k + γ)x : k = 0, 1, . . . , m}. Obviously, T0
m = Tm is the

linear space of all trigonometric polynomials of degree less than or equal to m, while

T
1/2
m is the linear space of all trigonometric polynomials of semi-integer degree less

than or equal to m+1/2. Of course, dim(Tm) = 2m+1 and dim(T
1/2
m ) = 2(m+1).

The trigonometric polynomial of semi-integer degree m + 1/2 has the following
form

(2.1) A1/2
m (x) =

m
∑

ν=0

[

cν cos
(

ν +
1

2

)

x + dν sin
(

ν +
1

2

)

x
]

,
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where cν , dν ∈ R, |cm| + |dm| 6= 0. Every trigonometric polynomial of semi-integer
degree m+1/2 of the form (2.1) can be represented in the form (cf. [21, Lemma 1])

(2.2) A1/2
m (x) = A

2m
∏

k=0

sin
x − xk

2
(A is a nonzero constant).

It is obvious that every A
1/2
m (x) given by (2.2) is a trigonometric polynomial of

semi-integer degree m + 1/2.

Remark 2.1. For the rest of this paper an important fact is that a trigono-
metric polynomial of semi-integer degree m+1/2 has exactly 2m+1 zeros counting
with their multiplicities and restricting to the strip −π 6 Re z < π, as well as that
the nonreal zeros appear in conjugate pairs [3, Theorem 1.1]. This means that
the number of sign changes of trigonometric polynomials of semi-integer degree on
[−π, π) can not be even. The same is true also for any interval [L, L + 2π), L ∈ R,
of length 2π.

Let p be a positive integer and n = (n1, n2, . . . , np) a vector of p nonnegative
integers, which is called a multi-index with length |n| = n1 + n2 + · · · + np. We
introduce a partial order on multi-indices by

(2.3) m � n ⇔ mν 6 nν for every ν = 1, 2, . . . , p.

Let W = {w1, w2, . . . , wp} be a set of p weight functions, integrable and non-
negative on some interval E of length 2π, vanishing there only on a set of measure
zero. In what follows, we always assume that the interval E is closed on the left
and open on the right, i.e., that interval E is of the form [L, 2π + L), for L ∈ R.

Analogously with the multiple algebraic orthogonal polynomials, we define two
types of trigonometric multiple orthogonal polynomials of semi-integer degree.

Definition 2.1. Let n be a multi-index. Type I multiple trigonometric or-
thogonal polynomials of semi-integer degree with respect to W are collected in a

vector (A
1/2
n,1 , A

1/2
n,2 , . . . , A

1/2
n,p) of trigonometric polynomials of semi-integer degree,

where A
1/2
n,ν has semi-integer degree nν −1/2, ν = 1, 2, . . . , p, such that the following

orthogonality conditions hold
p

∑

ν=1

∫

E

A1/2
n,ν cos

(

k +
1

2

)

x wν(x) dx = 0, k = 0, 1, 2, . . . , |n| − 2,

p
∑

ν=1

∫

E

A1/2
n,ν sin

(

k +
1

2

)

x wν(x) dx = 0, k = 0, 1, 2, . . . , |n| − 2,

(2.4)

with the normalizations
p

∑

ν=1

∫

E

A1/2
n,ν cos

(

|n| −
1

2

)

x wν(x) dx = 1,

p
∑

ν=1

∫

E

A1/2
n,ν sin

(

|n| −
1

2

)

x wν(x) dx = 1.

(2.5)
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Conditions (2.4)–(2.5) give a linear system of 2|n| equations for the 2|n| un-

known coefficients of the trigonometric polynomials of semi-integer degree A
1/2
n,ν ,

ν = 1, 2, . . . , p. The multi-index n is normal for type I if system of equations
(2.4)–(2.5) has a unique solution. For the type I multiple trigonometric orthogonal
polynomials we define the following function

(2.6) An(x) =

p
∑

ν=1

A1/2
n,νwν(x).

