THE INDEX OF PRODUCT SYSTEMS OF HILBERT MODULES: TWO EQUIVALENT DEFINITIONS

Biljana Vujošević

Abstract

We prove that a conditionally completely positive definite kernel, as the generator of completely positive definite (CPD) semigroup associated with a continuous set of units for a product system over a C^{*}-algebra \mathcal{B}, allows a construction of a Hilbert $\mathcal{B}-\mathcal{B}$ module. That construction is used to define the index of the initial product system. It is proved that such definition is equivalent to the one previously given by Kečkić and Vujošević [On the index of product systems of Hilbert modules, Filomat, to appear, ArXiv:1111.1935v1 [math.OA] 8 Nov 2011]. Also, it is pointed out that the new definition of the index corresponds to the one given earlier by Arveson (in the case $\mathcal{B}=\mathbb{C}$).

1. Introduction

Product systems over \mathbb{C} have been studied during last several decades in connection with E_{0}-semigroups acting on a type I factor. Although the main problem of classification of all nonisomorphic product systems is still open, this theory is well developed. The reader is referred to [2] and references therein. In the present century there are some significant results that generalize this theory to product systems over a C^{*}-algebra \mathcal{B}, either in connection with E_{0} semigroups (see [8, 10]) or in connection with quantum probability dynamics (see [4, [3, 9).

There are many difficulties in generalizing the notion of the index of a product system introduced in [1] to this more general concept. Up to our knowledge there are attempts in this direction done in 11 and recently in 5 .

Here we give another definition of the index of product systems of Hilbert $\mathcal{B}-\mathcal{B}$ modules and show that it is equivalent to the one previously given in 5. Also, we point out that the new definition of index corresponds to the one given by Arveson (in the case $\mathcal{B}=\mathbb{C}$).

Throughout the paper \mathcal{B} will denote a unital C^{*}-algebra and 1 will denote its unit.

The rest of Section 1 is devoted to basic definitions.

[^0]Definition 1.1. a) A product system over C^{*}-algebra \mathcal{B} is a family $\left(E_{t}\right)_{t \geqslant 0}$ of Hilbert $\mathcal{B}-\mathcal{B}$ modules, with $E_{0} \cong \mathcal{B}$, and a family of (unitary) isomorphisms $\varphi_{t, s}$: $E_{t} \otimes E_{s} \rightarrow E_{t+s}$, where \otimes stands for the so called inner tensor product obtained by identifications $u b \otimes v \sim u \otimes b v, u \otimes v b \sim(u \otimes v) b, b u \otimes v \sim b(u \otimes v),\left(u \in E_{t}, v \in E_{s}\right.$, $b \in \mathcal{B})$ and then completing in the inner product $\left\langle u \otimes v, u_{1} \otimes v_{1}\right\rangle=\left\langle v,\left\langle u, u_{1}\right\rangle v_{1}\right\rangle ;$
b) Unit on E is a family $u_{t} \in E_{t}, t \geqslant 0$, such that $u_{0}=1$ and $\varphi_{t, s}\left(u_{t} \otimes u_{s}\right)=$ u_{t+s}, which will be abbreviated to $u_{t} \otimes u_{s}=u_{t+s}$. A unit u_{t} is unital if $\left\langle u_{t}, u_{t}\right\rangle=1$. It is central if for all $b \in \mathcal{B}$ and all $t \geqslant 0$ there holds $b u_{t}=u_{t} b$;

Definition 1.2. Two units u_{t} and v_{t} give rise to the family of mappings $\mathcal{K}_{t}^{u, v}$: $\mathcal{B} \rightarrow \mathcal{B}$, given by $\mathcal{K}_{t}^{u, v}(b)=\left\langle u_{t}, b v_{t}\right\rangle$. All $\mathcal{K}_{t}^{u, v}$ are bounded \mathbb{C}-linear operators on \mathcal{B}, and this family forms a semigroup. The set of units S is continuous if the corresponding semigroup $\left(K_{t}^{\xi, \eta}\right)_{\xi, \eta \in S}$ (with respect to Schur multiplying) is uniformly continuous. A single unit u_{t} is uniformly continuous, or briefly just continuous, if the set $\{u\}$ is continuous, that is, the corresponding family $\mathcal{K}_{t}^{u, u}$ is continuous in the norm of the space $B(\mathcal{B})$ (the algebra of all bounded \mathbb{C}-linear operators on \mathcal{B}).

As it can be seen in [3, for a (uniformly) continuous set of units \mathcal{U}, there can be formed a uniformly continuous completely positive definite semigroup (CPDsemigroup further on) $\mathcal{K}=\left(\mathcal{K}_{t}\right)_{t \in \mathbb{R}_{+}}$.

