SEGAL'S MULTISIMPLICIAL SPACES

Zoran Petrić

Abstract

Some sufficient conditions on a simplicial space $X: \Delta^{o p} \rightarrow$ Top guaranteeing that $X_{1} \simeq \Omega|X|$ were given by Segal. We give a generalization of this result for multisimplicial spaces. This generalization is appropriate for the reduced bar construction, providing an n-fold delooping of the classifying space of a category.

1. Introduction

This note makes no great claim to originality. It provides a complete inductive argument for a generalization of [17, Proposition 1.5], which was spelled out, not in a precise manner, in [2, paragraph preceding Theorem 2.1]. The authors of [2] did not provide the proof of this generalization. Some related, but quite different, results are given in [4] and 3].

The main result of [5] reaches its full potential role in constructing a model for an n-fold delooping of the classifying space of a category only with the help of such a generalization of [17, Proposition 1.5]. The aim of this note is to fill in a gap in the literature concerning these matters.

Segal, 17, Proposition 1.5], gave conditions on a simplicial space $X: \Delta^{\mathrm{op}} \rightarrow$ Top guaranteeing that $X_{1} \simeq \Omega|X|$. His intention was to cover a more general class of simplicial spaces than we need for our purposes, therefore he worked with nonstandard geometric realizations of simplicial spaces. We generalize his result, in one direction, by passing from simplicial spaces to multisimplicial spaces, but staying in a class appropriate for the standard geometric realization. Our result is formulated to be directly applicable to the reduced bar construction of 5], providing an n-fold delooping of the classifying space of a category.

We work in the category (here denoted by Top) of compactly generated Hausdorff spaces. (This category is denoted by $\mathcal{K} e$ in $[\mathbf{7}$ and by CGHaus in $[9$. .) The objects of Top are called spaces and the arrows are called maps. Products are given

[^0]the compactly generated topology. We adopt the following notation throughout: \simeq for homotopy of maps or same homotopy type of spaces, \approx for homeomorphism of spaces.

The category Δ (denoted by Δ^{+}in $\mathbf{9}$) is the standard topologist's simplicial category defined as in [9, VII.5]. We identify this category with the subcategory of Top whose objects are the standard ordered simplices (one for each dimension), i.e., with the standard cosimplicial space $\Delta \rightarrow$ Top.

The objects of Δ are the nonempty ordinals $1,2,3, \ldots$, which are rewritten as $[0],[1],[2]$, etc. The coface arrows from $[n-1]$ to $[n]$ are denoted by δ_{i}^{n}, for $0 \leqslant i \leqslant n$, and the codegeneracy arrows from $[n]$ to $[n-1]$ are denoted by σ_{i}^{n}, for $0 \leqslant i \leqslant n-1$.

For the opposite category $\Delta^{o p}$, we denote the arrow $\left(\delta_{i}^{n}\right)^{\mathrm{op}}:[n] \rightarrow[n-1]$ by d_{i}^{n} and $\left(\sigma_{i}^{n}\right)^{\mathrm{op}}:[n-1] \rightarrow[n]$ by s_{i}^{n}. For f an arrow of $\Delta^{\mathrm{op}}\left(\mathrm{or}\left(\Delta^{\mathrm{op}}\right)^{n}\right)$, we abbreviate $X(f)$ by f whenever the (multi)simplicial object X is determined by the context.

We consider all the monoidal structures to be strict, which is supported by the strictification given by [9, XI.3, Theorem 1]. Some proofs prepared for nonspecialists are given in the appendix.

2. Multisimplicial spaces and their realization

A multisimplicial space is an object of the category $\operatorname{Top}\left(\Delta^{\left(\mathrm{op}^{n}\right)^{n}}\right.$, i.e., a functor from $\left(\Delta^{\mathrm{op}}\right)^{n}$ to Top. When $n=0$, this is just a space and when $n=1$, this is a simplicial space. As usual, for a multisimplicial space $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top, we abbreviate $X\left(\left[k_{1}\right], \ldots,\left[k_{n}\right]\right)$ by $X_{k_{1} \ldots k_{n}}$.

We say that $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top is a multisimplicial set when every $X_{k_{1} \ldots k_{n}}$ is discrete. A multisimplicial map is an arrow of $\operatorname{Top}^{\left(\Delta^{\mathrm{op}}\right)^{n}}$, i.e., a natural transformation between multisimplicial spaces. When $n=1$, this is a simplicial map. Throughout this paper we use the standard geometric realization of (multi)simplicial spaces.

Definition 2.1. The realization functor $\left|\mid: \mathrm{Top}^{\Delta^{\mathrm{op}}} \rightarrow\right.$ Top of simplicial spaces is defined so that for a simplicial space X, we have

$$
|X|=\left(\coprod_{n} X_{n} \times \Delta^{n}\right) / \sim,
$$

where the equivalence relation \sim is generated by

$$
\left(d_{i}^{n} x, t\right) \sim\left(x, \delta_{i}^{n} t\right) \quad \text { and } \quad\left(s_{i}^{n} x, t\right) \sim\left(x, \sigma_{i}^{n} t\right)
$$