Then, the orthogonality conditions (2.4) and the normalizations (2.5) become
∫

E

An(x) cos
(

k +
1

2

)

xdx = 0, k = 0, 1, 2, . . . , |n| − 2,

∫

E

An(x) sin
(

k +
1

2

)

xdx = 0, k = 0, 1, 2, . . . , |n| − 2,

(2.7)

and

(2.8)

∫

E

An(x) cos
(

|n| −
1

2

)

xdx = 1,

∫

E

An(x) sin
(

|n| −
1

2

)

xdx = 1,

respectively.

Definition 2.2. Let n be a multi-index. Trigonometric polynomial of semi-

integer degree T
1/2
n is a type II multiple trigonometric orthogonal polynomial of

semi-integer degree with respect to W if it is of semi-integer degree |n| + 1/2 and
satisfies the following orthogonality conditions

∫

E

T 1/2
n

(x) cos
(

kν +
1

2

)

x wν(x) dx = 0, kν = 0, 1, . . . , nν − 1,

∫

E

T 1/2
n

(x) sin
(

kν +
1

2

)

x wν(x) dx = 0, kν = 0, 1, . . . , nν − 1,

(2.9)

for ν = 1, 2, . . . , p.

Remark 2.2. Let us notice that if some nν = 0, we do not have orthogonality
conditions (2.9) for the corresponding weight wν .

For p = 1 we have the case of ordinary trigonometric orthogonal polynomials
of semi-integer degree.

Orthogonality conditions (2.9) give a system of linear equations for the un-

known coefficients of the trigonometric polynomial T
1/2
n . Since

T 1/2
n

(x) =

|n|
∑

k=0

(

ak cos
(

k +
1

2

)

x + bk sin
(

k +
1

2

)

x
)

∈ T
1/2
|n| ,

we have 2|n|+2 unknown coefficients ak, bk, k = 0, 1, . . . , |n|. Conditions (2.9) give

2(n1+n2+· · ·+np) = 2|n| equations for the 2|n|+2 unknown coefficients of T
1/2
n , so

we have to fix two coefficients. We choose to fix in advance the leading coefficients
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a|n| and b|n| (of course, a2
|n| + b2

|n| 6= 0). For the special choices of the leading

coefficients, (a|n|, b|n|) ∈ {(1, 0), (0, 1)}, we introduce the following notations

T C,1/2
n

(x) = cos
(

|n| +
1

2

)

x +

|n|−1
∑

k=0

(

ak cos
(

k +
1

2

)

x + bk sin
(

k +
1

2

)

x
)

,

T S,1/2
n

(x) = sin
(

|n| +
1

2

)

x +

|n|−1
∑

k=0

(

ak cos
(

k +
1

2

)

x + bk sin
(

k +
1

2

)

x
)

.

We call T
C,1/2
n (x) and T

S,1/2
n (x) the monic cosine and the monic sine multiple

orthogonal polynomial of semi-integer degree, respectively.
If system (2.9) has a unique solution, then the multi-index n is normal for

type II.

Lemma 2.1. A multi-index n is normal for type I if and only if it is normal

for type II.

Proof. For ν = 1, . . . , p we introduce the following notations

IC,ν
i,j =

∫

E

cos
(

i +
1

2

)

x cos
(

j +
1

2

)

x wν(x) dx,

IS,ν
i,j =

∫

E

sin
(

i +
1

2

)

x sin
(

j +
1

2

)

x wν(x) dx,

Iν
i,j =

∫

E

cos
(

i +
1

2

)

x sin
(

j +
1

2

)

x wν(x) dx,

m
(ν)
i,j =

[

IC,ν
i,j Iν

i,j

Iν
j,i IS,ν

i,j

]

,

for i, j = 0, 1, . . ., and

Mν =















m
(ν)
0,0 m

(ν)
0,1 · · · m

(ν)
0,|n|−1

m
(ν)
1,0 m

(ν)
1,1 · · · m

(ν)
1,|n|−1

...
...

. . .
...

m
(ν)
nν −1,0 m

(ν)
nν−1,1 · · · m

(ν)
nν−1,|n|−1















.

Then, the matrix of system (2.4)–(2.5) is given by

M I =
[

MT
1 MT

2 · · · MT
p

]

2|n|×2|n|
,

and the matrix of system (2.9) (the leading coefficients of T
1/2
n are fixed) is given

by

M II =











M1

M2
...