Denote by $\mathcal{L}=\left.\frac{d}{d t} \mathcal{K}\right|_{t=0}$ the generator of CPD-semigroup \mathcal{K}. It is well known [3] that \mathcal{L} is conditionally completely positive definite, that is, for all finite n-tuples $x_{1}, \ldots, x_{n} \in \mathcal{U}$ and for all $a_{j}, b_{j} \in \mathcal{B}$ there holds

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j} b_{j}=0 \Longrightarrow \sum_{i, j=1}^{n} b_{i}^{*} \mathcal{L}^{x_{i}, x_{j}}\left(a_{i}^{*} a_{j}\right) b_{j} \geqslant 0 \tag{1.1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\mathcal{L}^{y, x}(b)=\mathcal{L}^{x, y}\left(b^{*}\right)^{*} . \tag{1.2}
\end{equation*}
$$

It is known that \mathcal{K} is uniquely determined by \mathcal{L}. More precisely, \mathcal{K} can be recovered from \mathcal{L} by $\mathcal{K}=e^{t \mathcal{L}}$ using the Schur product, i.e., $\mathcal{K}_{t}^{x, y}(b)=\left\langle x_{t}, b y_{t}\right\rangle=$ $\left(\exp t \mathcal{L}^{x, y}\right)(b)$.

Remark 1.1. One should distinguish the continuous set of units from the set of continuous units. In the second case only $\mathcal{K}_{t}^{\xi, \xi}$ should be uniformly continuous for $\xi \in S$, whereas in the first case all $\mathcal{K}_{t}^{\xi, \eta}$ should be uniformly continuous.

In Section 2 the auxiliary statements, that are necessary for the proofs of the main result, are listed. In Section 3 another definition of the index of product systems of Hilbert $\mathcal{B}-\mathcal{B}$ modules is obtained and the equivalency with the one previously given in 5 is proved. Also, it is pointed out that the new definition of the index corresponds to the one given by Arveson (in the case $\mathcal{B}=\mathbb{C}$).

2. Preliminary results

In [6], Liebscher and Skeide introduce an interesting way to obtain new units in a given product system. The results are stated in Lemma 3.1, Proposition 3.3 and Lemma 3.4 of the mentioned paper and here they are quoted as

Proposition 2.1. a) Suppose that a continuous set S of units generates a product system E. Let $t \mapsto y_{t} \in E_{t}$ be a mapping (not necessarily unit), with K and $K_{\xi} \in B(\mathcal{B})(\xi \in S)$ such that for all $b \in \mathcal{B}$

$$
\left\langle y_{t}, b y_{t}\right\rangle=b+t K(b)+O\left(t^{2}\right) \quad \text { and } \quad\left\langle y_{t}, b \xi_{t}\right\rangle=b+t K_{\xi}(b)+O\left(t^{2}\right)
$$

Then there exists a product system $F \supseteq E$ and a unit ζ such that $S \cup\{\zeta\}$ is continuous and $\mathcal{L}^{\zeta, \zeta}=K, L^{\zeta, \xi}=K_{\xi}$.
b) The following three conditions are equivalent.
(1) $\zeta \in E$;
(2) ζ can be obtained as the norm limit of the sequence $\left(y_{t / n}\right)^{\otimes n}$;
(3) $\lim _{n \rightarrow \infty}\left\langle\zeta_{t},\left(y_{t / n}\right)^{\otimes n}\right\rangle=\left\langle\zeta_{t}, \zeta_{t}\right\rangle$.

REmARK 2.1. In [6], a more general limit over the filter of all partitions of segment $[0, t]$ was considered instead of $\lim _{n \rightarrow \infty}\left(y_{t / n}\right)^{\otimes n}$. However, such a general context is not necessary here.

The previous proposition is used in [5, Proposition 2.3] to obtain new units in a product system in the following way.

Suppose that a continuous set S of units generates a product system E. Let $x^{j} \in S, \varkappa_{j} \in \mathcal{B}, j=1, \ldots, n$ such that $\sum \varkappa_{j}=1$. Then the functions $t \mapsto$ $\sum_{j=1}^{n} \varkappa_{j} x_{t}^{j}$ and $t \mapsto \sum_{j=1}^{n} x_{t}^{j} \varkappa_{j}$ satisfy all the assumptions of Proposition 2.1 and the resulting units, denoted by $\varkappa_{1} x^{1} \boxplus \cdots \boxplus \varkappa_{n} x^{n}$ and $x^{1} \varkappa_{1} \boxplus \cdots \boxplus x^{n} \varkappa_{n}$, belong to E. For example, the kernels of $\zeta=\varkappa_{1} x^{1} \boxplus \varkappa_{2} x^{2} \boxplus \varkappa_{3} x^{3}$ are