Definition 2.2. For $p \geqslant 0$, the functor _ ${ }^{(p)}: \operatorname{Top}^{\left(\Delta^{\mathrm{op}}\right)^{n+p}} \rightarrow \operatorname{Top}^{\left(\Delta^{\mathrm{op}}\right)^{n}}$ of partial realization is defined inductively as follows
${ }_{-}^{(0)}$ is the identity functor, and ${ }_{-}^{(p+1)}$ is the composition

$$
\operatorname{Top}^{\left(\Delta^{\mathrm{op}}\right)^{n+p+1}} \cong\left(\operatorname{Top}^{\Delta^{\mathrm{op}}}\right)^{\left(\Delta^{\mathrm{op}}\right)^{n+p}} \xrightarrow{| |^{\left(\Delta^{\mathrm{op}}\right)^{n+p}}} \operatorname{Top}^{\left(\Delta^{\mathrm{op}}\right)^{n+p}} \xrightarrow{(p)} \operatorname{Top}^{\left(\Delta^{\mathrm{op}}\right)^{n}}
$$

where the first isomorphism maps X to Y such that $\left(Y_{k_{1} \ldots k_{n+p}}\right)_{l}=X_{k_{1} \ldots k_{n+p} l}$.

For a multisimplicial space $X:\left(\Delta^{\mathrm{op}}\right)^{p} \rightarrow$ Top, we denote $X^{(p)}$ by $|X|$. Hence, for $X:\left(\Delta^{\mathrm{op}}\right)^{n+p} \rightarrow$ Top, we have that $\left(X^{(p)}\right)_{k_{1} \ldots k_{n}}=|X_{k_{1} \ldots k_{n}} \underbrace{\ldots-}_{p}|$.

Definition 2.3. If $X=Y^{(p)}$, for Y a multisimplicial set, then we say that X is a partially realized multisimplicial set (PRmss).

Definition 2.4. For $n \geqslant 0$ and $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top, let the simplicial space $\operatorname{diag} X: \Delta^{\mathrm{op}} \rightarrow$ Top be such that

$$
(\operatorname{diag} X)_{k}=X_{k \ldots k}
$$

In particular, when $n=0$ and X is just a topological space, we have that $(\operatorname{diag} X)_{k}$ is X and all the face and degeneracy maps of $\operatorname{diag} X$ are $\mathbf{1}_{X}$.

The following lemma is a corollary of [15, Lemma, p. 94].
Lemma 2.5. For $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top, we have that $|X| \approx|\operatorname{diag} X|$.
As a consequence of Lemma 2.5 and [10. Theorem 14.1] we have the following lemma.

Lemma 2.6. If X is a PRmss, then $|X|$ is a $C W$-complex.
The following remark easily follows.
Remark 2.7. (a) If $X:\left(\Delta^{\mathrm{op}}\right)^{n+p} \rightarrow$ Top is a PRmss, then $X^{(p)}$ is a PRmss.
(b) If $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top is a PRmss, then for every k_{1}, \ldots, k_{n}, the space $X_{k_{1} \ldots k_{n}}$ is a CW-complex.
(c) If $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top is a PRmss, then for every $k \geqslant 0, X_{k_{-} \ldots-}$ is a PRmss.
(d) If $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top, for $n>1$, is a PRmss, then $Y: \Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}} \rightarrow$ Top, defined so that $Y_{m k}=X_{m k \ldots k}$, is a PRmss.

Definition 2.8. A simplicial space $X: \Delta^{\mathrm{op}} \rightarrow$ Top is good when for every $0 \leqslant i \leqslant n-1$, the map $s_{i}^{n}: X_{n-1} \rightarrow X_{n}$ is a closed cofibration. It is proper (Reedy cofibrant) when for every $n \geqslant 1$, the inclusion $s X_{n} \hookrightarrow X_{n}$, where $s X_{n}=$ $\bigcup_{i} s_{i}^{n}\left(X_{n-1}\right)$, is a closed cofibration.

Proposition 2.9. Every PRmss $X: \Delta^{\mathrm{op}} \rightarrow$ Top is good.
Proof. Since $d_{i}^{n} \circ s_{i}^{n}=\mathbf{1}_{X_{n-1}}$, we may consider X_{n-1} to be a retract of X_{n}. By Remark 2.7(b), X_{n} is a CW-complex and by [6, Corollary III.2] (see also [8, Corollary 2.4(a)]) a locally equiconnected space. By [8, Lemma 3.1] and since every X_{k} is Hausdorff, s_{i}^{n} is a closed cofibration.

As a corollary of [18, Proposition 22] (see also references listed in [18, Section 6, p. 19]) we have the following result.

Lemma 2.10. Every good simplicial space is proper.
The following result is from [12, Appendix, Theorem A4(ii)].

Lemma 2.11. Let $f: X \rightarrow Y$ be a simplicial map of proper simplicial spaces. If each $f_{k}: X_{k} \rightarrow Y_{k}$ is a homotopy equivalence, then $|f|:|X| \rightarrow|Y|$ is a homotopy equivalence.

Definition 2.12. The product $X \times Y$ of simplicial spaces X and Y is defined componentwise, i.e., $(X \times Y)_{k}=X_{k} \times Y_{k}$, and for every arrow $f: k \rightarrow l$ of Δ^{op} and every $x \in X_{k}$ and $y \in Y_{k}$, we have that $f(x, y)=(f x, f y)$.

Since the product of two CW-complexes in Top is a CW-complex, by reasoning as in Proposition 2.9, we have the following.

Remark 2.13. If $X, Y: \Delta^{\mathrm{op}} \rightarrow$ Top are PRmss, then $X \times Y$ is good.
The following lemma is a corollary of [11, Lemma 11.11].
Lemma 2.14. If the space X_{0} of a simplicial space $X: \Delta^{\mathrm{op}} \rightarrow$ Top is pathconnected, then $|X|$ is path-connected.

