PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 97(111) (2015), 49–56

DOI: 10.2298/PIM141114001V

THE INDEX OF PRODUCT SYSTEMS OF HILBERT MODULES: TWO EQUIVALENT DEFINITIONS

Biljana Vujošević

ABSTRACT. We prove that a conditionally completely positive definite kernel, as the generator of completely positive definite (CPD) semigroup associated with a continuous set of units for a product system over a C^* -algebra \mathcal{B} , allows a construction of a Hilbert $\mathcal{B} - \mathcal{B}$ module. That construction is used to define the index of the initial product system. It is proved that such definition is equivalent to the one previously given by Kečkić and Vujošević [On the index of product systems of Hilbert modules, Filomat, to appear, ArXiv:1111.1935v1 [math.OA] 8 Nov 2011]. Also, it is pointed out that the new definition of the index corresponds to the one given earlier by Arveson (in the case $\mathcal{B} = \mathbb{C}$).

1. Introduction

Product systems over \mathbb{C} have been studied during last several decades in connection with E_0 -semigroups acting on a type I factor. Although the main problem of classification of all nonisomorphic product systems is still open, this theory is well developed. The reader is referred to [2] and references therein. In the present century there are some significant results that generalize this theory to product systems over a C^* -algebra \mathcal{B} , either in connection with E_0 semigroups (see [8, 10]) or in connection with quantum probability dynamics (see [4, 3, 9]).

There are many difficulties in generalizing the notion of the index of a product system introduced in [1] to this more general concept. Up to our knowledge there are attempts in this direction done in [11] and recently in [5].

Here we give another definition of the index of product systems of Hilbert $\mathcal{B}-\mathcal{B}$ modules and show that it is equivalent to the one previously given in [5]. Also, we point out that the new definition of index corresponds to the one given by Arveson (in the case $\mathcal{B} = \mathbb{C}$).

Throughout the paper ${\mathcal B}$ will denote a unital $C^*\text{-algebra}$ and 1 will denote its unit.

The rest of Section 1 is devoted to basic definitions.

49

²⁰¹⁰ Mathematics Subject Classification: 46L53, 46L55.

Key words and phrases: product system, Hilbert module, index.

Communicated by Stevan Pilipović.

VUJOŠEVIĆ

DEFINITION 1.1. a) A product system over C^* -algebra \mathcal{B} is a family $(E_t)_{t\geq 0}$ of Hilbert \mathcal{B} - \mathcal{B} modules, with $E_0 \cong \mathcal{B}$, and a family of (unitary) isomorphisms $\varphi_{t,s}$: $E_t \otimes E_s \to E_{t+s}$, where \otimes stands for the so called inner tensor product obtained by identifications $ub \otimes v \sim u \otimes bv$, $u \otimes vb \sim (u \otimes v)b$, $bu \otimes v \sim b(u \otimes v)$, $(u \in E_t, v \in E_s, b \in \mathcal{B})$ and then completing in the inner product $\langle u \otimes v, u_1 \otimes v_1 \rangle = \langle v, \langle u, u_1 \rangle v_1 \rangle$;

b) Unit on E is a family $u_t \in E_t$, $t \ge 0$, such that $u_0 = 1$ and $\varphi_{t,s}(u_t \otimes u_s) = u_{t+s}$, which will be abbreviated to $u_t \otimes u_s = u_{t+s}$. A unit u_t is unital if $\langle u_t, u_t \rangle = 1$. It is central if for all $b \in \mathcal{B}$ and all $t \ge 0$ there holds $bu_t = u_t b$;

DEFINITION 1.2. Two units u_t and v_t give rise to the family of mappings $\mathcal{K}_t^{u,v}$: $\mathcal{B} \to \mathcal{B}$, given by $\mathcal{K}_t^{u,v}(b) = \langle u_t, bv_t \rangle$. All $\mathcal{K}_t^{u,v}$ are bounded \mathbb{C} -linear operators on \mathcal{B} , and this family forms a semigroup. The set of units S is continuous if the corresponding semigroup $(\mathcal{K}_t^{\xi,\eta})_{\xi,\eta\in S}$ (with respect to Schur multiplying) is uniformly continuous. A single unit u_t is uniformly continuous, or briefly just continuous, if the set $\{u\}$ is continuous, that is, the corresponding family $\mathcal{K}_t^{u,u}$ is continuous in the norm of the space $\mathcal{B}(\mathcal{B})$ (the algebra of all bounded \mathbb{C} -linear operators on \mathcal{B}).

