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IRRATIONALITY MEASURES

FOR CONTINUED FRACTIONS

WITH ARITHMETIC FUNCTIONS

Jaroslav Hančl and Kalle Leppälä

Abstract. Let f(n) or the base-2 logarithm of f(n) be either d(n) (the divisor
function), σ(n) (the divisor-sum function), ϕ(n) (the Euler totient function),
ω(n) (the number of distinct prime factors of n) or Ω(n) (the total number of

prime factors of n). We present good lower bounds for
∣
∣ M

N
− α

∣
∣ in terms of

N , where α = [0; f(1), f(2), . . .].

1. Introduction and notations

For α ∈ R and N ∈ Z+ denote Jα(N) = N‖Nα‖, where ‖ · ‖ means the
distance to the nearest integer. The function Jα(N) is connected to the rougher
concept of the irrationality exponent µ(α), the infimum of exponents µ such that
J(N) 6 N2−µ holds for infinitely many N . For almost all α we have µ(α) = 2,
although µ(α) = 1 for rational numbers and µ(α) ∈ (2, ∞] for a zero-measure
subset of irrational numbers. For more information, see [1] for example. In all of
our examples we have the usual µ(α) = 2 but we go further by studying the more
refined function Jα(N). For irrational α we are interested in finding lower bounds
Jα(N) > f(N) for N > N0. To emphasize that our results are in some sense sharp
we also give bounds Jα(N) 6 g(N) holding for infinitely many N . Throughout the
work, this kind of pair of bounds is denoted by

Jα(N) ∈
(
f(N), g(N)

〉
.

Another short-hand notation used in the statement of Theorem 2.1 is to write

Lk(N) = log log · · · log
︸ ︷︷ ︸

k times

N.
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Because of the law of best approximations, the simple continued fraction expan-
sion of α is ideal for bounding Jα(N). Recall that if α = [a0; a1, . . .] is the simple
continued fraction expansion of the irrational number α and pn/qn = [a0; a1, . . . , an]
is the n-th convergent for each n ∈ N, we have the recursion formulae

p0 = a0, q0 = 1, p1 = a1a0 + 1, q1 = a1,

pn+2 = an+2pn+1 + pn, qn+2 = an+2qn+1 + qn(1.1)

for n ∈ N, and the estimates

(1.2)
1

q2
n(an+1 + 2)

<
∣
∣
∣a − pn

qn

∣
∣
∣ <

1

q2
nan+1

for n ∈ N. We shall use the notation [0; f(j)]∞j=1 = [0; f(1), f(2), . . . ], where
f : Z+ → Z+ is a function. For more details on continued fractions please see
the book of Hardy and Wright [6] for example.

The case where the asymptotic geometric mean of the sequence {aj}∞
j=0 tends

to infinity is easiest to deal with, although it is untypical in the metric sense. In
that case the lowest behavior of the function Jα(N) is basically governed by the
maximal order and the asymptotic geometric mean of the sequence {aj}∞

j=0. In our

examples we have chosen an = f(n) or an = 2f(n) with some arithmetic function
f(n), because maximal orders of arithmetic functions have been extensively studied
by Landau, Ramanujan, Nicolas, etc. (see [2, 6, 7, 8, 9] for example). On the
other hand, the behavior of the asymptotic geometric mean of arithmetic functions
is generally not known. This is not a big problem however; as long as there is enough
error in the maximal order of f(n), it suffices to bound the asymptotic geometric
mean by asymptotic arithmetic mean, which again is usually known (more typically
called the average order of f(n), see [6, 10] for example). And of course in the cases
an = 2f(n) the base-2 logarithm of the geometric mean of an simply corresponds
to the arithmetic mean of f(n).

Finally we note that we have already introduced bounds like (2.2) as an example
in our currently unpublished work [4]. However, the result of (2.2) is slightly
sharper and presented here for completeness.