3. Segal's multisimplicial spaces

For $m \geqslant 1$, consider the arrows $i_{1}, \ldots, i_{m}:[m] \rightarrow[1]$ of Δ^{op} given by the following diagrams.

The following images of these arrows under the functor $\mathcal{J}: \Delta^{\mathrm{op}} \rightarrow \Delta$ of [14, Section 6] may help the reader to see that i_{1}, \ldots, i_{m} correspond to m projections. (Note that 0 and 2 in the bottom line of the images serve to project away all but one element of the top line.)

For maps $f_{i}: A \rightarrow B_{i}, 1 \leqslant i \leqslant m$, we denote by $\left\langle f_{1}, \ldots, f_{m}\right\rangle: A \rightarrow B_{1} \times \cdots \times B_{m}$ the map obtained by the Cartesian structure of Top. In particular, for the abovementioned i_{1}, \ldots, i_{m} and for a simplicial space $X: \Delta^{\mathrm{op}} \rightarrow$ Top we have the map

$$
p_{m}=\left\langle i_{1}, \ldots, i_{m}\right\rangle: X_{m} \rightarrow\left(X_{1}\right)^{m} .
$$

(According to our convention from the introduction, $X\left(i_{k}\right)$ is abbreviated by i_{k}.) If $m=0$, then $\left(X_{1}\right)^{0}=\{*\}$ (a terminal object of Top) and let p_{0} denote the unique arrow from X_{0} to $\left(X_{1}\right)^{0}$. The following lemma is claimed in $\mathbf{1 7}$.

Lemma 3.1. If $X: \Delta^{\mathrm{op}} \rightarrow$ Top is a simplicial space such that for every $m \geqslant 0$, the map p_{m} is a homotopy equivalence, then X_{1} is a homotopy associative H -space whose multiplication m is given by the composition

$$
\left(X_{1}\right)^{2} \xrightarrow{p_{2}^{-1}} X_{2} \xrightarrow{d_{1}^{2}} X_{1},
$$

where p_{2}^{-1} is an arbitrary homotopy inverse to p_{2}, and whose unit * is $s_{0}^{1}\left(x_{0}\right)$, for an arbitrary $x_{0} \in X_{0}$.

Definition 3.2. We say that a PRmss $X: \Delta^{\mathrm{op}} \rightarrow$ Top is Segal's simplicial space when for every $m \geqslant 0$, the map $p_{m}: X_{m} \rightarrow\left(X_{1}\right)^{m}$ is a homotopy equivalence.

Lemma 3.3. Let $Y: \Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}} \rightarrow$ Top be a PRmss. If for every $k \geqslant 0$, the simplicial space Y_{-k} is Segal's, then $Y^{(1)}$ is Segal's simplicial space.

Definition 3.4. We say that a PRmss $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top, where $n \geqslant 1$, is Segal's multisimplicial space, when for every $l \in\{0, \ldots, n-1\}$ and every $k \geqslant 0$, the simplicial space $X_{\underbrace{}_{l} \ldots 1}^{1 \ldots \ldots k}$ is Segal's.

Note that we do not require $X_{k_{1} \ldots k_{-} k_{l+1} \ldots k_{n-1}}$ to be Segal's for arbitrary k_{1}, \ldots, k_{n-1} (see the parenthetical remark in Section 5.)

Remark 3.5. If $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top is Segal's multisimplicial space, then for every $l \in\{0, \ldots, n-1\}, X_{1 \ldots 1}$ is homotopy associative H-space with respect to the structure obtained from Lemma 3.1 applied to $X_{l}^{X_{1}^{\ldots 1} 1^{1 \ldots 1}}: \Delta^{\mathrm{op}} \rightarrow$ Top.

Our goal is to generalize the following proposition, which stems from [17, Proposition 1.5(b)]. (In the proof of that result, contractibility of $|P A|$ comes from the fact that $|P A| \simeq A_{0}$.)

Proposition 3.6. Let $X: \Delta^{\mathrm{op}} \rightarrow$ Top be Segal's simplicial space. If X_{1} with respect to the H -space structure obtained by Lemma 3.1 is grouplike, then $X_{1} \simeq \Omega|X|$.

Our generalization is the following.
Proposition 3.7. Let $X:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Top be Segal's multisimplicial space. If $X_{1 \ldots 1}$, with respect to the H -space structure obtained by Remark 3.5 when $l=n-1$, is grouplike, then $X_{1 \ldots 1} \simeq \Omega^{n}|X|$.

Proof. We proceed by induction on $n \geqslant 1$. If $n=1$, the result follows from Proposition 3.6.

If $n>1$, then we may apply the induction hypothesis to $X_{1_{1} \ldots \ldots}$. Hence,

$$
X_{1 \ldots 1} \simeq \Omega^{n-1}\left|X_{1 _\ldots _}\right| .
$$

By Lemma 2.5, we have that $\left|X_{1_{-} \ldots-}\right| \approx\left|\operatorname{diag} X_{1_{-} \ldots-}\right|$. By the assumption and Remark 2.7(d), the multisimplicial space $Y: \Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}} \rightarrow$ Top, defined so that $Y_{m k}=X_{m k \ldots k}$, satisfies the conditions of Lemma 3.3. Let Z be the simplicial space $Y^{(1)}: \Delta^{\mathrm{op}} \rightarrow$ Top, i.e.,

$$
Z_{m}=\left|Y_{m_{-}}\right|=\left|\operatorname{diag} X_{m_{-} \ldots-}\right| .
$$

By Lemma 3.3, Z is Segal's simplicial space. By Remark 2.7(b), Z_{1} is a CWcomplex. Since the space Y_{10} (i.e., $X_{10 \ldots 0}$) is by the assumption homotopic to $\left(X_{110 \ldots 0}\right)^{0}$, it is contractible, and hence, path-connected. By Lemma 2.14, we have that Z_{1}, which is equal to $\left|Y_{1_{-}}\right|$, is path-connected. Note also that $|Z|=|Y| \approx$ $|\operatorname{diag} X| \approx|X|$.