As it can be seen in [3], for a (uniformly) continuous set of units \mathcal{U} , there can be formed a uniformly continuous completely positive definite semigroup (CPDsemigroup further on) $\mathcal{K} = (\mathcal{K}_t)_{t \in \mathbb{R}_+}$.

Denote by $\mathcal{L} = \frac{d}{dt} \mathcal{K} \mid_{t=0}$ the generator of CPD-semigroup \mathcal{K} . It is well known [3] that \mathcal{L} is conditionally completely positive definite, that is, for all finite *n*-tuples $x_1, \ldots, x_n \in \mathcal{U}$ and for all $a_j, b_j \in \mathcal{B}$ there holds

(1.1)
$$\sum_{j=1}^{n} a_j b_j = 0 \Longrightarrow \sum_{i,j=1}^{n} b_i^* \mathcal{L}^{x_i, x_j}(a_i^* a_j) b_j \ge 0.$$

Also,

(1.2)
$$\mathcal{L}^{y,x}(b) = \mathcal{L}^{x,y}(b^*)^*.$$

It is known that \mathcal{K} is uniquely determined by \mathcal{L} . More precisely, \mathcal{K} can be recovered from \mathcal{L} by $\mathcal{K} = e^{t\mathcal{L}}$ using the Schur product, i.e., $\mathcal{K}_t^{x,y}(b) = \langle x_t, by_t \rangle = (\exp t\mathcal{L}^{x,y})(b).$

REMARK 1.1. One should distinguish the continuous set of units from the set of continuous units. In the second case only $\mathcal{K}_t^{\xi,\xi}$ should be uniformly continuous for $\xi \in S$, whereas in the first case all $\mathcal{K}_t^{\xi,\eta}$ should be uniformly continuous.

In Section 2 the auxiliary statements, that are necessary for the proofs of the main result, are listed. In Section 3 another definition of the index of product systems of Hilbert $\mathcal{B} - \mathcal{B}$ modules is obtained and the equivalency with the one previously given in [5] is proved. Also, it is pointed out that the new definition of the index corresponds to the one given by Arveson (in the case $\mathcal{B} = \mathbb{C}$).

50

51

2. Preliminary results

In [6], Liebscher and Skeide introduce an interesting way to obtain new units in a given product system. The results are stated in Lemma 3.1, Proposition 3.3 and Lemma 3.4 of the mentioned paper and here they are quoted as

PROPOSITION 2.1. a) Suppose that a continuous set S of units generates a product system E. Let $t \mapsto y_t \in E_t$ be a mapping (not necessarily unit), with K and $K_{\xi} \in \mathcal{B}(\mathcal{B})$ ($\xi \in S$) such that for all $b \in \mathcal{B}$

$$\langle y_t, by_t \rangle = b + tK(b) + O(t^2)$$
 and $\langle y_t, b\xi_t \rangle = b + tK_{\xi}(b) + O(t^2).$

Then there exists a product system $F \supseteq E$ and a unit ζ such that $S \cup \{\zeta\}$ is continuous and $\mathcal{L}^{\zeta,\zeta} = K$, $L^{\zeta,\xi} = K_{\xi}$.

b) The following three conditions are equivalent.

(1) $\zeta \in E$;

- (2) ζ can be obtained as the norm limit of the sequence $(y_{t/n})^{\otimes n}$;
- (3) $\lim_{n\to\infty} \langle \zeta_t, (y_{t/n})^{\otimes n} \rangle = \langle \zeta_t, \zeta_t \rangle.$

REMARK 2.1. In [6], a more general limit over the filter of all partitions of segment [0, t] was considered instead of $\lim_{n\to\infty} (y_{t/n})^{\otimes n}$. However, such a general context is not necessary here.

The previous proposition is used in [5, Proposition 2.3] to obtain new units in a product system in the following way.

