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A NOTE ON MULTIVARIATE POLYNOMIAL
DIVISION AND GRÖBNER BASES

Aleksandar T. Lipkovski and Samira Zeada

Abstract. We first present purely combinatorial proofs of two facts: the
well-known fact that a monomial ordering must be a well ordering, and the
fact (obtained earlier by Buchberger, but not widely known) that the division
procedure in the ring of multivariate polynomials over a field terminates even
if the division term is not the leading term, but is freely chosen. The latter
is then used to introduce a previously unnoted, seemingly weaker, criterion
for an ideal basis to be Gröbner, and to suggest a new heuristic approach to
Gröbner basis computations.

1. Introduction

The division algorithm for multivariate polynomials over fields has been intro-
duced not so long ago, in connection with algorithmic and computational prob-
lems in these rings. It generalizes the univariate algorithm. There is no natural
monomial ordering in the multivariate ring K[x1, x2, . . . , xn]. Still, there are many
possibilities to totally order monomials in n variables, such as lexicographic or
degree-lexicographic orders. The multivariate division algorithm depends on the
choice of this ordering.

In what follows, we use the standard multiindex notation for multivariate mono-
mials xi1

1 xi2

2 · · · xin
n = xi, their coefficients ai1i2...in

= ai where i = (i1, i2, . . . , in) ∈
N

n
0 , and polynomials f =

∑

i∈Nn
0

aix
i. Denote Supp(f) = {i ∈ N

n
0 | ai 6= 0} ⊂ N

n
0 ,

support of the polynomial f . Then, f =
∑

i∈Supp(f) aix
i. Note that monomial xi

is divisible by monomial xj precisely when i = j + k for some k ∈ N
n
0 , or, written

in a different way, i ∈ j +N
n
0 . Here we use the standard semigroup structure of Nn

0 .

2. Monomial orderings

The ordering of the set of monomials is equivalent to the ordering of the set of
exponents N

n
0 . As usual, the sign ≺ denotes the strict, nonreflexive ordering, while

the corresponding reflexive ordering is denoted by �.
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Definition 2.1. A monomial ordering � on N
n
0 is a linear (or total) ordering

on N
n
0 such that it respects vector addition in N

n
0 i.e., i � j ⇒ i + k � j + k and

such that 0 � i for all i ∈ N
n
0 .

From these conditions it follows that � must be a well ordering. The proof of
this fact is usually based on Hilbert’s basis theorem or its weaker form, Dickson’s
lemma [1]. Here we give a simple combinatorial proof based on the idea suggested
by Siniša Vrećica.

Proposition 2.1. Let the ordering � on N
n
0 satisfy the following properties:

1) it is a linear ordering; 2) it is additive in N
n
0 i.e., i � j ⇒ i + k � j + k; 3) 0 � i

for all i ∈ N
n
0 . Then � is a well ordering.

Proof. Conditions 2) and 3) clearly imply that i ∈ j + N
n
0 ⇒ j � i or

equivalently, i ≺ j ⇒ i /∈ j + N
n
0 . Now, it is sufficient to prove that ≺ satisfies the

descending chain condition (DCC for short). We shall use mathematical induction
on n. The statement obviously holds for n = 1. Let

S : · · · ≺ i(k) =
(

i
(k)
1 , . . . , i(k)

n

)

≺ · · · ≺ i(1) =
(

i
(1)
1 , . . . , i(1)

n

)

be a descending chain in N
n
0 . It would suffice to show that the set S1 =

{

i ∈ S |

i1 < i
(1)
1

}

⊂ S is finite, since this can be applied to any coordinate i1, . . . , in of i.