Mp











2|n|×2|n|

.
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Obviously, M II is the transpose of M I , which means that determinants of systems
(2.9) and (2.4)–(2.5) are equal, i.e., system (2.4)–(2.5) has a unique solution if and
only if system (2.9) has a unique solution. �

According to Lemma 2.1, we could just talk about normal multi-indices. If all
multi-indices are normal, then we have a perfect system.

Since the matrix of coefficients of systems (2.9) can be singular, we need some
additional conditions on the p weight functions to provide the uniqueness of multiple
trigonometric orthogonal polynomials of semi-integer degree. It is easy to see that
the uniqueness is guaranteed if the following set of functions

{

wν cos
(

kν +
1

2

)

x, wν sin
(

kν +
1

2

)

x : ν = 1, 2, . . . , p, kν = 0, 1, . . . , nν − 1
}

,

form a Chebyshev system on E for the multi-index n. We called such set W =
{w1, w2, . . . , wp} trigonometric AT system (TAT system) of weight functions for
multi-index n.

The properties of zeros of type I and II multiple trigonometric orthogonal
polynomials are given in the following two theorems.

Theorem 2.1. Suppose that n is a multi-index such that W = {w1, w2, . . . , wp}
is a TAT system of weight functions for all multi-indices m such that m � n. For

the type I multiple trigonometric orthogonal polynomials of semi-integer degree with

respect to W the function An(x), given by (2.6), has exactly 2|n| − 1 simple zeros

on E.

Proof. It is easy to see that the type I function An(x) has at least one sign
change on E, since if we assume the contrary, for |n| > 1 the orthogonality

∫

E

An(x) sin
x − L

2
dx = 0

would be impossible since sin(x − L)/2 does not change its sign on [L, 2π + L).
The function An(x) has at most 2|n| − 1 zeros on E since we are dealing with

the TAT system. The number of its sign changes on E is odd (see Remark 2.1).
Suppose it has 2m − 1, m < |n|, sign changes at the points x1, x2, . . . , x2m−1 ∈ E,
and set

Q(x) =

2m−1
∏

i=1

sin
x − xi

2
.

Then, An(x)Q(x) does not change sign on E and
∫

E
An(x)Q(x) dx 6= 0, which is

a contradiction with orthogonality conditions (2.4). Therefore, m = |n|, which
means that An(x) has exactly 2|n| − 1 simple zeros on E. �

Theorem 2.2. Suppose that n is a multi-index such that W = {w1, w2, . . . , wp}
is a TAT system of weight functions for all multi-indices m such that m � n. Type

II multiple trigonometric orthogonal polynomial of semi-integer degree T
1/2
n (x) with

respect to W has exactly 2|n| + 1 simple zeros on E.
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Proof. In the similar way as in proof of Theorem 2.1 we conclude that T
1/2
n (x)

has an odd number of sign changes on E for |n| > 1.

Let us assume that the polynomial T
1/2
n (x) has 2m + 1 changes of sign on E

at the points x0, x1, . . . , x2m and that m < |n|. Let m = (m1, m2, . . . , mp) be a
multi-index such that m = |m|, m � n, and mj < nj for at least one j. Now, we
construct

Q(x) =

p
∑

i=1

Q1/2
mi

(x) wi(x),

where each Q
1/2
mi is a trigonometric polynomial of semi-integer degree mi − 1/2, for

i 6= j, Q
1/2
mj is a trigonometric polynomial of semi-integer degree mj +1/2, satisfying

the interpolation conditions Q(xk) = 0, k = 0, 1, . . . , 2m, and Q(x2m+1) = 1, for
an additional point x2m+1 ∈ E. Since we have a Chebyshev system of 2m + 2
functions, this interpolation problem has a unique solution, and since the function
Q already has 2m + 1 zeros it can have no additional sign changes. Of course, the

function Q does not vanish identically since Q(x2m+1) 6= 0. Obviously T
1/2
n (x)Q(x)

does not change sign on E, so that
∫

E

T 1/2
n

(x)Q(x) dx 6= 0,

but this is in contrast with the orthogonality relations (2.9). Hence, T
1/2
n (x) has

exactly 2|n| + 1 simple zeros on E. �

We finish this section proving the following biorthogonality between the type II

multiple trigonometric orthogonal polynomials of semi-integer degree T
1/2
n (x) and

the type I functions Am(x), given by (2.6).