By Lemma 3.1, Z_{1} is a homotopy associative H -space, and since it is a pathconnected CW-complex, by [1 Proposition 8.4.4], it is grouplike. Applying Proposition 3.6 to Z, we obtain

$$
\left|X_{1 _\cdots _}\right| \approx\left|\operatorname{diag} X_{1 _\cdots _}\right|=Z_{1} \simeq \Omega|Z| \approx \Omega|X| .
$$

Finally, we have

$$
X_{1 \ldots 1} \simeq \Omega^{n-1}\left|X_{1_{-} \ldots-}\right| \simeq \Omega^{n}|X|
$$

4. Segal's lax functors

Thomason, 20, was the first who noticed that the reduced bar construction based on a symmetric monoidal category produces a lax, instead of an ordinary, functor. The idea to use Street's rectification in that case, also belongs to him.

We use the notions of lax functor, left and right lax transformation as defined in [19. The following theorem is taken over from [19, Theorem 2].

Theorem 4.1. For every lax functor $W: \mathcal{A} \rightarrow$ Cat there exists a genuine functor $V: \mathcal{A} \rightarrow$ Cat, a left lax transformation $E: V \rightarrow W$ and a right lax transformation $J: W \rightarrow V$ such that J is the left adjoint to E and $W=E V J$.

We call V a rectification of W. It is easy to see that if $W: \mathcal{A} \times \mathcal{B} \rightarrow$ Cat is a lax functor and V is its rectification, then for every object A of $\mathcal{A}, W_{A_{-}}$is a lax functor and $V_{A_{-}}$is its rectification. As for simplicial spaces, for a (lax) functor $W: \Delta^{\mathrm{op}} \rightarrow$ Cat, we denote the unique arrow $W_{0} \rightarrow\left(W_{1}\right)^{0}$ by p_{0}, and when $m \geqslant 1$, we have $p_{m}=\left\langle i_{1}, \ldots, i_{m}\right\rangle: W_{m} \rightarrow\left(W_{1}\right)^{m}$.

Definition 4.2. We say that a lax functor $W: \Delta^{\mathrm{op}} \rightarrow$ Cat is Segal's, when for every $m \geqslant 0, p_{m}: W_{m} \rightarrow\left(W_{1}\right)^{m}$ is the identity. We say that a lax functor $W:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Cat is Segal's, when for every $l \in\{0, \ldots, n-1\}$ and every $k \geqslant 0$, the lax functor $W_{l}^{\underbrace{}_{l} \ldots 1}-k \ldots k: \Delta^{\mathrm{op}} \rightarrow$ Cat is Segal's.

We denote by B : Cat \rightarrow Top the classifying space functor, i.e., the composition $\left|\mid \circ N\right.$, where $N:$ Cat $\rightarrow \mathrm{Top}^{\Delta^{\mathrm{OP}}}$ is the nerve functor.

Proposition 4.3. If $W: \Delta^{\mathrm{op}} \rightarrow$ Cat is Segal's lax functor and V is its rectification, then $B \circ V$ is Segal's simplicial space.

By Definitions 3.4 and 4.2 , the following generalization of Proposition 4.3 is easily obtained.

Corollary 4.4. If $W:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Cat is Segal's lax functor and V is its rectification, then $B \circ V$ is Segal's multisimplicial space.

For Corollary 4.4, we conclude that $B \circ V$ is a PRmss as in the proof of Proposition 4.3 given in the appendix.

5. An application

Let \mathcal{M} be an n-fold strict monoidal category and let $\bar{W} \mathcal{M}:\left(\Delta^{\mathrm{op}}\right)^{n} \rightarrow$ Cat be the n-fold reduced bar construction defined as in 5. The main result of that paper says that $\bar{W} \mathcal{M}$ is a lax functor and it is easy to verify that it is Segal's. (Note that $\bar{W} \mathcal{M}_{k_{1} \ldots k_{l} \ldots k_{n-1}}$ is not Segal's when $k_{j}>1$, for some $1 \leqslant j \leqslant l$.)

For V being a rectification of $\bar{W} \mathcal{M}$, we have the following.
Theorem 5.1. If $B V_{1 \ldots 1}$, with respect to the H-space structure obtained by Remark 3.5 when $l=n-1$, is grouplike, then $B \mathcal{M} \simeq \Omega^{n}|B \circ V|$.

Proof. By Corollary 4.4, we have that $B \circ V$ is Segal's multisimplicial space. Hence, by Proposition 3.7, $B V_{1 \ldots 1} \simeq \Omega^{n}|B \circ V|$. Since V is a rectification of $\bar{W} \mathcal{M}$, by relying on Remark A 1 of the appendix, we conclude that $B V_{1 \ldots 1} \simeq B \bar{W} \mathcal{M}_{1 \ldots 1}$. From the fact that $\bar{W} \mathcal{M}_{1 \ldots 1}=\mathcal{M}$, we obtain that $B \mathcal{M} \simeq \Omega^{n}|B \circ V|$. $\quad \dashv$

This means that up to group completion (see [17] and [13), for every n-fold strict monoidal category \mathcal{M}, the classifying space $B \mathcal{M}$ is an n-fold loop space. When \mathcal{M} contains a terminal or initial object, we have that $B \mathcal{M}$, and hence $B V_{1 \ldots 1}$, is path-connected. In that case, by [1, Proposition 8.4.4], $B V_{1 \ldots 1}$ is grouplike, and $|B \circ V|$ is an n-fold delooping of $B \mathcal{M}$.