Suppose that a continuous set S of units generates a product system E. Let $x^j \in S, \varkappa_j \in \mathcal{B}, j = 1, \ldots, n$ such that $\sum \varkappa_j = 1$. Then the functions $t \mapsto \sum_{j=1}^n \varkappa_j x_t^j$ and $t \mapsto \sum_{j=1}^n x_t^j \varkappa_j$ satisfy all the assumptions of Proposition 2.1 and the resulting units, denoted by $\varkappa_1 x^1 \boxplus \cdots \boxplus \varkappa_n x^n$ and $x^1 \varkappa_1 \boxplus \cdots \boxplus x^n \varkappa_n$, belong to E. For example, the kernels of $\zeta = \varkappa_1 x^1 \boxplus \varkappa_2 x^2 \boxplus \varkappa_3 x^3$ are

$$\mathcal{L}^{\zeta,\zeta} = \mathcal{L}^{x^{1},x^{1}}L_{\varkappa_{1}^{*}}R_{\varkappa_{1}} + \mathcal{L}^{x^{1},x^{2}}L_{\varkappa_{1}^{*}}R_{\varkappa_{2}} + \mathcal{L}^{x^{1},x^{3}}L_{\varkappa_{1}^{*}}R_{\varkappa_{3}} + \mathcal{L}^{x^{2},x^{1}}L_{\varkappa_{2}^{*}}R_{\varkappa_{1}} + \mathcal{L}^{x^{2},x^{2}}L_{\varkappa_{2}^{*}}R_{\varkappa_{2}} + \mathcal{L}^{x^{2},x^{3}}L_{\varkappa_{2}^{*}}R_{\varkappa_{3}} + \mathcal{L}^{x^{3},x^{1}}L_{\varkappa_{3}^{*}}R_{\varkappa_{1}} + \mathcal{L}^{x^{3},x^{2}}L_{\varkappa_{3}^{*}}R_{\varkappa_{2}} + \mathcal{L}^{x^{3},x^{3}}L_{\varkappa_{3}^{*}}R_{\varkappa_{3}}, \mathcal{L}^{\zeta,\xi} = \mathcal{L}^{x^{1},\xi}L_{\varkappa_{1}^{*}} + \mathcal{L}^{x^{2},\xi}L_{\varkappa_{2}^{*}} + \mathcal{L}^{x^{3},\xi}L_{\varkappa_{3}^{*}},$$

where $L_b, R_b : \mathcal{B} \to \mathcal{B}$ are the left and the right multiplication operators for $b \in \mathcal{B}$. Proposition 3.1 from [5] is quoted here as

PROPOSITION 2.2. Let \mathcal{U} be the set of all continuous units on a product system E. The relation ρ on \mathcal{U} defined by

$$x \rho y \Leftrightarrow \{x, y\}$$
 is a continuous set

is an equivalence relation.

Thus, the set of all continuous units on some product system can be decomposed into mutually disjoint collection of maximal continuous sets.

Let E be a product system over a unital C^* -algebra \mathcal{B} with at least one continuous unit. (In view of [9, Definition 4.4] this means that E is non type III product system.) Further, let ω be an arbitrary continuous unit in E and let $\mathcal{U} = \mathcal{U}_{\omega}$ be the set of all uniformly continuous units that are equivalent to ω . (That refers to the equivalence relation ρ on \mathcal{U} defined in Proposition 2.2.) As it can be seen in [5], the addition and multiplication by $b \in \mathcal{B}$ on \mathcal{U}_{ω} are defined by

(2.2)
$$x + y = x \boxplus y \boxplus -\omega, \quad b \cdot x = bx \boxplus (1-b)\omega, \quad x \cdot b = xb \boxplus \omega(1-b),$$

and the kernels of x + y, $x \cdot a$, $a \cdot x$ are

(2.3)
$$\begin{aligned} \mathcal{L}^{x+y,x+y} &= \mathcal{L}^{x,x} + \mathcal{L}^{x,y} - \mathcal{L}^{x,\omega} + \mathcal{L}^{y,x} + \mathcal{L}^{y,y} - \mathcal{L}^{y,\omega} - \mathcal{L}^{\omega,x} - \mathcal{L}^{\omega,y} + \mathcal{L}^{\omega,\omega}, \\ \mathcal{L}^{x+y,\xi} &= \mathcal{L}^{x,\xi} + \mathcal{L}^{y,\xi} - \mathcal{L}^{\omega,\xi}, \end{aligned}$$

$$\begin{aligned} \mathcal{L}^{x \cdot a, x \cdot a} &= a^* \mathcal{L}^{x, x} a + (1-a)^* \mathcal{L}^{\omega, x} a + a^* \mathcal{L}^{x, \omega} (1-a) + (1-a)^* \mathcal{L}^{\omega, \omega} (1-a), \\ \mathcal{L}^{x \cdot a, \xi} &= a^* \mathcal{L}^{x, \xi} + (1-a)^* \mathcal{L}^{\omega, \xi}, \qquad \xi \in \mathcal{U}, \end{aligned}$$