2. Results

The following theorem contains our bounds in all of the ten examples. Note
that the lower bounds are always asymptotically bigger than any negative power
of N , implying that in each case the irrationality exponent is 2.

Theorem 2.1. Let d(n) be the number of positive divisors of n. Then

(2.1)

J[0;d(j)]∞

j=1

(N) ∈
(

2
−

L2(N)(L2
3(N)+L3(N)+4.7624)

L3
3(N) , 2

−
L2(N)

L3(N)−1+O(L4(N)/L3(N))

〉

,
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(2.2) J
[0;2d(j)]∞

j=1

(N)

∈
(

2−2

L2(N)(L2
3(N)+L3(N)+4.7624)

L3
3(N)

, 2−2

L2(N)
L3(N)−1+O(L4(N)/L3(N))

〉

,

where N is big enough.

Let σ(n) be the sum of positive divisors of n. Then

(2.3) J[0;σ(j)]∞

j=1

(N) ∈
(

L3(N)(L2(N) − L3(N))

L1(N)(eγL2
3(N) + 0.6483)

,
L2(N)(1 + o(1))

eγL1(N)L3(N)

〉

,

(2.4) J
[0;2σ(j)]∞

j=1

(N)

∈
(

2
−

2
√

3L1(N)(eγ (L3(N)−L1(2))L3(N)+0.6483)

π
√

L1(2)L3(N) , 2
−

2eγ

π

√
3L1(N)
L1(2) L3(N)(1+o(1))

〉

,

where γ is the Euler–Mascheroni constant and N is big enough.

Let ϕ(n) be the number of positive integers less than and prime to n, denote

A =
∑

p prime

1

p
log

(

1 +
1

p

)

,

let z(x) stand for the inverse of the function y(x) = x log x, and define z0(x) = x
and zk+1(x) = x/ log(zk(x)) for each k (see [3]). Then

(2.5) J[0;ϕ(j)]∞

j=1

(N)

∈
(

2L1(N)L1(z(eA−1L1(N))) + L2
2(N) − 2L1(N)L3(N) + O(L2(N))

2L2
1(N) + 4L1(N)

,

2L1(N)L1(z(eA−1L1(N))) + L2
2(N) + O(L2(N))

2L2
1(N)

〉

,

or if one prefers the use of elementary functions only then one can replace

L1(z(eA−1L1(N))) by L1(zk(eA−1L1(N))) + O(L3(N)/Lk
2(N)) for any k, and

(2.6) J
[0;2ϕ(j)]∞

j=1

(N)

∈
(

2
−π

√
L1(N)
3 log 2 +O(L

2/3
2 (N)L

3/4
3 (N))

, 2
−π

√
L1(N)
3 log 2 +O(L

2/3
2 (N)L

3/4
3 (N))

〉

.

Let ω(n) be the number of different prime factors of n, counted without multiplici-

ties. Then

(2.7) J[0;ω(j)]∞

j=1

(N)

∈
(

L3
3(N)

L2(N)(L2
3(N) + L3(N) + 2.89727)

,
L3(N) − 1 + O

(
L4(N)
L3(N)

)

L2(N)

〉

,
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(2.8) J
[0;2ω(j)]∞

j=1

(N)

∈
(

2
−

L2(N)(L2
3(N)+L3(N)+2.89727)

L3
3(N) , 2

−
L2(N)

L3(N)−1+O(L4(N)/L3(N))

〉

,

where N is big enough.

Let Ω(n) be the number of different prime factors of n, counted with multiplic-

ities, and denote

B = 1 − log log 2 +

∫ ∞

2

∑

p6t
1
p log p − log t dt

t(log t)2 +
∑

p prime

1

p(p − 1)
.

Then

(2.9) J[0;Ω(j)]∞

j=1

(N)

∈
(

L1(2)

L2(N) − L5(N) + 2L1(2) + o(1)
,

L1(2)

L2(N) − L5(N) + o(1/L4(N))

〉

,

(2.10) J
[0;2Ω(j)]∞

j=1

(N) ∈
(

L1(2)(L3(N) + B + o(1))

L1(N)
,

L1(2)(L3(N) + B + o(1))

L1(N)

〉

.