$$
\begin{align*}
& \mathcal{L}^{\zeta, \zeta}=\mathcal{L}^{x^{1}, x^{1}} L_{\varkappa_{1}^{*}} R_{\varkappa_{1}}+\mathcal{L}^{x^{1}, x^{2}} L_{\varkappa_{1}^{*}} R_{\varkappa_{2}}+\mathcal{L}^{x^{1}, x^{3}} L_{\varkappa_{1}^{*}} R_{\varkappa_{3}}+\mathcal{L}^{x^{2}, x^{1}} L_{\varkappa_{2}^{*}} R_{\varkappa_{1}} \\
&+\mathcal{L}^{x^{2}, x^{2}} L_{\varkappa_{2}^{*}} R_{\varkappa_{2}}+\mathcal{L}^{x^{2}, x^{3}} L_{\varkappa_{2}^{*}} R_{\varkappa_{3}}+\mathcal{L}^{x^{3}, x^{1}} L_{\varkappa_{3}^{*}} R_{\varkappa_{1}} \\
&+\mathcal{L}^{x^{3}, x^{2}} L_{\varkappa_{3}^{*}} R_{\varkappa_{2}}+\mathcal{L}^{x^{3}, x^{3}} L_{\varkappa_{3}^{*}} R_{\varkappa_{3}}, \tag{2.1}\\
& \mathcal{L}^{\zeta, \xi}=\mathcal{L}^{x^{1}, \xi} L_{\varkappa_{1}^{*}}+\mathcal{L}^{x^{2}, \xi} L_{\varkappa_{2}^{*}}+\mathcal{L}^{x^{3}, \xi} L_{\varkappa_{3}^{*}},
\end{align*}
$$

where $L_{b}, R_{b}: \mathcal{B} \rightarrow \mathcal{B}$ are the left and the right multiplication operators for $b \in \mathcal{B}$. Proposition 3.1 from [5] is quoted here as

Proposition 2.2. Let \mathcal{U} be the set of all continuous units on a product system E. The relation ρ on \mathcal{U} defined by

$$
x \rho y \Leftrightarrow\{x, y\} \text { is a continuous set }
$$

is an equivalence relation.
Thus, the set of all continuous units on some product system can be decomposed into mutually disjoint collection of maximal continuous sets.

Let E be a product system over a unital C^{*}-algebra \mathcal{B} with at least one continuous unit. (In view of [9, Definition 4.4] this means that E is non type $I I I$ product
system.) Further, let ω be an arbitrary continuous unit in E and let $\mathcal{U}=\mathcal{U}_{\omega}$ be the set of all uniformly continuous units that are equivalent to ω. (That refers to the equivalence relation ρ on \mathcal{U} defined in Proposition [2.2.) As it can be seen in [5], the addition and multiplication by $b \in \mathcal{B}$ on \mathcal{U}_{ω} are defined by

$$
\begin{equation*}
x+y=x \boxplus y \boxplus-\omega, \quad b \cdot x=b x \boxplus(1-b) \omega, \quad x \cdot b=x b \boxplus \omega(1-b), \tag{2.2}
\end{equation*}
$$

and the kernels of $x+y, x \cdot a, a \cdot x$ are

$$
\begin{align*}
\mathcal{L}^{x+y, x+y} & =\mathcal{L}^{x, x}+\mathcal{L}^{x, y}-\mathcal{L}^{x, \omega}+\mathcal{L}^{y, x}+\mathcal{L}^{y, y}-\mathcal{L}^{y, \omega}-\mathcal{L}^{\omega, x}-\mathcal{L}^{\omega, y}+\mathcal{L}^{\omega, \omega} \\
\mathcal{L}^{x+y, \xi} & =\mathcal{L}^{x, \xi}+\mathcal{L}^{y, \xi}-\mathcal{L}^{\omega, \xi} \\
\mathcal{L}^{x \cdot a, x \cdot a} & =a^{*} \mathcal{L}^{x, x} a+(1-a)^{*} \mathcal{L}^{\omega, x} a+a^{*} \mathcal{L}^{x, \omega}(1-a)+(1-a)^{*} \mathcal{L}^{\omega, \omega}(1-a), \\
\mathcal{L}^{x \cdot a, \xi} & =a^{*} \mathcal{L}^{x, \xi}+(1-a)^{*} \mathcal{L}^{\omega, \xi}, \quad \xi \in \mathcal{U} \tag{2.4}\\
\mathcal{L}^{a \cdot x, a \cdot x} & =\mathcal{L}^{x, x} L_{a^{*}} R_{a}+\mathcal{L}^{\omega, x} L_{1-a^{*}} R_{a}+\mathcal{L}^{x, \omega} L_{a^{*}} R_{1-a}+\mathcal{L}^{\omega, \omega} L_{1-a^{*}} R_{1-a}, \\
\mathcal{L}^{a \cdot x, \xi} & =\mathcal{L}^{x, \xi} L_{a^{*}}+\mathcal{L}^{\omega, \xi} L_{1-a^{*}}, \quad \xi \in \mathcal{U} \tag{2.5}
\end{align*}
$$