(2.5)
$$\begin{aligned} \mathcal{L}^{a\cdot x,a\cdot x} &= \mathcal{L}^{x,x} L_{a^*} R_a + \mathcal{L}^{\omega,x} L_{1-a^*} R_a + \mathcal{L}^{x,\omega} L_{a^*} R_{1-a} + \mathcal{L}^{\omega,\omega} L_{1-a^*} R_{1-a}, \\ \mathcal{L}^{a\cdot x,\xi} &= \mathcal{L}^{x,\xi} L_{a^*} + \mathcal{L}^{\omega,\xi} L_{1-a^*}, \qquad \xi \in \mathcal{U}, \end{aligned}$$

where $L_b, R_b : \mathcal{B} \to \mathcal{B}$ are the left and right multiplication operators for $b \in \mathcal{B}$.

REMARK 2.2. For $x, y \in \mathcal{U}_{\omega}, x - y = x \boxplus (-y) \boxplus \omega$.

According to [5, Theorem 3.2], the set \mathcal{U} with respect to the operations defined by (2.2) is a left-right \mathcal{B} - \mathcal{B} module.

In [5] it was proved that the mapping $\langle \cdot, \cdot \rangle_1 : \mathcal{U} \times \mathcal{U} \to \mathcal{B}$ given by

(2.6)
$$\langle x, y \rangle_1 = (\mathcal{L}^{x,y} - \mathcal{L}^{x,\omega} - \mathcal{L}^{\omega,y} + \mathcal{L}^{\omega,\omega})(1)$$

(ω is the same as in (2.2)) is a \mathcal{B} -valued semi-inner product (in the sense that it can be degenerate, i.e., $\langle x, x \rangle_1 = 0$ need not imply x = 0 and that it satisfies all the customary properties:

(a) For all $x, y, z \in \mathcal{U}$, and $\alpha, \beta \in \mathbb{C} \langle x, \alpha y + \beta z \rangle_1 = \alpha \langle x, y \rangle_1 + \beta \langle x, z \rangle_1$;

(b) For all $x, y \in \mathcal{U}, a \in \mathcal{B} \langle x, y \cdot a \rangle_1 = \langle x, y \rangle_1 a$; (c) For all $x, y \in \mathcal{U} \langle x, y \rangle_1 = \langle y, x \rangle_1^*$;

(d) For all $x \in \mathcal{U} \langle x, x \rangle_1 \ge 0$.

Also, the set $N = \{x \in \mathcal{U} \mid \langle x, x \rangle_1 = 0\}$ is a submodule of \mathcal{U} and \mathcal{U}/N is a pre-Hilbert left-right \mathcal{B} - \mathcal{B} module.

3. The result

The definition of the index of the product system with at least one continuous unit, given in [5], is quoted here as

DEFINITION 3.1. Let E be a product system, and let ω be a continuous unit on E. The index of a pair (E, ω) is the completion of pre-Hilbert left-right module $\mathcal{U}/_{\sim}$, where $\mathcal{U} = \mathcal{U}_{\omega}$ is the maximal continuous set of units containing ω , and \sim is the equivalence relation defined by $x \sim y$ if and only if $x - y \in N$ where N is the set mentioned at the end of Section 2. Naturally, the index will be denoted by $\operatorname{ind}(E,\omega).$

REMARK 3.1. If $\{\omega, \omega'\}$ is a continuous set, then $\operatorname{ind}(E, \omega) \cong \operatorname{ind}(E, \omega')$. Indeed, then $\mathcal{U}_{\omega} = \mathcal{U}_{\omega'}$ and the isometric isomorphism is given by translation $x \mapsto x \boxplus -\omega \boxplus \omega'$. Therefore, $\operatorname{ind}(E, \omega)$ is independent on the choice of ω in the same continuous set of units.