Proof of Equation (2.1). The recursive formula (1.1) gives us

qn = anqn−1

(

1 +
qn−2

anqn−1

)

= · · · =

n∏

j=1

aj

n−1∏

j=1

(

1 +
qj−1

aj+1qj

)

= eO(n)
n∏

j=1

aj ,

since 1 + qj−1/(aj+1qj) ∈ (1, 2) for all j. By using the asymptotic arithmetic mean

(2.11)
1

n

n∑

j=1

d(j) = log n + O(1)

(Theorem 320 on page 347 of [6]) and the arithmetic–geometric inequality we get an
upper bound log qn 6 n log log n + O(n). On the other hand, the recursive formula
(1.1) implies a trivial lower bound log qn > bn with some positive constant b. Now
we can solve n from those inequalities to get

n >
log qn

log log n + O(1)
>

log qn

log log(1
b log qn) + O(1)

=
log qn

log (log log qn − log b) + O(1)

=
log qn

log log log qn + O(1/ log log qn) + O(1)
=

log qn

log log log qn + O(1)

and n 6 log qn/b.
To show that the lower bound of the claim always holds we use a result

(2.12) d(n) 6 2
log n

log log n

(
1+ 1

log log n + 4.7623...
(log log n)2

)

of Robin (Proposition 8 in [8] with the constant rounded up to 4.7624; the fact that
the constant is in fact strictly smaller is implicitly in [9]) and the left inequality in
(1.2), and we simplify this. Note that rounding the constant 4.7623 . . . up to 4.7634
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causes an error big enough to make many other terms, including the ones with b,
negligible.

To show that the upper bound of the claim holds infinitely often we use a
slightly weaker estimate. It is easy to show with the estimate pn ∼ n log n of the
n-th prime number (Theorem 8 on page 12 of [6]) and Abel’s partial summation
formula

(2.13)
n∑

j=1

ajbj = bn

n∑

j=1

aj −
n−1∑

j=1

(bj+1 − bj)

j
∑

i=1

ai,

that when n is a product of the first primes we have

(2.14) d(n) = 2
log n

log log n−1+O(log log log n/ log log n) .

The result follows after using the right inequality of (1.2) and simplifying. �

Proof of Equation (2.2). From the asymptotic arithmetic mean (2.11) we
deduce

log qn

log 2
= n log n + O(n) = n log n + O(n log log n).

Because of the error in bounds (2.12) and (2.14), making our error bigger like this
will not matter, but instead simplifies things. Solving for n gives

n =
log qn

log 2 log log qn + O(log log log qn)
,

and after simplifying, the claims follow from estimations (2.12), (2.14) and (1.2).
�

Proof of Equation (2.3). This time we bound the asymptotic geometric
mean by the asymptotic arithmetic mean

(2.15)
1

n

n∑

j=1

σ(j) =
π2

12
n + O(log n)

(Theorem 324 on page 351 of [6]) from above, and by the trivial estimate σ(j) > j+1
together with Stirling’s formula from below to show that log qn = n log n + O(n).
Solving for n yields

n =
log qn

log log qn − log log log qn + O(1)
.

To verify our claim on the lower bound we use the estimate

(2.16) σ(n) 6 n
(

eγ log log n +
0.6482 . . .

log log n

)

of Nicolas (Proposition 11 in [8]), where γ is the Euler–Mascheroni constant, and
inequality (1.2).
For the upper bound we use Grönwall’s theorem

(2.17) lim sup
n→∞

σ(n)

n log log n
= eγ
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(equation (25) in [2]), implying that σ(n) = eγn log log n(1 + o(1)) for infinitely
many values of n, and inequality (1.2). �

Proof of Equation (2.4). Now the asymptotic arithmetic mean (2.15) di-
rectly gives us the estimate

log qn =
π2 log 2

12
n2 + O(n log n).