where $L_{b}, R_{b}: \mathcal{B} \rightarrow \mathcal{B}$ are the left and right multiplication operators for $b \in \mathcal{B}$.
Remark 2.2. For $x, y \in \mathcal{U}_{\omega}, x-y=x \boxplus(-y) \boxplus \omega$.
According to [5. Theorem 3.2], the set \mathcal{U} with respect to the operations defined by (2.2) is a left-right $\mathcal{B}-\mathcal{B}$ module.

In [5] it was proved that the mapping $\langle\cdot, \cdot\rangle_{1}: \mathcal{U} \times \mathcal{U} \rightarrow \mathcal{B}$ given by

$$
\begin{equation*}
\langle x, y\rangle_{1}=\left(\mathcal{L}^{x, y}-\mathcal{L}^{x, \omega}-\mathcal{L}^{\omega, y}+\mathcal{L}^{\omega, \omega}\right)(1) \tag{2.6}
\end{equation*}
$$

(ω is the same as in (2.21) is a \mathcal{B}-valued semi-inner product (in the sense that it can be degenerate, i.e., $\langle x, x\rangle_{1}=0$ need not imply $x=0$) and that it satisfies all the customary properties:
(a) For all $x, y, z \in \mathcal{U}$, and $\alpha, \beta \in \mathbb{C}\langle x, \alpha y+\beta z\rangle_{1}=\alpha\langle x, y\rangle_{1}+\beta\langle x, z\rangle_{1}$;
(b) For all $x, y \in \mathcal{U}, a \in \mathcal{B}\langle x, y \cdot a\rangle_{1}=\langle x, y\rangle_{1} a$;
(c) For all $x, y \in \mathcal{U}\langle x, y\rangle_{1}=\langle y, x\rangle_{1}^{*}$;
(d) For all $x \in \mathcal{U}\langle x, x\rangle_{1} \geqslant 0$.

Also, the set $N=\left\{x \in \mathcal{U} \mid\langle x, x\rangle_{1}=0\right\}$ is a submodule of \mathcal{U} and \mathcal{U} / N is a pre-Hilbert left-right $\mathcal{B}-\mathcal{B}$ module.

3. The result

The definition of the index of the product system with at least one continuous unit, given in [5], is quoted here as

Definition 3.1. Let E be a product system, and let ω be a continuous unit on E. The index of a pair (E, ω) is the completion of pre-Hilbert left-right module \mathcal{U} / \sim, where $\mathcal{U}=\mathcal{U}_{\omega}$ is the maximal continuous set of units containing ω, and \sim is the equivalence relation defined by $x \sim y$ if and only if $x-y \in N$ where N is the set mentioned at the end of Section 2, Naturally, the index will be denoted by $\operatorname{ind}(E, \omega)$.

REmARK 3.1. If $\left\{\omega, \omega^{\prime}\right\}$ is a continuous set, then $\operatorname{ind}(E, \omega) \cong \operatorname{ind}\left(E, \omega^{\prime}\right)$. Indeed, then $\mathcal{U}_{\omega}=\mathcal{U}_{\omega^{\prime}}$ and the isometric isomorphism is given by translation $x \mapsto x \boxplus-\omega \boxplus \omega^{\prime}$. Therefore, $\operatorname{ind}(E, \omega)$ is independent on the choice of ω in the same continuous set of units.