The index of the product systems with at least one continuous unit may also be defined in a different way and we prove that these two definitions are equivalent. In detail, let E be a product system and let \mathcal{U} be a continuous set of units in E. Consider the \mathcal{B} -bimodule \mathcal{BUB} where \mathcal{BUB} is the set of all formal sums $\sum_i a_i x_i b_i$, $x_i \in \mathcal{U}, a_i, b_i \in \mathcal{B}$ with identification subject to the relations

 $\begin{array}{l} (\lambda a)xb \sim ax(\lambda b) \ (\lambda \in \mathbb{C}), \ (a_1 + a_2)xb \sim a_1xb + a_2xb, \ ax(b_1 + b_2) \sim axb_1 + axb_2. \\ \text{For } c \in \mathcal{B}, \ \left(\sum_i a_ix_ib_i\right)c = \sum_i a_ix_i(b_ic) \ \text{and} \ c\left(\sum_i a_ix_ib_i\right) = \sum_i (ca_i)x_ib_i. \\ \text{Consider } \mathcal{B}\text{-subbimodule} \ (\mathcal{BUB})_0 = \left\{\sum_i a_ix_ib_i \in \mathcal{BUB} \mid \sum_i a_ib_i = 0\right\} \ \text{and} \ \text{define} \\ \text{the map} \ \langle\cdot,\cdot\rangle : \ (\mathcal{BUB})_0 \times (\mathcal{BUB})_0 \to \mathcal{B} \ \text{by} \end{array}$

(3.1)
$$\left\langle \sum_{i} a_i x_i b_i, \sum_{j} a'_j x'_j b'_j \right\rangle = \sum_{i,j} b^*_i \mathcal{L}^{x_i, x'_j}(a^*_i a'_j) b'_j.$$

LEMMA 3.1. The map (3.1) satisfies the following properties: (a) For all $a_i, b_i, c_i, c'_i, d_i, d'_i \in \mathcal{B}, x_i, y_i, y'_i \in \mathcal{U}, \alpha, \beta \in \mathbb{C}$

$$\left\langle \sum_{i} a_{i} x_{i} b_{i}, \alpha \sum_{i} c_{i} y_{i} d_{i} + \beta \sum_{i} c_{i}' y_{i}' d_{i}' \right\rangle$$
$$= \alpha \left\langle \sum_{i} a_{i} x_{i} b_{i}, \sum_{i} c_{i} y_{i} d_{i} \right\rangle + \beta \left\langle \sum_{i} a_{i} x_{i} b_{i}, \sum_{i} c_{i}' y_{i}' d_{i}' \right\rangle;$$

(b) For all $a_i, a'_i, b_i, b'_i \in \mathcal{B}, x_i, x'_i \in \mathcal{U}, c \in \mathcal{B}$

$$\left\langle \sum_{i} a_{i}x_{i}b_{i}, \left(\sum_{i} a_{i}'x_{i}'b_{i}'\right)c\right\rangle = \left\langle \sum_{i} a_{i}x_{i}b_{i}, \sum_{i} a_{i}'x_{i}'b_{i}'\right\rangle c;$$

(c) For all $a_i, a'_i, b_i, b'_i \in \mathcal{B}, x_i, x'_i \in \mathcal{U}$

$$\left\langle \sum_{i} a_{i} x_{i} b_{i}, \sum_{i} a_{i}' x_{i}' b_{i}' \right\rangle = \left\langle \sum_{i} a_{i}' x_{i}' b_{i}', \sum_{i} a_{i} x_{i} b_{i} \right\rangle^{*}$$

(d) For all $a_i, b_i \in \mathcal{B}, x_i \in \mathcal{U} \left\langle \sum_i a_i x_i b_i, \sum_i a_i x_i b_i \right\rangle \ge 0.$

PROOF. (a), (b) are easy to check. For (c) use (1.2) and (d) follows since \mathcal{L} is conditionally CPD (1.1).

From the previous lemma, the Causchy–Schwartz inequality can be derived (see [7, Proposition 1.2.4]):

$$\left\langle \sum_{i} a_{i}x_{i}b_{i}, \sum_{i} a_{i}'x_{i}'b_{i}' \right\rangle \left\langle \sum_{i} a_{i}x_{i}b_{i}, \sum_{i} a_{i}'x_{i}'b_{i}' \right\rangle^{*} \\ \leqslant \left\langle \sum_{i} a_{i}x_{i}b_{i}, \sum_{i} a_{i}x_{i}b_{i} \right\rangle \left\| \left\langle \sum_{i} a_{i}'x_{i}'b_{i}', \sum_{i} a_{i}'x_{i}'b_{i}' \right\rangle \right\|$$

VUJOŠEVIĆ

It follows that the set $\mathcal{N} = \{\sum_i a_i x_i b_i \in (\mathcal{BUB})_0 \mid \langle \sum_i a_i x_i b_i, \sum_i a_i x_i b_i \rangle = 0\}$ is equal to $\{\sum_i a_i x_i b_i \in (\mathcal{BUB})_0 \mid \forall \sum_i a'_i x'_i b'_i \in (\mathcal{BUB})_0, \langle \sum_i a_i x_i b_i, \sum_i a'_i x'_i b'_i \rangle = 0\}$. So, \mathcal{N} is a submodule of $(\mathcal{BUB})_0$ and $(\mathcal{BUB})_0/\mathcal{N}$ is a pre-Hilbert left-right \mathcal{B} - \mathcal{B} module.