Theorem 2.3. Suppose that n and m are two multi-indices and that W =
{w1, w2, . . . , wp} is a TAT system of weight functions for the both multi-indices n

and m. Then the following relation of biorthogonality

∫

E

T 1/2
n

(x)Am(x) dx =







0, if m � n,
0, if |n| 6 |m| − 2,
a|n| + b|n|, if |n| = |m| − 1,

holds, where T
1/2
n (x) is the corresponding type II multiple trigonometric orthogonal

polynomial of semi-integer degree with the leading coefficients a|n| and b|n|, and

Am(x) the corresponding type I function, given by (2.6).

Proof. Since Am(x) is given by (2.6), we have

∫

E

T 1/2
n

(x)Am(x) dx =

∫

E

T 1/2
n

(x)

( p
∑

ν=1

A1/2
m,νwν(x)

)

dx

=

p
∑

ν=1

∫

E

T 1/2
n

(x)A1/2
m,ν wν(x) dx.
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First we assume that m � n. According to (2.3) and orthogonality conditions (2.9)

for the T
1/2
n (x), we conclude that all integrals on the right hand side of the previous

equality are equal to zero, i.e.,
∫

E
T

1/2
n (x)Am(x) dx = 0. Since a|n| and b|n| are the

leading coefficients of T
1/2
n , we have

∫

E

T 1/2
n

(x)Am(x) dx = a|n|

∫

E

Am(x) cos
(

|n| +
1

2

)

xdx(2.10)

+ b|n|

∫

E

Am(x) sin
(

|n| +
1

2

)

xdx

+

|n|−1
∑

k=0

ak

∫

E

Am(x) cos
(

k +
1

2

)

xdx

+

|n|−1
∑

k=0

bk

∫

E

Am(x) sin
(

k +
1

2

)

xdx.

If |n| 6 |m| − 2, by using orthogonality conditions (2.7) for the Am(x), we
obtain that all integrals on the right hand side of the previous equality are equal

to zero and hence
∫

E
T

1/2
n (x)Am(x) dx = 0.

To finish the proof we consider the case |n| = |m| − 1. By using conditions
(2.8) and (2.7), from (2.10) we get what is stated. �

3. Optimal set of quadrature rules for trigonometric polynomials

Let n be a multi-index and let W = {w1, w2, . . . , wp} be a TAT system for n

on interval E. In this section we consider evaluation of a set of p definite integrals
over the same interval E, taken with respect to the weight functions from W and
related to a common integrand, i.e., the set of integrals of the form

∫

E

f(x)wν(x) dx, ν = 1, 2, . . . , p.

As it has been already said, we are interested only in quadrature rules with an
odd number of nodes. We require that such a set of quadrature rules is optimal
for trigonometric polynomials in Borges’ sense. For that purpose, we start with
definition of trigonometric degree of exactness.

Definition 3.1. For a weight function w, integrable and nonnegative on the
interval E, vanishing there only on a set of a measure zero, a quadrature rule of
the form

(3.1)

∫

E

f(x)w(x) dx =

2n
∑

ν=0

σνf(τν) + Rn(f)

has a trigonometric degree of exactness equal to d if Rn(f) = 0 for all f ∈ Td and
there exists g ∈ Td+1 such that Rn(g) 6= 0.

If τν ∈ E, ν = 0, 1, . . . , 2n, are distinct points fixed in advance, then corre-
sponding interpolatory quadrature rule (3.1) has a trigonometric degree of exact-
ness equal to n. One can increase that trigonometric degree of exactness up to the
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maximal trigonometric degree of exactness, which is equal to 2n, with appropriate
choice of nodes. The maximal trigonometric degree of exactness is achieved when
nodes are zeros of the corresponding trigonometric orthogonal polynomials of semi-
integer degree n + 1/2 [5,9,21]. In such a way we obtain the Gaussian quadrature
rules for trigonometric polynomials.