6. Appendix

Proof of Lemma 3.1. First, we prove that $\left\langle X_{1}, m, *\right\rangle$ is an H-space. Let j_{1} : $X_{1} \rightarrow X_{1} \times X_{1}$ be such that $j_{1}(x)=(x, *)$, and analogously, let $j_{2}: X_{1} \rightarrow X_{1} \times X_{1}$ be such that $j_{2}(x)=(*, x)$. By the assumption, X_{0} is contractible. Hence, d_{0}^{1} is homotopic to the constant map to x_{0} and therefore $s_{0}^{1} \circ d_{0}^{1}$ is homotopic to the constant map to $*$. We conclude that

$$
j_{1} \simeq\left\langle\mathbf{1}_{X_{1}}, s_{0}^{1} \circ d_{0}^{1}\right\rangle=\left\langle d_{2}^{2} \circ s_{1}^{2}, d_{0}^{2} \circ s_{1}^{2}\right\rangle=\left\langle d_{2}^{2}, d_{0}^{2}\right\rangle \circ s_{1}^{2}=p_{2} \circ s_{1}^{2},
$$

i.e., $p_{2}^{-1} \circ j_{1} \simeq s_{1}^{2}$. Hence,

$$
m \circ j_{1}=d_{1}^{2} \circ p_{2}^{-1} \circ j_{1} \simeq d_{1}^{2} \circ s_{1}^{2}=\mathbf{1}_{X_{1}} .
$$

Analogously, $m \circ j_{2} \simeq \mathbf{1}_{X_{1}}$ and we have that $\left\langle X_{1}, m, *\right\rangle$ is an H-space.
Next, we prove that m is associative up to homotopy, i.e., that

$$
m \circ(m \times \mathbf{1}) \simeq m \circ(\mathbf{1} \times m)
$$

Consider $p_{3}: X_{3} \rightarrow\left(X_{1}\right)^{3}$ for which we have

$$
\begin{aligned}
p_{3} & =\left\langle\left\langle i_{1}, i_{2}\right\rangle, i_{3}\right\rangle=\left\langle\left\langle d_{2}^{2} \circ d_{3}^{3}, d_{0}^{2} \circ d_{3}^{3}\right\rangle, i_{3}\right\rangle=\left\langle p_{2} \circ d_{3}^{3}, i_{3}\right\rangle \\
& =\left(p_{2} \times \mathbf{1}\right) \circ\left\langle d_{3}^{3}, i_{3}\right\rangle, \quad \text { and analogously } \\
p_{3} & =\left(\mathbf{1} \times p_{2}\right) \circ\left\langle i_{1}, d_{0}^{3}\right\rangle .
\end{aligned}
$$

Since p_{2} and p_{3} are homotopy equivalences, we have that $\left\langle d_{3}^{3}, i_{3}\right\rangle$ and $\left\langle i_{1}, d_{0}^{3}\right\rangle$ are homotopy equivalences, too. Moreover,

$$
\begin{align*}
& \left\langle d_{3}^{3}, i_{3}\right\rangle^{-1} \simeq p_{3}^{-1} \circ\left(p_{2} \times \mathbf{1}\right) \tag{1}\\
& \left\langle i_{1}, d_{0}^{3}\right\rangle^{-1} \simeq p_{3}^{-1} \circ\left(\mathbf{1} \times p_{2}\right) \tag{2}
\end{align*}
$$

Also, we show that

$$
\begin{align*}
& d_{1}^{2} \times \mathbf{1} \simeq p_{2} \circ d_{1}^{3} \circ p_{3}^{-1} \circ\left(p_{2} \times \mathbf{1}\right) \tag{3}\\
& \mathbf{1} \times d_{1}^{2} \simeq p_{2} \circ d_{2}^{3} \circ p_{3}^{-1} \circ\left(\mathbf{1} \times p_{2}\right) .
\end{align*}
$$

We have

$$
\left(d_{1}^{2} \times \mathbf{1}\right) \circ\left\langle d_{3}^{3}, i_{3}\right\rangle=\left\langle d_{1}^{2} \circ d_{3}^{3}, i_{3}\right\rangle=\left\langle d_{2}^{2} \circ d_{1}^{3}, d_{0}^{2} \circ d_{1}^{3}\right\rangle=\left\langle d_{2}^{2}, d_{0}^{2}\right\rangle \circ d_{1}^{3}=p_{2} \circ d_{1}^{3}
$$

which together with (1) delivers (3). Also,

$$
\left(\mathbf{1} \times d_{1}^{2}\right) \circ\left\langle i_{1}, d_{0}^{3}\right\rangle=\left\langle i_{1}, d_{1}^{2} \circ d_{0}^{3}\right\rangle=\left\langle d_{2}^{2} \circ d_{2}^{3}, d_{0}^{2} \circ d_{2}^{3}\right\rangle=\left\langle d_{2}^{2}, d_{0}^{2}\right\rangle \circ d_{2}^{3}=p_{2} \circ d_{2}^{3}
$$

which together with (2) delivers (4). Finally, we have

$$
\begin{aligned}
m \circ(m \times \mathbf{1}) & =d_{1}^{2} \circ p_{2}^{-1} \circ\left(d_{1}^{2} \times \mathbf{1}\right) \circ\left(p_{2}^{-1}\right) \simeq d_{1}^{2} \circ d_{1}^{3} \circ p_{3}^{-1}, \quad \text { by }(3) \\
& =d_{1}^{2} \circ d_{2}^{3} \circ p_{3}^{-1} \simeq d_{1}^{2} \circ p_{2}^{-1} \circ\left(\mathbf{1} \times d_{1}^{2}\right) \circ\left(\mathbf{1} \times p_{2}^{-1}\right), \quad \text { by }(4) \\
& =m \circ(\mathbf{1} \times m) .
\end{aligned}
$$