THEOREM 3.1. Let *E* be a product system over a unital *C*^{*}-algebra *B*. Let ω be an arbitrary continuous unit in *E* and let *U* be the maximal continuous set of units containing ω . The mapping $f: \mathcal{U}/_{\sim} \to (\mathcal{BUB})_0/\mathcal{N}$ defined by $f([y]) = y - \omega + \mathcal{N}$ is an isomorphism between pre-Hilbert \mathcal{B} - \mathcal{B} module $\mathcal{U}/_{\sim}$ introduced in Definition 3.1 and pre-Hilbert \mathcal{B} - \mathcal{B} module $(\mathcal{BUB})_0/\mathcal{N}$.

PROOF. Let $y, y' \in \mathcal{U}$ and $y \sim y'$, i.e., $\langle y - y', y - y' \rangle_1 = 0$ (the substraction is as in Remark 2.2). For $1y_1 + (-1)y'_1 \in (\mathcal{BUB})_0$ we also write $y - y' \in (\mathcal{BUB})_0$. By (3.1) there holds

$$\langle y - y', y - y' \rangle = \mathcal{L}^{y,y}(1) - \mathcal{L}^{y,y'}(1) - \mathcal{L}^{y',y}(1) + \mathcal{L}^{y',y'}(1),$$

and also, by (2.6) and (2.1),

$$\begin{split} \langle y - y', y - y' \rangle_1 &= \langle y \boxplus (-y') \boxplus \omega, y \boxplus (-y') \boxplus \omega \rangle_1 \\ &= \mathcal{L}^{y,y}(1) - \mathcal{L}^{y,y'}(1) - \mathcal{L}^{y',y}(1) + \mathcal{L}^{y',y'}(1). \end{split}$$

Therefore, $y - y' \in \mathcal{N}$ which means that f is well defined. Let $[y], [z] \in \mathcal{U}/_{\sim}$.

$$\begin{split} \langle f([y]), f([z]) \rangle_{(\mathcal{BUB})_0/\mathcal{N}} &= \langle y - \omega + \mathcal{N}, z - \omega + \mathcal{N} \rangle_{(\mathcal{BUB})_0/\mathcal{N}} = \langle y - \omega, z - \omega \rangle \\ &= \mathcal{L}^{y,z}(1) - \mathcal{L}^{\omega,z}(1) - \mathcal{L}^{y,\omega}(1) + \mathcal{L}^{\omega,\omega}(1) \\ &= \langle y, z \rangle_1 = \langle [y], [z] \rangle_{\mathcal{U}/\sim} \,, \end{split}$$

so f is an isometry. For the surjectivity of f, it needs to be proved that for all $\sum_i a_i x_i b_i + \mathcal{N}$ in $(\mathcal{BUB})_0/\mathcal{N}$ there exists $[y] \in \mathcal{U}/_{\sim}$ such that $\sum_i a_i x_i b_i - y + \omega \in \mathcal{N}$. The mapping $t \mapsto \omega_t + \sum_i a_i x_{i,t} b_i$ satisfies all the assumptions of Proposition 2.1 and let us denote the resulting unit by ζ . The kernels of ζ are given by

$$\mathcal{L}^{\zeta,\zeta}(b) = \mathcal{L}^{\omega,\omega}(b) + \sum_{i} b_{i}^{*} \mathcal{L}^{x_{i},\omega}(a_{i}^{*}b) + \sum_{i} \mathcal{L}^{\omega,x_{i}}(ba_{i})b_{i} + \sum_{i,j} b_{i}^{*} \mathcal{L}^{x_{i},x_{j}}(a_{i}^{*}ba_{j})b_{j},$$

$$(3.2) \qquad \qquad \mathcal{L}^{\zeta,\xi}(b) = \mathcal{L}^{\omega,\xi}(b) + \sum_{i} b_{i}^{*} \mathcal{L}^{x_{i},\xi}(a_{i}^{*}b), \quad \xi \in \mathcal{U}, \ b \in \mathcal{B}.$$