Analogously with [4], we introduce the performance ratio with respect to
trigonometric degree of exactness as follows

RT =
Overall trigonometric degree of exactness + 1

Number of integrand evaluation
.

Taking distinct nodes for each of p quadrature rule, it is obvious that RT will be
maximal when we have the set of p Gaussian quadrature rules. In that case

RT =
2n + 1

p(2n + 1)
=

1

p
,

so that, RT < 1/2 for all p > 2.
If we select a set of 2n + 1 distinct nodes, common for all quadrature rules, the

weight coefficients for each of p quadrature rules can be chosen in such a way that
RT > 1/2, which will be shown in what follows.

Definition 3.2. Let n be a multi-index and let W = {w1, w2, . . . , wp} be a
TAT system for n on the interval E. A set of quadrature rules of the form

(3.2)

∫

E

f(x)wν(x) dx ≈

2|n|
∑

k=0

Aν,kf(xk), ν = 1, 2, . . . , p,

is an optimal set with respect to (W, n) if and only if the weight coefficients Aν,k,
ν = 1, 2, . . . , p, k = 0, 1, . . . , 2|n|, and the nodes xk, k = 0, 1, . . . , 2|n|, satisfy the
following system of equations

2|n|
∑

k=0

Aν,k =

∫

E

wν(x) dx,

2|n|
∑

k=0

Aν,k cos mνxk =

∫

E

cos mνx wν(x) dx, mν = 1, 2, . . . , |n| + nν ,

2|n|
∑

k=0

Aν,k sin mνxk =

∫

E

sin mνx wν(x) dx, mν = 1, 2, . . . , |n| + nν ,

for ν = 1, 2, . . . , p.

Remark 3.1. Let us notice that an optimal set of quadrature rules have 2|n|+1
distinct nodes, common for all quadrature rules, and overall trigonometric degree
of exactness is equal to |n| + m, where m = min{n1, n2, . . . , np}. Therefore,

RT =
|n| + m + 1

2|n| + 1
=

1

2
+

m + 1/2

2|n| + 1
> 1/2.
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In order to characterize the optimal set of quadrature rules, we prove the fol-
lowing representation of trigonometric polynomials. A special case of that repre-
sentation for m = n was proved by Turetzkii [21].

Lemma 3.1. Every trigonometric polynomial of degree n + m, m 6 n,

Bn+m(x) = a0 +

n+m
∑

k=1

(ak cos kx + bk sin kx)

can be uniquely represented in the form

(3.3) Bn+m(x) = A1/2
n (x)S

1/2
m−1(x) + Tn(x),

where

A1/2
n (x) =

n
∑

k=0

(

ck cos
(

k +
1

2

)

x + dk sin
(

k +
1

2

)

x
)

is a certain trigonometric polynomial of semi-integer degree n+ 1
2 , with cn+idn 6= 0,

and

S
1/2
m−1 =

m−1
∑

ν=0

(

γν cos
(

ν +
1

2

)

x + δν sin
(

ν +
1

2

)

x
)

,

Tn(x) = u0 +

n
∑

k=1

(uk cos kx + vk sin kx)

are the required trigonometric polynomials of semi-integer degree m − 1
2 and of

degree n, respectively.

Proof. Comparing the coefficients of cos ℓx and sin ℓx, ℓ= n+1, n+2, . . . , n+m,
on both sides in (3.3), we obtain the following system of equations for determining
the unknown coefficients γν , δν , ν = 0, 1, . . . , m − 1

(3.4)
1

2

n
∑

k=ℓ−m

(ckγℓ−k−1 − dkδℓ−k−1) = aℓ,
1

2

n
∑

k=ℓ−m

(ckδℓ−k−1 + dkγℓ−k−1) = bℓ,

for ℓ = n + 1, n + 2, . . . , n + m. Since that system can be rewritten in the form

n
∑

k=ℓ−m

(ck + idk)(γℓ−k−1 + iδℓ−k−1) = 2(aℓ + ibℓ), ℓ = n + 1, . . . , n + m,

its determinant is equal to (cn+idn)m 6= 0. Therefore, γν and δν , ν = 0, 1, . . . , m−1,
can be uniquely determined from (3.4).