Proof of Lemma 3.3. Let $Z: \Delta^{\mathrm{op}} \rightarrow$ Top be $Y^{(1)}$. By Remark 2.7(a), it is a PRmss. We have to show that for every $m \geqslant 0$, the map $p_{m}: Z_{m} \rightarrow\left(Z_{1}\right)^{m}$ is a homotopy equivalence.

Let $m=0$ and let T be the trivial simplicial space with $T_{k}=\{*\}$. Consider the simplicial space $Y_{0_{-}}: \Delta^{\mathrm{op}} \rightarrow$ Top, which is a PRmss by Remark 2.7(c). By Proposition 2.9 and Lemma 2.10, both T and $Y_{0^{\prime}}$ are proper. The following simplicial map is obtained by the assumptions (the diagrams are commutative since $\{*\}$ is terminal).

$Y_{0-}:$	\ldots	Y_{02}	$\underset{~}{\leftrightarrows}$	Y_{01}	$\stackrel{\rightrightarrows}{\leftrightarrows}$	Y_{00}
		$\downarrow \simeq$		$\downarrow \simeq$		$\downarrow \simeq$
$T:$	\ldots	$\{*\}$	\rightleftarrows	$\{*\}$	\rightleftarrows	$\{*\}$

By Lemma 2.11, we have that $\left|Y_{0_{-}}\right| \simeq|T|=\{*\}$ via the unique map. Since $Z_{0}=\left|Y_{0}\right|$ and $\left(Z_{1}\right)^{0}=\{*\}$, we are done.

Let $m>0$. Consider the simplicial spaces $Y_{m_{-}}$and $\left(Y_{1_{-}}\right)^{m}$, which are proper by Remark 2.7(c), Proposition 2.9, Lemma 2.10 and Remark 2.13. The following simplicial map is obtained by the assumptions (it is straightforward to verify that the diagrams are commutative).

$$
\begin{array}{ccccccc}
Y_{m_{-}}: & \cdots & Y_{m 2} & \stackrel{\rightharpoonup}{\leftrightarrows} & Y_{m 1} & \stackrel{\rightrightarrows}{\leftrightarrows} & Y_{m 0} \\
& & \downarrow & \simeq & \downarrow & & \downarrow \\
& & & \\
\left(Y_{1}\right)^{m}: & \cdots & \left(Y_{12}\right)^{m} & \underset{\leftrightarrows}{\leftrightarrows} & \left(Y_{11}\right)^{m} & \underset{\leftrightarrows}{\leftrightarrows} & \left(Y_{10}\right)^{m}
\end{array}
$$

By Lemma 2.11, we have that

$$
\left|\left\langle Y\left(i_{1}, _\right), \ldots, Y\left(i_{m}, _\right)\right\rangle\right|:\left|Y_{m _}\right| \rightarrow\left|\left(Y_{1 _}\right)^{m}\right|
$$

is a homotopy equivalence. Also, for Top, the realization functor || preserves products (see [10, Theorem 14.3], 7, III.3, Theorem] and [11, Corollary 11.6]). Namely, for $\pi_{k}:\left(Y_{1_{-}}\right)^{m} \rightarrow Y_{1_{-}}, 1 \leqslant k \leqslant m$ being the k th projection,

$$
\langle | \pi_{1}\left|, \ldots,\left|\pi_{m}\right|\right\rangle:\left|\left(Y_{1}\right)^{m}\right| \rightarrow\left|Y_{1}\right|^{m}
$$

is a homeomorphism ($|\mid$ is strong monoidal; see [16, Example 6.2.2]). Hence,

$$
\langle | \pi_{1}\left|, \ldots,\left|\pi_{m}\right|\right\rangle \circ\left|\left\langle Y\left(i_{1}, \Omega_{-}\right), \ldots, Y\left(i_{m},-\right)\right\rangle\right|:\left|Y_{m_{-}}\right| \rightarrow\left|Y_{1_{-}}\right|^{m}
$$

is a homotopy equivalence.
The following easy computation, in which $\left\langle Y\left(i_{1},{ }_{-}\right), \ldots, Y\left(i_{m},{ }_{-}\right)\right\rangle$is abbreviated by α,

$$
\begin{aligned}
\langle | \pi_{1}\left|, \ldots,\left|\pi_{m}\right|\right\rangle \circ|\alpha| & =\langle | \pi_{1}|\circ| \alpha\left|, \ldots,\left|\pi_{m}\right| \circ\right| \alpha| \rangle=\langle | \pi_{1} \circ \alpha\left|, \ldots,\left|\pi_{m} \circ \alpha\right|\right\rangle \\
& =\langle | Y\left(i_{1}, __{-}\right)\left|, \ldots,\left|Y\left(i_{m}, _\right)\right|\right\rangle=\left\langle Z\left(i_{1}\right), \ldots, Z\left(i_{m}\right)\right\rangle
\end{aligned}
$$

shows that the map $p_{m}=\left\langle Z\left(i_{1}\right), \ldots, Z\left(i_{m}\right)\right\rangle$ is a homotopy equivalence between $Z_{m}=\left|Y_{m_{-}}\right|$, and $\left(Z_{1}\right)^{m}=\left|Y_{1_{-}}\right|^{m}$.