By (3.1), (3.2), (1.2) it follows $\langle \sum_i a_i x_i b_i - \zeta + \omega, \sum_i a_i x_i b_i - \zeta + \omega \rangle = 0$. Therefore, $\sum_i a_i x_i b_i - \zeta + \omega \in \mathcal{N}$ and $f([\zeta]) = \sum_i a_i x_i b_i + \mathcal{N}$. Let $[x], [y] \in \mathcal{U}/_{\sim}$. Denote $\zeta = x + y \in \mathcal{U}$ (the addition is as in (2.2)). By (3.1), (2.3), (1.2) it follows that $\langle \zeta - x - y + \omega, \zeta - x - y + \omega \rangle = 0$ which means $\zeta - x - y + \omega \in \mathcal{N}$. Therefore,

$$f([x] + [y]) = f([x + y]) = \zeta - \omega + \mathcal{N} = x - \omega + y - \omega + \mathcal{N} = f([x]) + f([y]).$$

Let $[x] \in \mathcal{U}/_{\sim}$ and $b \in \mathcal{B}$. Denote $\eta = x \cdot b \in \mathcal{U}$ and $\mu = b \cdot x \in \mathcal{U}$ (the multiplication is as in (2.2)). By (3.1), (2.4), (2.5), (1.2) it follows that

$$\begin{split} \langle \eta - \omega - xb + \omega b, \eta - \omega - xb + \omega b \rangle &= 0, \\ \langle \mu - \omega - bx + b \omega, \mu - \omega - bx + b \omega \rangle &= 0, \end{split}$$

hence $\eta - \omega - xb + \omega b \in \mathcal{N}$ and $\mu - \omega - bx + b\omega \in \mathcal{N}$. Therefore,

$$\begin{aligned} f([x] \cdot b) &= f([x \cdot b]) = \eta - \omega + \mathcal{N} = xb - \omega b + \mathcal{N} = f([x])b, \\ f(b \cdot [x]) &= f([b \cdot x]) = \mu - \omega + \mathcal{N} = bx - b\omega + \mathcal{N} = bf([x]). \end{aligned}$$

55

COROLLARY 3.1. Let E be a product system over a unital C^* -algebra \mathcal{B} . Let ω be an arbitrary continuous unit in E and let \mathcal{U} be the maximal continuous set of units containing ω . The index of E may also be defined as the completion of pre-Hilbert left-right $\mathcal{B} - \mathcal{B}$ module $(\mathcal{BUB})_0/\mathcal{N}$.

REMARK 3.2. Let E be an Arveson product system, i.e., E is a product system with $\mathcal{B} = \mathbb{C}$, and let \mathcal{U} be the set of its units. As it can be found in [2], for $x, y \in \mathcal{U}$ there exists a unique complex number c(x, y) satisfying $\langle x_t, y_t \rangle = e^{tc(x,y)}$. The function $c: \mathcal{U} \times \mathcal{U} \to \mathbb{C}$ is the covariance function of E. It is conditionally positive definite and there holds

(3.3)
$$\mathcal{L}^{x,y}(1) = \lim_{t \to 0} \frac{\langle x_t, y_t \rangle - 1}{t} = \lim_{t \to 0} \frac{e^{tc(x,y)} - 1}{t} = c(x,y).$$

Since all $\mathcal{L}^{x,y}$ are \mathbb{C} -linear, the \mathcal{B} -bimodule \mathcal{BUB} is reduced to the complex vector space \mathbb{CU} consisting of all formal sums $\sum_i a_i x_i$ with $a_i \in \mathbb{C}, x_i \in \mathcal{U}$ and its \mathcal{B} -subbimodule $(\mathcal{BUB})_0$ is reduced to $(\mathbb{CU})_0 = \{\sum_i a_i x_i \in \mathbb{CU} \mid \sum_i a_i = 0\}$. Using (3.3), it follows

(3.4)
$$\left\langle \sum_{i} a_{i} x_{i}, \sum_{i} a'_{i} x'_{i} \right\rangle = \sum_{i,j} \mathcal{L}^{x_{i}, x'_{j}} (\overline{a_{i}} a'_{j})$$
$$= \sum_{i,j} \mathcal{L}^{x_{i}, x'_{j}} (1) \overline{a_{i}} a'_{j} = \sum_{i,j} c(x_{i}, x'_{j}) \overline{a_{i}} a'_{j}.$$