Further, from the equation

1

2

m−1
∑

k=0

(ckγk + dkδk) + u0 = a0,

which is obtained by comparing free coefficients on both sides in (3.3), one can
determine u0.
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Similarly, if we compare coefficients of cos ℓx and sin ℓx, ℓ = 1, 2, . . . , n, on both
sides in (3.3), we obtain the following system of equations

1

2

j
∑

k=ℓ

(ckγk−ℓ + dkδk−ℓ) +
1

2

m−ℓ−1
∑

k=0

(ckγk+ℓ + dkδk+ℓ)

+
1

2

ℓ−1
∑

k=0

(ckγℓ−k−1 − dkδℓ−k−1) + uℓ = aℓ,

1

2

j
∑

k=ℓ

(dkγk−ℓ − ckδk−ℓ) +
1

2

m−ℓ−1
∑

k=0

(ckδk+ℓ − dkγk+ℓ)

+
1

2

ℓ−1
∑

k=0

(ckδℓ−k−1 + dkγℓ−k−1) + vℓ = bℓ,

where ℓ = 1, 2, . . . , m − 1, j = min{n, ℓ + m − 1}, and

1

2

j
∑

k=ℓ

(ckγk−ℓ + dkδk−ℓ) +
1

2

ℓ−1
∑

k=ℓ−m

(ckγℓ−k−1 − dkδℓ−k−1) + uℓ = aℓ,

1

2

j
∑

k=ℓ

(dkγk−ℓ − ckδk−ℓ) +
1

2

ℓ−1
∑

k=ℓ−m

(ckδℓ−k−1 + dkγℓ−k−1) + vℓ = bℓ,

for ℓ = m, m + 1, . . . , n and j = min{n, ℓ + m − 1}, from which one can uniquely
obtain uℓ, vℓ, ℓ = 1, 2, . . . , n. �

The characterization of an optimal set of quadrature rules for trigonometric
polynomials is given by the following statement, which is the counterpart to the
fundamental theorem of Gaussian quadratures.

Theorem 3.1. Let n be a multi-index and let W = {w1, w2, . . . , wp} be a TAT

system for n on interval E. A set of quadrature rules (3.2) is an optimal set with

respect to (W, n) if and only if

1◦ all rules are exact for all trigonometric polynomials from T|n|;

2◦ T
1/2
n (x) =

∏2|n|
k=0 sin x−xk

2 is the type II multiple trigonometric orthogonal

polynomial of semi-integer degree |n| + 1/2 with respect to (W, n).

Proof. Suppose first that quadrature rules (3.2) form an optimal set with
respect to (W, n).

For each ν = 1, 2, . . . , p, the corresponding quadrature rule with respect to the
weight function wν is exact for all trigonometric polynomials of degree less than or
equal to |n| + nν , hence, it is exact for those of degree less than or equal to |n|.
Thus, 1◦ is proved.

In order to prove 2◦ assume that S
1/2
mν−1(x), ν = 1, 2, . . . , p, is a trigonometric

polynomial of semi-integer degree mν − 1/2, where mν 6 nν , ν = 1, 2, . . . , p. Then

T
1/2
n (x)S

1/2
mν −1(x) is a trigonometric polynomial of degree less than or equal to |n|+

nν , ν = 1, 2, . . . , p. Since the corresponding quadrature rule, with respect to the
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weight function wν , ν = 1, 2, . . . , p, is exact for all such trigonometric polynomials

and T
1/2
n (xk) = 0, k = 0, 1, . . . , 2|n|, it follows that

∫

E

T 1/2
n

(x)S
1/2
mν −1(x) wν (x) dx =

2|n|
∑

k=0

Aν,kT 1/2
n

(xk)S
1/2
mν −1(xk) = 0,

for ν = 1, 2, . . . , p, i.e., T
1/2
n (x) is the type II multiple trigonometric orthogonal

polynomial of semi-integer degree |n| + 1/2 with respect to W .
Let us now suppose that 1◦ and 2◦ hold for (3.2). Let B|n|+nν