The index of the product systems with at least one continuous unit may also be defined in a different way and we prove that these two definitions are equivalent. In detail, let E be a product system and let \mathcal{U} be a continuous set of units in E. Consider the \mathcal{B}-bimodule $\mathcal{B U B}$ where $\mathcal{B U B}$ is the set of all formal sums $\sum_{i} a_{i} x_{i} b_{i}$, $x_{i} \in \mathcal{U}, a_{i}, b_{i} \in \mathcal{B}$ with identification subject to the relations
$(\lambda a) x b \sim a x(\lambda b)(\lambda \in \mathbb{C}),\left(a_{1}+a_{2}\right) x b \sim a_{1} x b+a_{2} x b, a x\left(b_{1}+b_{2}\right) \sim a x b_{1}+a x b_{2}$.
For $c \in \mathcal{B},\left(\sum_{i} a_{i} x_{i} b_{i}\right) c=\sum_{i} a_{i} x_{i}\left(b_{i} c\right)$ and $c\left(\sum_{i} a_{i} x_{i} b_{i}\right)=\sum_{i}\left(c a_{i}\right) x_{i} b_{i}$. Also consider \mathcal{B}-subbimodule $(\mathcal{B U B})_{0}=\left\{\sum_{i} a_{i} x_{i} b_{i} \in \mathcal{B U B} \mid \sum_{i} a_{i} b_{i}=0\right\}$ and define the map $\langle\cdot, \cdot\rangle:(\mathcal{B U B})_{0} \times(\mathcal{B U B})_{0} \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{j} a_{j}^{\prime} x_{j}^{\prime} b_{j}^{\prime}\right\rangle=\sum_{i, j} b_{i}^{*} \mathcal{L}^{x_{i}, x_{j}^{\prime}}\left(a_{i}^{*} a_{j}^{\prime}\right) b_{j}^{\prime} \tag{3.1}
\end{equation*}
$$

Lemma 3.1. The map (3.1) satisfies the following properties:
(a) For all $a_{i}, b_{i}, c_{i}, c_{i}^{\prime}, d_{i}, d_{i}^{\prime} \in \mathcal{B}, x_{i}, y_{i}, y_{i}^{\prime} \in \mathcal{U}, \alpha, \beta \in \mathbb{C}$

$$
\begin{aligned}
\left\langle\sum_{i} a_{i} x_{i} b_{i}, \alpha \sum_{i} c_{i} y_{i} d_{i}\right. & \left.+\beta \sum_{i} c_{i}^{\prime} y_{i}^{\prime} d_{i}^{\prime}\right\rangle \\
& =\alpha\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} c_{i} y_{i} d_{i}\right\rangle+\beta\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} c_{i}^{\prime} y_{i}^{\prime} d_{i}^{\prime}\right\rangle
\end{aligned}
$$

(b) For all $a_{i}, a_{i}^{\prime}, b_{i}, b_{i}^{\prime} \in \mathcal{B}, x_{i}, x_{i}^{\prime} \in \mathcal{U}, c \in \mathcal{B}$

$$
\left\langle\sum_{i} a_{i} x_{i} b_{i},\left(\sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime}\right) c\right\rangle=\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime}\right\rangle c
$$

(c) For all $a_{i}, a_{i}^{\prime}, b_{i}, b_{i}^{\prime} \in \mathcal{B}, x_{i}, x_{i}^{\prime} \in \mathcal{U}$

$$
\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime}\right\rangle=\left\langle\sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime}, \sum_{i} a_{i} x_{i} b_{i}\right\rangle^{*}
$$

(d) For all $a_{i}, b_{i} \in \mathcal{B}, x_{i} \in \mathcal{U}\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} a_{i} x_{i} b_{i}\right\rangle \geqslant 0$.

Proof. (a), (b) are easy to check. For (c) use (1.2) and (d) follows since \mathcal{L} is conditionally CPD (1.1).

From the previous lemma, the Causchy-Schwartz inequality can be derived (see [7. Proposition 1.2.4]):

$$
\begin{aligned}
\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime}\right\rangle & \left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime}\right\rangle^{*} \\
& \leqslant\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} a_{i} x_{i} b_{i}\right\rangle\left\|\left\langle\sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime}, \sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime}\right\rangle\right\|
\end{aligned}
$$

It follows that the set $\mathcal{N}=\left\{\sum_{i} a_{i} x_{i} b_{i} \in(\mathcal{B U B})_{0} \mid\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} a_{i} x_{i} b_{i}\right\rangle=0\right\}$ is equal to $\left\{\sum_{i} a_{i} x_{i} b_{i} \in(\mathcal{B U B})_{0} \mid \forall \sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime} \in(\mathcal{B U B})_{0},\left\langle\sum_{i} a_{i} x_{i} b_{i}, \sum_{i} a_{i}^{\prime} x_{i}^{\prime} b_{i}^{\prime}\right\rangle=0\right\}$. So, \mathcal{N} is a submodule of $(\mathcal{B U B})_{0}$ and $(\mathcal{B U B})_{0} / \mathcal{N}$ is a pre-Hilbert left-right $\mathcal{B}-\mathcal{B}$ module.