Some preliminary remarks for Proposition 4.3. Let $\mathbf{2}$ be the category with two objects (0 and 1) and one nonidentity arrow $h: 0 \rightarrow 1$. Let $I_{0}, I_{1}: \mathcal{C} \rightarrow \mathcal{C} \times \mathbf{2}$ be the functors such that for every object C of \mathcal{C}, we have that $I_{0}(C)=(C, 0)$ and $I_{1}(C)=(C, 1)$. Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be two functors. There is a bijection between the set of natural transformations $\alpha: F \rightarrow G$, and the set of functors $A: \mathcal{C} \times \mathbf{2} \rightarrow \mathcal{D}$ such that $A \circ I_{0}=F$ and $A \circ I_{1}=G$. This bijection maps $\alpha: F \rightarrow G$ to $A: \mathcal{C} \times \mathbf{2} \rightarrow \mathcal{D}$ such that

$$
A(C, 0)=F C, \quad A(C, 1)=G C, \quad A\left(f, \mathbf{1}_{0}\right)=F f, \quad A\left(f, \mathbf{1}_{1}\right)=G f
$$

and for $f: C \rightarrow C^{\prime}$,

$$
A(f, h)=G f \circ \alpha_{C}=\alpha_{C^{\prime}} \circ F f
$$

Its inverse maps $A: \mathcal{C} \times \mathbf{2} \rightarrow \mathcal{D}$ to $\alpha: F \rightarrow G$ such that $\alpha_{C}=A\left(\mathbf{1}_{C}, h\right)$.
The nerve functor N preserves products on the nose, hence, the classifying space functor $B=| | \circ N$ preserves products too. Therefore, the spaces $B \mathcal{C} \times I$ (i.e., $B \mathcal{C} \times B \mathbf{2}$) and $B(\mathcal{C} \times \mathbf{2})$ are homeomorphic and we have the following.

REmARK A1. Every natural transformation $\alpha: F \dot{\rightarrow} G$ gives rise to the homotopy

$$
B \mathcal{C} \times I \underset{\rightarrow}{\approx} B(\mathcal{C} \times \mathbf{2}) \xrightarrow{B A} B \mathcal{D}
$$

between the maps $B F$ and $B G$.
Proof of Proposition 4.3. By the isomorphism mentioned in Definition 2.2, we have that $N \circ V$ corresponds to a multisimplicial set $X: \Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}} \rightarrow$ Top and $B \circ V$ is $X^{(1)}$. Hence, it is a PRmss.

We have to show that for every $m \geqslant 0, p_{m}: B V_{m} \rightarrow\left(B V_{1}\right)^{m}$ is a homotopy equivalence, where we denote again by p_{0} the unique map from $B V_{0}$ to $\left(B V_{1}\right)^{0}$ and by p_{m} the map $\left\langle B V\left(i_{1}\right), \ldots, B V\left(i_{m}\right)\right\rangle$.

When $m=0$, we show that $B J_{0}: B W_{0} \rightarrow B V_{0}$ is a homotopy inverse to p_{0}. Since W_{0} and $\left(V_{1}\right)^{0}$ are the same trivial category and $B W_{0}=\left(B V_{1}\right)^{0}=\{*\}$, it is easy to conclude that $p_{0} \circ B J_{0} \simeq \mathbf{1}_{\left(B V_{1}\right)^{0}}$, and that $p_{0}=B E_{0}$. The latter, by the adjunction $J_{0} \dashv E_{0}$ and Remark A1, delivers $B J_{0} \circ p_{0} \simeq \mathbf{1}_{B V_{0}}$.

When $m \geqslant 1$, we have for every $1 \leqslant j \leqslant m$, the following natural transformations.

By using the monoidal structure of Cat given by 2-products and the fact that $\left\langle i_{1}, \ldots, i_{m}\right\rangle: W_{m} \rightarrow\left(W_{1}\right)^{m}$ is the identity, we obtain the following two natural transformations.

For $\pi_{k}: \mathcal{C}^{m} \rightarrow \mathcal{C}, 1 \leqslant k \leqslant m$ being the k th projection,

$$
\left\langle B \pi_{1}, \ldots, B \pi_{m}\right\rangle: B \mathcal{C}^{m} \rightarrow(B \mathcal{C})^{m}
$$

is a homeomorphism whose inverse we denote by $q_{m}(\mathcal{C})$. It is easy to verify that for $F, F_{1}, \ldots, F_{m}: \mathcal{C} \rightarrow \mathcal{D}$ we have $B\left\langle F_{1}, \ldots, F_{m}\right\rangle=q_{m}(\mathcal{D})\left\langle B F_{1}, \ldots, B F_{m}\right\rangle$ and $B F^{m} \circ q_{m}(\mathcal{C})=q_{m}(\mathcal{D}) \circ(B F)^{m}$.