Solving for n yields

n =
2

π

√

3 log qn

log 2
+ O(log log qn).

After simplifying, the claims follow from estimations (2.16), (2.17) and (1.2) again.
�

Proof of Equation (2.5). We happen to know exactly how the function
ϕ(n) behaves at its biggest. Still we are allowed to have some slack in the esti-
mates of the convergents because of the difficulty of solving n in terms of qn.

We write
n∏

j=1

ϕ(j) =

n∏

j=1

j
∏

p prime
p|j

(

1 − 1

p

)

= n!
∏

p prime
p6n

(

1 − 1

p

)⌊n/p⌋

.

Let us deal with the product over the primes first. By using the prime number
theorem (Theorem 6 on page 10 of [6]) and partial integration, we see that

∑

p prime
p6n

1

p
log

(

1 − 1

p

)

= A + O
( 1

n log n

)

,

where

A =
∑

p prime

1

p
log

(

1 − 1

p

)

is a known (negative) constant. So estimating ⌊n/p⌋ 6 n/p gives

(2.18) log

(
∏

p prime
p6n

(

1 − 1

p

)⌊n/p⌋
)

> An + O
( 1

log n

)

.

On the other hand, by Mertens’s theorem

∏

p prime
p6n

(

1 − 1

p

)

=
1 + o(1)

eγ log n

(Theorem on 429 on page 466 of [6]), where γ is the Euler–Mascheroni constant,
estimating ⌊n/p⌋ > n/p − 1 gives

(2.19) log

(
∏

p prime
p6n

(

1 − 1

p

)⌊n/p⌋
)

6 An + log log n + γ + o(1).
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Next note that by recursive formula (1.1) and Landau’s theorem

lim inf
n→∞

ϕ(n) log log n

n
=

1

eγ

(pages 217–219 of [7]), where γ is the Euler–Mascheroni constant again, we see

n−1∏

j=1

(

1 +
qj−1

ϕ(j + 1)qj

)

= O(1)

as a beginning of a converging product. Finally we use Stirling’s formula and
bounds (2.18) and (2.19) to get

log qn 6 n log n + (A − 1)n + 1
2 log(2πn) + log log n + O(1)

log qn > n log n + (A − 1)n + 1
2 log(2πn) + O(1).

In any case we have at least

n =
log qn

log n + A − 1 + O(1/n · log n)
,

which is equivalent to

eA−1n log(eA−1n) = eA−1 log qn + O(log n).

Now we apply the function z(x) (the inverse of x log x) and the logarithm function
to both sides of the equation to get

log n + A − 1 = log z
(
eA−1 log qn + O(log n)

)
.

The mean-value theorem implies

log n + A − 1 = log z
(
eA−1 log qn + O(log n)

)

= log

(

z(eA−1 log qn) + O
( log n

log z(log qn)

))

= log z(eA−1 log qn) + O
( log n

log qn

)

,

Using this we can solve n:

n >
log qn

log z(eA−1 log qn) + (log log qn)2

2 log qn
+ O

( log log qn

log qn

)

n 6
log qn

log z(eA−1 log qn) + (log log qn)2

2 log qn
− log log log qn + O

( log log qn

log qn

) .

Now the claims follow from using (1.2), since ϕ(n) 6 n − 1 with equality whenever
n is a prime.