Theorem 3.1. Let E be a product system over a unital C^{*}-algebra \mathcal{B}. Let ω be an arbitrary continuous unit in E and let \mathcal{U} be the maximal continuous set of units containing ω. The mapping $f: \mathcal{U} / \sim \rightarrow(\mathcal{B U B})_{0} / \mathcal{N}$ defined by $f([y])=y-\omega+\mathcal{N}$ is an isomorphism between pre-Hilbert $\mathcal{B}-\mathcal{B}$ module \mathcal{U} / \sim introduced in Definition 3.1 and pre-Hilbert $\mathcal{B}-\mathcal{B}$ module $(\mathcal{B U B})_{0} / \mathcal{N}$.

Proof. Let $y, y^{\prime} \in \mathcal{U}$ and $y \sim y^{\prime}$, i.e., $\left\langle y-y^{\prime}, y-y^{\prime}\right\rangle_{1}=0$ (the substraction is as in Remark 2.2). For $1 y 1+(-1) y^{\prime} 1 \in(\mathcal{B U B})_{0}$ we also write $y-y^{\prime} \in(\mathcal{B U B})_{0}$. By (3.1) there holds

$$
\left\langle y-y^{\prime}, y-y^{\prime}\right\rangle=\mathcal{L}^{y, y}(1)-\mathcal{L}^{y, y^{\prime}}(1)-\mathcal{L}^{y^{\prime}, y}(1)+\mathcal{L}^{y^{\prime}, y^{\prime}}(1)
$$

and also, by (2.6) and (2.1),

$$
\begin{aligned}
\left\langle y-y^{\prime}, y-y^{\prime}\right\rangle_{1} & =\left\langle y \boxplus\left(-y^{\prime}\right) \boxplus \omega, y \boxplus\left(-y^{\prime}\right) \boxplus \omega\right\rangle_{1} \\
& =\mathcal{L}^{y, y}(1)-\mathcal{L}^{y, y^{\prime}}(1)-\mathcal{L}^{y^{\prime}, y}(1)+\mathcal{L}^{y^{\prime}, y^{\prime}}(1) .
\end{aligned}
$$

Therefore, $y-y^{\prime} \in \mathcal{N}$ which means that f is well defined. Let $[y],[z] \in \mathcal{U} / \sim$.

$$
\begin{aligned}
\langle f([y]), f([z])\rangle_{(\mathcal{B U B})_{0} / \mathcal{N}} & =\langle y-\omega+\mathcal{N}, z-\omega+\mathcal{N}\rangle_{(\mathcal{B U B})_{0} / \mathcal{N}}=\langle y-\omega, z-\omega\rangle \\
& =\mathcal{L}^{y, z}(1)-\mathcal{L}^{\omega, z}(1)-\mathcal{L}^{y, \omega}(1)+\mathcal{L}^{\omega, \omega}(1) \\
& =\langle y, z\rangle_{1}=\langle[y],[z]\rangle_{\mathcal{U} / \sim},
\end{aligned}
$$

so f is an isometry. For the surjectivity of f, it needs to be proved that for all $\sum_{i} a_{i} x_{i} b_{i}+\mathcal{N}$ in $(\mathcal{B U B})_{0} / \mathcal{N}$ there exists $[y] \in \mathcal{U} / \sim$ such that $\sum_{i} a_{i} x_{i} b_{i}-y+\omega \in \mathcal{N}$. The mapping $t \mapsto \omega_{t}+\sum_{i} a_{i} x_{i, t} b_{i}$ satisfies all the assumptions of Proposition 2.1 and let us denote the resulting unit by ζ. The kernels of ζ are given by

$$
\begin{gathered}
\mathcal{L}^{\zeta, \zeta}(b)=\mathcal{L}^{\omega, \omega}(b)+\sum_{i} b_{i}^{*} \mathcal{L}^{x_{i,}, \omega}\left(a_{i}^{*} b\right)+\sum_{i} \mathcal{L}^{\omega, x_{i}}\left(b a_{i}\right) b_{i}+\sum_{i, j} b_{i}^{*} \mathcal{L}^{x_{i}, x_{j}}\left(a_{i}^{*} b a_{j}\right) b_{j}, \\
\mathcal{L}^{\zeta, \xi}(b)=\mathcal{L}^{\omega, \xi}(b)+\sum_{i} b_{i}^{*} \mathcal{L}^{x_{i, j} \xi}\left(a_{i}^{*} b\right), \quad \xi \in \mathcal{U}, b \in \mathcal{B} .
\end{gathered}
$$