Let i′

1 = max{i1 | i ∈ S1} < i
(1)
1 be the biggest first coordinate of elements in S1.

and i′ ∈ S1 any point with this first coordinate. The interval subset {i ∈ S1 | i′ ≺
i ≺ i(1)} ⊂ S1 is finite. The hyperplane subset S′

1 = {i ∈ S1 | i ≺ i′, i1 = i′

1} ⊂ S1

of all points in S1 less (with respect to ≺) than i′ and with the first coordinate
i′

1 forms a DCC in N
n−1
0 . By induction hypothesis, S′

1 must be finite. Therefore,
there can be only finitely many points in S1 with the first coordinate i′

1 and there

is the smallest one (with respect to ≺) i(m) ∈ S1. So, i
(m)
1 = i′

1 < i
(1)
1 and

i ≺ i(m) ⇒ i1 < i′

1. Since the set of first coordinates i1 < i′

1 is finite, by infinite
descent reasoning one obtains that the set S1 must be finite. �

3. Multivariate reduction and division

First, let us recall the standard multivariate polynomial reduction and division.
Choose the monomial ordering ≺ in N

n
0 once for all. The multidegree of polynomial

f is the n-tuple deg(f) := max Supp(f) ∈ N
n
0 . The maximum is attained because

Supp(f) is finite. If α = deg(f), then f has a leading term lt(f) = aαxα with
leading monomial lm(f) = xα and leading coefficient lc(f) = aα. The standard
division algorithm in the ring K[x1, . . . , xn] is performed in the following way (see
[1] or [2]).

Let f, g ∈ K[x1, . . . , xn] be two polynomials, and suppose first that lm(f) is
divisible by lm(g). This is equivalent to deg(f) ∈ deg(g) + N

n
0 and implies that

deg(g) ≺ deg(f). In this case, the leading terms of two polynomials f and lt(f)
lt(g) g are

identical, and polynomial r = f − lt(f)
lt(g) g has smaller multidegree deg(r) ≺ deg(f).

In such case, one says that f reduces to r modulo g, and this is denoted by f →g r.
This is sometimes called a one-step reduction of f by g.
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If the leading monomial lm(f) is not divisible by lm(g), then one takes the
maximum of all terms which are divisible – the term corresponding to max{i ∈
Supp(f) | i = deg(g)+k for some k ∈ N

n
0 }. This process is continued until no term

in r is divisible by lm(g). One says then that f completely reduces to r modulo g
or that r is the remainder in the division algorithm f = gh + r. It is not difficult
to prove that polynomials r and h are uniquely determined.

Since in K[x1, . . . , xn] we have to deal with nonprincipal ideals, one needs
division algorithm for an ordered m-tuple (g1, . . . , gm) of polynomials rather than
a single polynomial g. So, f is usually reduced using the left-most gi with the
property that lt(gi) divides some term in the remainder. It is easy to see that this
algorithm always terminates, but it is clear that the remainder r (the polynomial
such that none of its terms is divisible by some of lt(g1), . . . , lt(gm)) depends on
the choice of order of polynomials g1, . . . , gm.

Now, introduce the support of f with respect to g

Suppg(f) = {i ∈ Supp(f) | i = deg(g) + k for some k ∈ N
n
0 }

= Supp(f) ∩ (deg(g) + N
n
0 )

of multiindices of all monomials in f divisible by lt(g). The standard algorithm
described above takes for the next division step the maximal divisible term in f ,
which corresponds to the multiindex max Suppg(f). Clearly, r is the remainder in
the division algorithm f = gh + r ⇔ Suppg(r) = ∅. It is not obvious whether the
algorithm would stop if, instead of always choosing the maximal index in the set
Suppg(f), one chooses an arbitrary one. This is because after reducing f modulo
g1 and then modulo g2, it is possible that some terms divisible by lt(g1), which
were previously eliminated, reappear. Therefore, it is natural to ask whether any
reduction process modulo a given m-tuple (g1, . . . , gm), with arbitrary choice of
division term in each step would terminate? For a set of m polynomials G =
{g1, . . . , gm} let us introduce SuppG(f) = Suppg(f) ∪ · · · ∪ Suppg(f).

Theorem 3.1. Let f ∈ K[x1, . . . , xn] and G = {g1, . . . , gm} a set of m poly-
nomials, gi ∈ K[x1, . . . , xn]. Then, any reduction process (with arbitrary choice of
the next reduction term in Suppgij

(fj−1))

f →gi1
f1 →gi2

f2 → · · ·

with gik
∈ G must terminate in finitely many steps. This means that there exists k

such that fk does not contain a term divisible by any of the lt(g1), . . . , lt(gm).