According to Corollary 3.1, the index of E is the completion of the inner product space $(\mathbb{C}\mathcal{U})_0/\mathcal{N}$ where $\mathcal{N} = \{\sum_i a_i x_i \in (\mathbb{C}\mathcal{U})_0 \mid \langle \sum_i a_i x_i, \sum_i a_i x_i \rangle = 0\}$. That definition of the index corresponds to the one previously given by Arveson in [2]. In detail, following the notation in [2], $\mathbb{C}_0\mathcal{U}$ is the complex vector space consisting of all finitely nonzero functions $f : \mathcal{U} \to \mathbb{C}$ satisfying $\sum_x f(x) = 0$. There is a mapping $\langle \cdot, \cdot \rangle : \mathbb{C}_0\mathcal{U} \times \mathbb{C}_0\mathcal{U} \to \mathbb{C}$ defined by

(3.5)
$$\langle f,g\rangle = \sum_{x,y\in\mathcal{U}} c(x,y)\overline{f(x)}g(y).$$

,

If $N = \{f \mid \langle f, f \rangle = \sum_{x,y} c(x,y) \overline{f(x)} f(y) = 0\}$, the mapping (3.5) is an inner product on $(\mathbb{C}_0 \mathcal{U})/N$ and the index of E is defined as dimension of the completion of $(\mathbb{C}_0 \mathcal{U})/N$. A basis for $\mathbb{C}_0 \mathcal{U}$ is given by the set $\{\delta_x \mid x \in \mathcal{U}\}$ where $\delta_x(x) = 1$ and $\delta_x(y) = 0, \forall y \neq x$. The mapping $x \mapsto \delta_x$ is a bijection between \mathcal{U} and the basis vectors $\{\delta_x \mid x \in \mathcal{U}\}$, hence \mathcal{U} may be considered as a linearly independent basis for $\mathbb{C}_0 \mathcal{U}$. Therefore, every $f \in \mathbb{C}_0 \mathcal{U}$ may be written in the form $f = \sum_i a_i x_i$ where $a_i = f(x_i) \in \mathbb{C}, x_i \in \mathcal{U}$. Consequently, we may identify $(\mathbb{C}\mathcal{U})_0$ and $\mathbb{C}_0\mathcal{U}, \mathcal{N}$ and Nand the mappings in (3.4) and (3.5).

VUJOŠEVIĆ

The final conclusion is that, according to Corollary 3.1, the index of Arveson product system E may also be defined as the completion of the inner product space $\mathcal{U}/_{\sim}$, where \sim is the equivalence relation introduced in Definition 3.1.

References

- 1. W. Arveson, *Continous analogues of Fock space*, Mem. Am. Math. Soc. **80** (1989) no. 409, iv+66 pp.
- 2. _____, Noncommutative Dynamics and E-Semigroups, Springer, 2003
- 3. S.D. Barreto, B.V.R. Bhat, V. Liebscher, M. Skeide, Type I product systems of Hilbert modules, J. Funct. Anal. 212 (2004) 121–181
- 4. B. V. R. Bhat, M. Skeide, Tensor product systems of Hilbert modules and dilations of completely positive semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000) 519–575
- 5. D.J. Kečkić, B. Vujošević, On the index of product systems of Hilbert modules, Filomat, to appear, ArXiv:1111.1935v1 [math.OA] 8 Nov 2011.
- V. Liebscher, M. Skeide, Constructing units in product systems, Proc. Am. Math. Soc. 136 (2008) 989–997
- 7. V. M. Manuilov, E. V. Troitsky, Hilbert C*-Modules, American Mathematical Society, 2005
- 8. M. Skeide, Dilations, product systems and weak dilations, Math. Notes 71 (2002), 914–923
- 9. _____, Dilation theory and continuous tensor product systems of Hilbert modules, PQÂŰQP: Quantum Probability and White Noise Analysis XV (2003) World Scientific
- 10. (2011), Classification of E_0 -semigroups by product systems, Preprint, ArXiv: 0901.1798v3
- <u>_____</u>, The index of (white) noises and their product systems, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006) 617–655

Faculty of Mathematics University of Belgrade Belgrade Serbia bvujosevic@matf.bg.ac.rs (Received 19 07 2014)