We can also derive bounds that use only elementary functions but have bigger
error. By using the fact that log z(eA−1 log qn) as well as log zk(eA−1 log qn) for any
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k is O(log log qn), we see that

log z(eA−1 log qn) = log
( eA−1 log qn

log z(eA−1 log qn)

)

= A − 1 + log log qn + O(log log log qn)

= log z0(eA−1 log qn) + O(log log log qn)

and inductively

logz(eA−1 log qn) = log
( eA−1 log qn

log z(eA−1 log qn)

)

= log

(
eA−1 log qn

log zk−1(eA−1 log qn) + O
( log log log qn

(log log qn)k−1

)

)

= A − 1 + log log qn − log log zk−1(eA−1 log qn) + O
( log log log qn

(log log qn)k

)

= log zk(eA−1 log qn) + O
( log log log qn

(log log qn)k

)

for any k. �

Proof of Equation (2.6). From the asymptotic arithmetic mean

1

n

n∑

j=1

ϕ(j) =
3

π2 n + O
(

(log n)
2
3 (log log n)

3
4

)

(see [10]) we get

log qn =
3 log 2

π2 n2 + O
(

n(log n)
2
3 (log log n)

3
4

)

.

Solving for n yields

n = π

√

log qn

3 log 2
+ O

(

(log log qn)
2
3 (log log log qn)

3
4

)

,

and so the claim follows by using (1.2), since ϕ(n) 6 n − 1, with equality whenever
n is a prime. �

Proof of Equation (2.7). The asymptotic arithmetic mean

(2.20)
1

n

n∑

j=1

ω(j) = log log n + O(1)

(Theorem 430 on page 472 of [6]) implies log qn 6 n log log log n+O(n), and trivially
log qn > bn with some positive constant b. Solving for n gives

log qn

log log log log qn + O(1)
6 n 6

log qn

b
.

To see that the lower bound of the claim always holds we use a result

(2.21) ω(n) 6
log n

log log n

(

1 +
1

log log n
+

2.89726 . . .

(log log n)2

)
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of Nicolas (Proposition 5 in [8]) and inequality (1.2). For the upper bound we use
the fact that when n is a product of first primes, we have

(2.22) ω(n) =
log n

log log n − 1 + O
( log log log n

log log n

) .

The claims follow from this and (1.2). �

Proof of Equation (2.8). Now the asymptotic arithmetic mean (2.20) di-
rectly gives us the estimate

log qn

log 2
= n log log n + O(n),

from which we solve

n =
log qn

log 2 log log log qn + O(1)
.

The claims follow from inequalities (2.21), (2.22) and (1.2). �

Proof of Equation (2.9). Again we want to be sharper than usual because
we know the exact worst-case behavior of Ω(n). We shall use a theorem of Hardy
and Ramanujan (Theorem C′ in [5]), stating that whenever f(n) is a function
tending to infinity, we have

(2.23) log log n − f(n)
√

log log n 6 Ω(n) 6 log log n + f(n)
√

log log n

for almost all n. In particular, by choosing f(n) = (log log n)
1
4 and using Abel’s

summation formula (2.13) we get an estimate

(2.24)

n−1∏

j=1

(

1 +
qj−1

aj+1qj

)

6

n(1+o(1))
∏

j=1

(

1 +
1

log log j − (log log j)
3
4

)

eo(n) = eo(n).

Now this and the asymptotic arithmetic mean

(2.25)
1

n

n∑

j=1

Ω(j) = log log n + B + o(1),

where

B = 1 − log log 2 +

∫ ∞

2

∑

p6t
1
p log p − log t dt

t(log t)2 +
∑

p prime

1

p(p − 1)

is a known constant (Theorem 430 on page 472 of [6]) imply

log qn 6 n log log log n + o(n).

As a lower bound we only get, by using (2.23), that

log qn > n log log log n(1 + o(1)).

Solving for n yields

log qn

log log log log qn + o(1)
6 n 6

log qn

log log log log qn(1 + o(1))
.
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Because obviously Ω(n) 6 log n/ log 2, with equality whenever n is a power of 2,
both claims now follow by using (1.2). �

Proof of Equation (2.10). We may use the upper bound (2.24) and the
asymptotic arithmetic mean (2.25) to get the estimate

log qn

log 2
= n log log n + Bn + o(n).

Now

n =
log qn

log 2(log log log qn + B + o(1))
,

and so the claim follows by using (1.2), since Ω(n) 6 log n/ log 2, with equality
whenever n is a power of 2. �
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