By (3.1), (3.2), (1.2) it follows $\left\langle\sum_{i} a_{i} x_{i} b_{i}-\zeta+\omega, \sum_{i} a_{i} x_{i} b_{i}-\zeta+\omega\right\rangle=0$. Therefore, $\sum_{i} a_{i} x_{i} b_{i}-\zeta+\omega \in \mathcal{N}$ and $f([\zeta])=\sum_{i} a_{i} x_{i} b_{i}+\mathcal{N}$. Let $[x],[y] \in \mathcal{U} / \sim$. Denote $\zeta=x+y \in \mathcal{U}$ (the addition is as in (2.2)). By (3.1), (2.3), (1.2) it follows that $\langle\zeta-x-y+\omega, \zeta-x-y+\omega\rangle=0$ which means $\zeta-x-y+\omega \in \mathcal{N}$. Therefore,

$$
f([x]+[y])=f([x+y])=\zeta-\omega+\mathcal{N}=x-\omega+y-\omega+\mathcal{N}=f([x])+f([y])
$$

Let $[x] \in \mathcal{U} / \sim$ and $b \in \mathcal{B}$. Denote $\eta=x \cdot b \in \mathcal{U}$ and $\mu=b \cdot x \in \mathcal{U}$ (the multiplication is as in (2.2)). By (3.1), (2.4), (2.5), (1.2) it follows that

$$
\begin{aligned}
& \langle\eta-\omega-x b+\omega b, \eta-\omega-x b+\omega b\rangle=0 \\
& \langle\mu-\omega-b x+b \omega, \mu-\omega-b x+b \omega\rangle=0
\end{aligned}
$$

hence $\eta-\omega-x b+\omega b \in \mathcal{N}$ and $\mu-\omega-b x+b \omega \in \mathcal{N}$. Therefore,

$$
\begin{aligned}
& f([x] \cdot b)=f([x \cdot b])=\eta-\omega+\mathcal{N}=x b-\omega b+\mathcal{N}=f([x]) b \\
& f(b \cdot[x])=f([b \cdot x])=\mu-\omega+\mathcal{N}=b x-b \omega+\mathcal{N}=b f([x])
\end{aligned}
$$

Corollary 3.1. Let E be a product system over a unital C^{*}-algebra \mathcal{B}. Let ω be an arbitrary continuous unit in E and let \mathcal{U} be the maximal continuous set of units containing ω. The index of E may also be defined as the completion of pre-Hilbert left-right $\mathcal{B}-\mathcal{B}$ module $(\mathcal{B U B})_{0} / \mathcal{N}$.

Remark 3.2. Let E be an Arveson product system, i.e., E is a product system with $\mathcal{B}=\mathbb{C}$, and let \mathcal{U} be the set of its units. As it can be found in [2], for $x, y \in \mathcal{U}$ there exists a unique complex number $c(x, y)$ satisfying $\left\langle x_{t}, y_{t}\right\rangle=e^{t c(x, y)}$. The function $c: \mathcal{U} \times \mathcal{U} \rightarrow \mathbb{C}$ is the covariance function of E. It is conditionally positive definite and there holds

$$
\begin{equation*}
\mathcal{L}^{x, y}(1)=\lim _{t \rightarrow 0} \frac{\left\langle x_{t}, y_{t}\right\rangle-1}{t}=\lim _{t \rightarrow 0} \frac{e^{t c(x, y)}-1}{t}=c(x, y) . \tag{3.3}
\end{equation*}
$$

Since all $\mathcal{L}^{x, y}$ are \mathbb{C}-linear, the \mathcal{B}-bimodule $\mathcal{B U B}$ is reduced to the complex vector space $\mathbb{C U}$ consisting of all formal sums $\sum_{i} a_{i} x_{i}$ with $a_{i} \in \mathbb{C}, x_{i} \in \mathcal{U}$ and its \mathcal{B}-subbimodule $(\mathcal{B U B})_{0}$ is reduced to $(\mathbb{C U})_{0}=\left\{\sum_{i} a_{i} x_{i} \in \mathbb{C U} \mid \sum_{i} a_{i}=0\right\}$. Using (3.3), it follows

$$
\begin{align*}
\left\langle\sum_{i} a_{i} x_{i}, \sum_{i} a_{i}^{\prime} x_{i}^{\prime}\right\rangle & =\sum_{i, j} \mathcal{L}^{x_{i}, x_{j}^{\prime}}\left(\overline{a_{i}} a_{j}^{\prime}\right) \tag{3.4}\\
& =\sum_{i, j} \mathcal{L}^{x_{i}, x_{j}^{\prime}}(1) \overline{a_{i}} a_{j}^{\prime}=\sum_{i, j} c\left(x_{i}, x_{j}^{\prime}\right) \overline{a_{i}} a_{j}^{\prime} .
\end{align*}
$$