(x) ∈ T|n|+nν
,

ν = 1, 2, . . . , p. According to Lemma 3.1, B|n|+nν
(x) can be represented in the form

B|n|+nν
(x) = T 1/2

n
(x)S

1/2
nν −1(x) + P|n|(x),

where S
1/2
nν −1 ∈ T

1/2
nν −1 and P|n| ∈ T|n|. Now we have that

∫

E

B|n|+nν
(x) wν (x) dx =

∫

E

[T 1/2
n

(x)S
1/2
nν −1(x) + P|n|(x)] wν (x) dx

=

∫

E

T 1/2
n

(x)S
1/2
nν −1(x) wν (x) dx +

∫

E

P|n|(x) wν (x) dx,

ν = 1, 2 . . . , p. From 2◦ it follows that
∫

E

T 1/2
n

(x)S
1/2
nν −1(x) wν (x) dx = 0, ν = 1, 2 . . . , p,

and, since P|n| ∈ T|n|, from 1◦ we have

∫

E

P|n|(x) wν (x) dx =

2|n|
∑

k=0

Aν,kP|n|(xk), ν = 1, 2 . . . , p,

and hence

∫

E

B|n|+nν
(x) wν(x) dx =

2|n|
∑

k=0

Aν,kP|n|(xk), ν = 1, 2, . . . , p.

Finally, since T
1/2
n (xk) = 0, k = 0, 1, . . . , 2|n|, it follows that B|n|+nν

(xk) =
P|n|(xk), k = 0, 1, . . . , 2|n|, ν = 1, 2, . . . , p, and we have

∫

E

B|n|+nν
(x) wν (x) dx =

2|n|
∑

k=0

Aν,kB|n|+nν
(xk), ν = 1, 2, . . . , p,

i.e., the quadrature rule for the weight wν is exact for all trigonometric polynomials
of degree less that or equal to |n|+nν , ν = 1, 2, . . . , p. Therefore, a set of quadrature
rules (3.2) is an optimal set with respect to (W, n). �

Remark 3.2. When p = 1 the optimal set of quadrature rules reduces to the
Gaussian quadrature rule for trigonometric polynomials.
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4. Numerical examples

In this section we illustrate characterization of an optimal set of quadrature
rules (3.2) by using Theorem 3.1.

Example 4.1. Let us find parameters for the optimal set of quadrature rules on
E = [−π, π), for p = 2, n = (2, 1), with respect to the weight functions w1(x) = 1
and w2(x) = 1 + sin 2x. First we check whether the following set of functions

{

cos
x

2
, sin

x

2
, cos

3x

2
, sin

3x

2
, cos

x

2
(1 + sin 2x), sin

x

2
(1 + sin 2x)

}

,

form a Chebyshev system on the interval [−π, π). Let −π 6 y1 < y2 · · · < y6 < π
be arbitrary distinct points. By using an elementary transformation and properties
of determinants one can easily obtain that the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos y1

2 sin y1

2 cos 3y1

2 sin 3y1

2 cos y1

2 (1 + sin 2y1) sin y1

2 (1 + sin 2y1)

cos y2

2 sin y2

2 cos 3y2

2 sin 3y2

2 cos y2

2 (1 + sin 2y2) sin y2

2 (1 + sin 2y2)

cos y3

2 sin y3

2 cos 3y3

2 sin 3y3

2 cos y3

2 (1 + sin 2y3) sin y3

2 (1 + sin 2y3)

cos y4

2 sin y4

2 cos 3y4

2 sin 3y4

2 cos y4

2 (1 + sin 2y4) sin y4

2 (1 + sin 2y4)

cos y5

2 sin y5

2 cos 3y5

2 sin 3y5

2 cos y5

2 (1 + sin 2y5) sin y5

2 (1 + sin 2y5)

cos y6

2 sin y6

2 cos 3y6

2 sin 3y6

2 cos y6

2 (1 + sin 2y6) sin y6

2 (1 + sin 2y6)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is equal to

−1024

6
∏

i,j=1
i<j

sin
yi − yj

2
6= 0.