By Remark A1, the transformations mentioned above give rise to

$$
\begin{align*}
B E_{m} & \simeq B\left(E_{1}\right)^{m} \circ B\left\langle V\left(i_{1}\right), \ldots, V\left(i_{m}\right)\right\rangle \\
& =q_{m}\left(W_{1}\right) \circ\left(B E_{1}\right)^{m} \circ\left\langle B V\left(i_{1}\right), \ldots, B V\left(i_{m}\right)\right\rangle \\
& =q_{m}\left(W_{1}\right) \circ\left(B E_{1}\right)^{m} \circ p_{m}, \\
B\left(J_{1}\right)^{m} & \simeq B\left\langle V\left(i_{1}\right), \ldots, V\left(i_{m}\right)\right\rangle \circ B J_{m} \\
& =q_{m}\left(V_{1}\right) \circ\left\langle B V\left(i_{1}\right), \ldots, B V\left(i_{m}\right)\right\rangle \circ B J_{m} \\
& =q_{m}\left(V_{1}\right) \circ p_{m} \circ B J_{m} .
\end{align*}
$$

The following calculation shows that

$$
B J_{m} \circ q_{m}\left(W_{1}\right) \circ\left(B E_{1}\right)^{m}:\left(B V_{1}\right)^{m} \rightarrow B V_{m}
$$

is a homotopy inverse to p_{m}.

$$
\begin{aligned}
\mathbf{1}_{B V_{m}} & \simeq B J_{m} \circ B E_{m}, \quad \text { by } J_{m} \dashv E_{m}, \text { Remark A1 } \\
& \simeq B J_{m} \circ q_{m}\left(W_{1}\right) \circ\left(B E_{1}\right)^{m} \circ p_{m}, \quad \text { by }(\dagger) \\
\mathbf{1}_{\left(B V_{1}\right)^{m}} & \simeq q_{m}^{-1}\left(V_{1}\right) \circ B\left(J_{1}\right)^{m} \circ B\left(E_{1}\right)^{m} \circ q_{m}\left(V_{1}\right), \quad \text { by } J_{1} \dashv E_{1}, \text { Remark A1 } \\
& \simeq p_{m} \circ B J_{m} \circ q_{m}\left(W_{1}\right) \circ\left(B E_{1}\right)^{m}, \quad \text { by }(\dagger \dagger) .
\end{aligned}
$$

References

1. M. Arkowitz, Introduction to Homotopy Theory, Springer, Berlin, 2011.
2. C. Balteanu, Z. Fiedorowicz, R. Schwänzl, R. Vogt, Iterated monoidal categories, Adv. Math. 176 (2003), 277-349.
3. A. K. Bousfield, The simplicial homotopy theory of iterated loop spaces, unpublished (1992).
4. P. V. Z. Cobb, P_{n}-spaces and n-fold loop spaces, Bull. Am. Math. Soc. 80 (1974), 910-914.
5. S. Lj. Čukić, Z. Petrić, The n-fold reduced bar construction (the old title was " n-fold monoidal categories"), preprint (2013) (arXiv:1309.6209).
6. E. Dyer, S. Eilenberg, An adjunction theorem for locally equiconnected spaces, Pac. J. Math. 41 (1972), 669-685.
7. P. Gabriel, M. Zisman, Calculus of Fractions and Homotopy Theory, Ergeb. Math. Grenzgeb. 35, Springer, Berlin, 1967.
8. L. G. Lewis, When is the Natural Map $X \rightarrow \Omega \Sigma X$ a Cofibration?, Trans. Am. Math. Soc. 273 (1982), 147-155.
9. S. Mac Lane, Categories for the Working Mathematician, Springer, Berlin, 1971 (expanded second edition, 1998).
10. J. P. May, Simplicial Objects in Algebraic Topology, The University of Chicago Press, Chicago, 1967.
11. —, The Geometry of Iterated Loop Spaces, Lect. Notes Math. 271, Springer, Berlin, 1972.
12.,E_{∞}-spaces, group completions and permutative categories, in: G. Segal (ed.), New Developments in Topology, Lond. Math. Soc. Lect. Note Ser. 11, Cambridge University Press, Cambridge, 1974, 153-231.
12. D. McDuff, G. Segal, Homology fibrations and the "group-completion" theorem, Invent. Math. 31 (1976), 279-284.
13. Z. Petrić, T. Trimble, Symmetric bimonoidal intermuting categories and $\omega \times \omega$ reduced bar constructions, Appl. Categ. Struct. 22 (2014), 467-499 (arXiv:0906.2954).
14. D. Quillen, Higher algebraic K-theory: I, in: H. Bass (ed.), Higher K-Theories, Lect. Notes Math. 341, Springer, Berlin, 1973, 85-147.
15. E. Riehl, Categorical Homotopy Theory, Cambridge University Press, New York, 2014.
16. G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312.
17. D. Stevenson, D. Roberts, Simplicial principal bundles in parametrized spaces, preprint (2012) (arXiv:1203.2460).
18. R. Street, Two constructions on lax functors, Cah. Topol. Géom. Différ. Catég. 13 (1972), 217-264.
19. R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Camb. Philos. Soc. 85, 91 (1979), 91-109.

Mathematical Institute (Received 1807 2014)
SANU
(Revised 2309 2014)
Belgrade
Serbia
zpetric@mi.sanu.ac.rs

[^0]: 2010 Mathematics Subject Classification: 18G30; 55P35; 55P48.
 Key words and phrases: simplicial space, loop space, lax functor.
 I am grateful to anonymous referees for some useful comments concerning the previous version of this note. This work was supported by project ON174026 of the Ministry of Education, Science, and Technological Development of the Republic of Serbia.

 Communicated by Žarko Mijajlović.