Proof. Let mj = max Suppgij+1
(fj) and let rj be the index used for reduction

by gij+1
(j = 0, 1, 2, . . . , f0 := f). Clearly, rj ∈ Suppgij+1

(fj) and rj 6 mj . It

is easy to see that m0 > m1 > · · · . According to DCC, from some point on

mk1
= mk1+1 = · · · . Let m

(1)
k1

= max
[

Suppgik1+1
(fk1

) r {mk1
}
]

< mk1
. Clearly,

rk1
6 m

(1)
k1

< mk1
. Repeat the process for the sequence m

(1)
k1

> m
(1)
k1+1 > · · · . In

this way we obtain a sequence of indices m
(1)
k1

> m
(2)
k2

> · · · . Again, according to

DCC, this sequence must be stationary from some point on m
(p)
kp

= m
(p+1)
kp+1

= · · · ,
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which means that from that point on, Suppgip
(fp−1) = ∅ and the reduction process

terminates. �

So, no matter how we choose the next term in the division algorithm (in the set
of all possible terms), the algorithm will stop in finitely many steps. The polynomial
fk obtained in this way is then the remainder of the particular reduction process. As
we have already noted, the remainder depends on the order in which the reductions
are performed.

4. Ordered sets and multivariate division

The fact that in the reduction process, one can arbitrarily choose the term for
the next reduction in the set SuppG(f) was known to Buchberger (see [3, p. 14]).
However, it was not widely used and even not mentioned in the standard textbooks.
Buchberger’s argument in [3] involves extension of a given monomial order to a
partial order on the set of all polynomials. This order seems somehow unnatural.
It is not total because the coefficients are also taken into account. However, we have
already seen that it is not necessary to speak about monomials and polynomials,
but about underlying monomial orders on the exponent set N

n
0 (= Z

n
+) instead.

When we took a closer look, we discovered more natural, underlying combinatorial
fact about total orders, which actually belongs to set theory.

Recall that a set X together with binary partial order relation 6 (reflexive,
antisymmetric and transitive) is called (partially) ordered set. Ordered set (X,6)
is totally ordered if for any two elements x, y ∈ X either x 6 y or y 6 x. Recall
the following trivial fact.

Lemma 4.1. Let (X,6) be totally ordered and A ⊂ X its nonempty finite
subset. Then the minimal element min A and the maximal element max A of A
exist and are unique. Actually, the elements in A are ordered in a unique way.

Ordered set (X,6) is well ordered if every nonempty subset has a least element.
A well-ordered set is totally ordered. We now come to the set-theoretic essence of
the division algorithm in the multivariate polynomial ring, Buchberger’s polynomial
order and Buchberger’s proof.

Let (X,6) be a well-ordered set and F the family of all its (nonempty) finite
subsets. Consider the following binary relation on F

A < B ⇔ max(A ∆ B) ∈ B.

Here, A ∆ B = (A r B) ∪ (B r A) is a common symmetric difference of two sets.
It is easy to see that this definition is equivalent to the following:

A < B ⇔ there exists b ∈ B r A such that the strict upper

intervals A>b and B>b are either empty or coincide.

Here, A>b = {x ∈ A | x > b} is the upper interval of b in A. Clearly, such element
must be unique.

Theorem 4.1. With respect to this (strict) order <, the set F is well ordered.
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Proof. (1) It is easy to see that this is an order on F . Reflexivity is ob-
tained in the usual way by reflexive completion of the given strict order A 6 B ⇔
(A < B) ∨ (A = B). Antisymmetry is obvious, since A < B and B < A leads to
a contradiction. Now, let A < B and B < C, and let b = max(A ∆ B) ∈ B and
c = max(B ∆ C) ∈ C. Then c /∈ B and therefore c 6= b. There are two possibilities:
either b < c or b > c. In the first case, c /∈ A and max(A ∆ C) = c. In the second
case, b ∈ C and max(A ∆ C) = b. This proves transitivity. This is a total order
since the maximal element in A ∆ B 6= ∅ has to be either in A or in B.

(2) Now, let us prove that this is a well order i.e., it satisfies the DCC. Let
A1 > A2 > · · · > An > · · · be a strictly descending chain in F . For n ∈ N, define
two sequences in X ,

an = max(An r An+1) ∈ An and pn = max{a1, . . . , an}.