Therefore, we have the Chebyshev set of functions, i.e., W = {w1, w2} is a TAT
system for the multi-index n = (2, 1).

Now, the type II multiple trigonometric orthogonal polynomial of semi-integer
degree |n|+1/2 = 3+1/2 can be obtained from orthogonality conditions (2.9). We
choose the leading coefficients a3 = b3 = 1, so that

T 1/2
n

(x) = cos
7x

2
+ sin

7x

2
+

2
∑

k=0

[

ak cos
(

k +
1

2

)

x + bk sin
(

k +
1

2

)

x
]

.

The solution of the corresponding system (2.9) is a0 = b0 = a1 = b1 = a2 = b2 = 0,

i.e., T
1/2
n (x) = cos 7x

2 + sin 7x
2 . The zeros of T

1/2
n (x), i.e., nodes of the quadrature

rules xi, i = 0, 1, . . . , 6, are

x0 = −
13π

14
, x1 = −

9π

14
, x2 = −

5π

14
, x3 = −

π

14
, x4 =

3π

14
, x5 =

π

2
, x6 =

11π

14
.

We obtain the weight coefficients Aν,k, ν = 1, 2, k = 0, 1, . . . , 6, by using the
condition 1◦ of Theorem 3.1, i.e., from the conditions that the quadrature rules
(3.2) are exact for all trigonometric polynomials from the space T3. The results are
given in Table 1. The numbers in parentheses indicate decimal exponents.
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Table 1. The weight coefficients Aν,k, ν = 1, 2, k = 0, 1, . . . , 6,
of the optimal set of quadrature rules with respect to the set of
functions W = {1, 1 + sin 2x} and n = (2, 1)

k A1,k A2,k

0 0.897597901025655 1.28705103454674
1 0.897597901025655 1.59936819864474
2 0.897597901025655 1.95827603406575(−1)
3 0.897597901025655 5.08144767504572(−1)
4 0.897597901025655 1.77269114865139
5 0.897597901025655 8.97597901025655(−1)
6 0.897597901025655 2.25046533999260(−2)

Example 4.2. Let us now construct the optimal set of quadrature rules on
E = [0, 2π), for p = 3, n = (1, 1, 1), with respect to the weight functions w1(x) =
3 − cos 2x, w2(x) = 1 + 2 sin x, and w3(x) = 2 + cos x.

In this case we have to verify that the set of functions
{

cos
x

2
w1(x), sin

x

2
w1(x), cos

x

2
w2(x), sin

x

2
w2(x), cos

x

2
w3(x), sin

x

2
w3(x)

}

is a Chebyshev system on the interval [0, 2π), which can be proved in the same way
as in Example 4.1.

We consider the monic sine type II multiple orthogonal polynomial of semi-

integer degree T
S,1/2
n ∈ T

1/2
3 . From orthogonality conditions (2.9) we get T

S,1/2
n =

sin 7x/2. Then the nodes xk, k = 0, 1, . . . , 6, of the optimal set of quadrature rules
are xk = 2kπ/7, k = 0, 1, . . . , 6.

Table 2. The weight coefficients Aν,k, ν = 1, 2, 3, k = 0, 1, . . . , 6,
of the optimal set of quadrature rules with respect to the set of
functions W = {3 − cos 2x, 1 + 2 sin x, 2 + cos x} and n = (1, 1, 1)

k A1,k A2,k A3,k

0 1.79519580205131 8.97597901025655(−1) 2.69279370307697
1 2.89252802633042 2.30113849626382 2.35483893951061
2 3.50150146779564 2.64778439627711 1.59546147879785
3 2.13315056561766 1.67650416806782 9.86488037332638(−1)
4 2.13315056561766 1.186916339834889(−1) 9.86488037332638(−1)
5 3.50150146779564 −8.52588594225803(−1) 1.59546147879785
6 2.89252802633042 −5.05942694212505(−1) 2.35483893951061

For each ν = 1, 2, 3, the corresponding weight coefficients Aν,k, k = 0, 1, . . . , 6,
given in Table 2, can be obtained by using condition 1◦ of Theorem 3.1.
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