According to Corollary 3.1, the index of E is the completion of the inner product $\operatorname{space}(\mathbb{C U})_{0} / \mathcal{N}$ where $\mathcal{N}=\left\{\sum_{i} a_{i} x_{i} \in(\mathbb{C U})_{0} \mid\left\langle\sum_{i} a_{i} x_{i}, \sum_{i} a_{i} x_{i}\right\rangle=0\right\}$. That definition of the index corresponds to the one previously given by Arveson in [2]. In detail, following the notation in [2] $\mathbb{C}_{0} \mathcal{U}$ is the complex vector space consisting of all finitely nonzero functions $f: \mathcal{U} \rightarrow \mathbb{C}$ satisfying $\sum_{x} f(x)=0$. There is a mapping $\langle\cdot, \cdot\rangle: \mathbb{C}_{0} \mathcal{U} \times \mathbb{C}_{0} \mathcal{U} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
\langle f, g\rangle=\sum_{x, y \in \mathcal{U}} c(x, y) \overline{f(x)} g(y) \tag{3.5}
\end{equation*}
$$

If $N=\left\{f \mid\langle f, f\rangle=\sum_{x, y} c(x, y) \overline{f(x)} f(y)=0\right\}$, the mapping (3.5) is an inner product on $\left(\mathbb{C}_{0} \mathcal{U}\right) / N$ and the index of E is defined as dimension of the completion of $\left(\mathbb{C}_{0} \mathcal{U}\right) / N$. A basis for $\mathbb{C}_{0} \mathcal{U}$ is given by the set $\left\{\delta_{x} \mid x \in \mathcal{U}\right\}$ where $\delta_{x}(x)=1$ and $\delta_{x}(y)=0, \forall y \neq x$. The mapping $x \mapsto \delta_{x}$ is a bijection between \mathcal{U} and the basis vectors $\left\{\delta_{x} \mid x \in \mathcal{U}\right\}$, hence \mathcal{U} may be considered as a linearly independent basis for $\mathbb{C}_{0} \mathcal{U}$. Therefore, every $f \in \mathbb{C}_{0} \mathcal{U}$ may be written in the form $f=\sum_{i} a_{i} x_{i}$ where $a_{i}=f\left(x_{i}\right) \in \mathbb{C}, x_{i} \in \mathcal{U}$. Consequently, we may identify $(\mathbb{C} \mathcal{U})_{0}$ and $\mathbb{C}_{0} \mathcal{U}, \mathcal{N}$ and N and the mappings in (3.4) and (3.5).

The final conclusion is that, according to Corollary 3.1 the index of Arveson product system E may also be defined as the completion of the inner product space \mathcal{U} / \sim, where \sim is the equivalence relation introduced in Definition 3.1 .

References

1. W. Arveson, Continous analogues of Fock space, Mem. Am. Math. Soc. 80 (1989) no. 409, iv +66 pp .
2. \qquad , Noncommutative Dynamics and E-Semigroups, Springer, 2003
3. S. D. Barreto, B. V. R. Bhat, V. Liebscher, M. Skeide, Type I product systems of Hilbert modules, J. Funct. Anal. 212 (2004) 121-181
4. B. V. R. Bhat, M. Skeide, Tensor product systems of Hilbert modules and dilations of completely positive semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000) 519-575
5. D. J. Kečkić, B. Vujošević, On the index of product systems of Hilbert modules, Filomat, to appear, ArXiv:1111.1935v1 [math.OA] 8 Nov 2011.
6. V. Liebscher, M. Skeide, Constructing units in product systems, Proc. Am. Math. Soc. 136 (2008) 989-997
7. V. M. Manuilov, E. V. Troitsky, Hilbert C^{*}-Modules, American Mathematical Society, 2005
8. M. Skeide, Dilations, product systems and weak dilations, Math. Notes 71 (2002), 914-923
9. \qquad , Dilation theory and continuous tensor product systems of Hilbert modules, PQÂÜQP: Quantum Probability and White Noise Analysis XV (2003) World Scientific
10. \qquad Classification of E_{0}-semigroups by product systems, Preprint, ArXiv: 0901.1798v3
\qquad
11. _, The index of (white) noises and their product systems, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006) 617-655

Faculty of Mathematics
(Received 1907 2014)
University of Belgrade
Belgrade
Serbia
bvujosevic@matf.bg.ac.rs

[^0]: 2010 Mathematics Subject Classification: 46L53, 46L55.
 Key words and phrases: product system, Hilbert module, index.
 Communicated by Stevan Pilipović.