The last sequence is actually an ascending chain

p1 6 p2 6 . . . 6 pn 6 · · · .

Now notice that if there is a strict jump in the sequence i.e., if pn > pn−1, then
pn = an ∈ Ai for all i 6 n. But A1 is finite, so the number of strict jumps
is also finite, and the chain must be stationary. Let p(1) be its stationary value:
pm = pm+1 = · · · = p(1), which means that from that point on all subsets Am+i ∩
{

x ∈ X | x > p(1)
}

= S ⊂ Am+i coincide for all i > 1.
The following easy fact will be used without proof.

Lemma 4.2 (“cut-off"). Let A < B, max(A ∆ B) = b ∈ B rA, and S ⊂ A ∩ B.
Denote A(1) = ArS and B(1) = BrS. Then A(1) < B(1) and max

(

A(1)∆ B(1)
)

= b.

Let A
(1)
i = Am+i ∩

{

x ∈ X | x < p(1)
}

⊂ Am+i (we “cut-off" the set S i.e., all

elements in the original chain which are > p(1)). If A
(1)
1 6= ∅, then A

(1)
i also form a

strictly descending chain of finite sets

A
(1)
1 > A

(1)
2 > · · · > A(1)

n > · · · .

such that all corresponding maxima coincide: a
(1)
i = am+i. Now apply the same

construction to this chain and obtain the stationary value p(2) < p(1). In this way,
we obtain a strictly descending chain

p(1) > p(2) > · · · > p(k)

in X which eventually must stop since X is well ordered. This means that at this

point A
(k)
1 = ∅, the construction can not be continued and the original sequence

must be finite. This proves the theorem. �

If we now apply this theorem to the sequence of finite sets of exponents of
polynomials in the division algorithm, we obtain the previous theorem: the fact
that in the reduction process, one can arbitrarily choose the term for the next
reduction in the set SuppG(f). This leads to a conclusion that for certain special
classes of polynomials, one could try to find heuristics which could improve the
calculation speed of a Gröbner basis. This remark could open a quite new and
broad area of research.
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5. Application to Gröbner bases

As an illustration of free choice in the reduction process, we will apply it in
order to obtain a new equivalent characterisation of Gröbner basis. One of the
standard definitions of a Gröbner basis of an ideal is the following (see [1]).

Definition 5.1. The basis G = {g1, . . . , gm} of an ideal (g1, . . . , gm) = I ⊂
K[x1, . . . , xn] is called a Gröbner basis, if the leading term lt(f) of any f ∈ I is
divisible by some of the leading terms lt(g1), . . . lt(gm).

Its nice properties, such as the uniqueness of the reduced Gröbner basis of a
given ideal and the uniqueness of the remainder obtained by complete reduction
process with respect to Gröbner basis, are widely used for algorithmic and calcu-
lational purposes. Using the above theorem, this standard definition of Gröbner
basis could be slightly relaxed, as the following statement in (3) shows. Recall that
the syzygy in (6) below is the polynomial

S(g, h) :=
lcm(lt(g), lt(h))

lt(g)
· g −

lcm(lt(g), lt(h))

lt(h)
· h.

Theorem 5.1. Let I = (g1, . . . , gm) ⊂ K[x1, . . . , xn] be the ideal generated by
the set G = {g1, . . . , gm}. The following conditions are equivalent.

(1) G = {g1, . . . , gm} is a Gröbner basis;
(2) For all nonzero f ∈ I, lt(f) ∈ SuppG(f);
(3) For all nonzero f ∈ I, SuppG(f) 6= ∅;
(4) The remainder h of a complete reduction process f →G h

with SuppG(h) = ∅ is uniquely determined;
(5) For all f ∈ I, f →G 0;
(6) All syzygies S(gi, gj) →G 0

Proof. Equivalences (1) ⇔ (2) ⇔ (4) ⇔ (5) ⇔ (6) are standard (see [1] or
[2]) and are stated here just for reasons of completeness. The proof is required only
for the new equivalent condition (3). Obviously, (2) ⇒ (3). Suppose that (3) holds
and let f →G h1 and f →G h2. Then h1 − h2 ∈ I and SuppG(h1 − h2) = ∅ which
contradicts (3). Therefore, (3) ⇒ (4) is proved. �
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