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THE INDUCED CONNECTIONS ON

TOTAL SPACES OF FIBRED MANIFOLDS

Włodzimierz M. Mikulski

Abstract. Let Y → M be a fibred manifold with m-dimensional base and
n-dimensional fibres. If m > 2 and n > 3, we classify all linear connec-
tions A(Γ, Λ, Θ) : T Y → J1(T Y → Y ) in T Y → Y (i.e., classical linear
connections on Y ) depending canonically on a system (Γ, Λ, Θ) consisting of
a general connection Γ : Y → J1Y in Y → M , a torsion free classical lin-
ear connection Λ : T M → J1(T M → M) on M and a linear connection
Θ : V Y → J1(V Y → Y ) in the vertical bundle V Y → Y .

Introduction

All manifolds considered in the paper are assumed to be Hausdorff, second
countable, without boundary, finite dimensional and smooth (of class C∞). Maps
between manifolds are assumed to be smooth (infinitely differentiable).

Let Y → M be a fibred manifold with m-dimensional base M and n-dimensional
fibres. Let Γ : Y → J1Y be a general connection in a fibred manifold Y → M

(i.e., a section of the first jet prolongation π1
0 : J1Y → Y of Y → M), Λ :

T M → J1(T M → M) be a torsion free linear connection in the tangent bun-
dle T M → M of M (i.e., a torsion free classical linear connection on M) and
Θ : V Y → J1(V Y → Y ) be a linear connection in the vertical bundle V Y → Y of
Y → M (i.e., a vertical classical linear connection on Y → M). More on connec-
tions can be found in [6].

Here we study how to construct canonically a linear connection A(Γ, Λ, Θ) :
T Y → J1(T Y → Y ) in T Y → Y (i.e., a classical linear connection on the total
space Y ) from the system (Γ, Λ, Θ) as above.

For example, one can construct a linear connection Ψ = Ψ(Γ, Λ, Θ) : T Y →
J1(T Y → Y ) in T Y → Y as follows. We decompose Z ∈ TyY into the horizontal
part h(Z) = Γ(y, Z0), Z0 ∈ TxM , x = p(y) and the vertical part vZ. We take a
vector field X on M such that j1

xX = Λ(Z0) and construct its Γ-lift ΓX : Y → T Y ,
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and we take a vertical vector field θZ : Y → V Y such that j1
y(θZ) = Θ(vZ). For

every Z ∈ TyY we define

Ψ(Z) = j1
y(ΓX + θZ).

The coordinate expression of Ψ can be found in Section 1.
In Section 2, using the torsion of Ψ, we produce 12 tensor fields τi = τi(Γ, Λ, Θ)

(i = 1, . . . , 12) of type T ∗ ⊗ T ∗ ⊗ T on Y .
The main result of the paper is the following one. If m > 2 and n > 3, then

the canonical constructions in question form the 12-parameter family Ψ +
∑

i λiτi

for real numbers λi, i = 1, . . . , 12.

1. The coordinate expression

Let x1, . . . , xm be the usual coordinates on Rm. Let Rm,n be the trivial bundle
over Rm with the standard fiber Rn and x1, . . . , xm, y1, . . . , yn be the usual fiber
coordinates on Rm,n. Let η1, . . . , ηn be the additional coordinates on V Rm,n and
ξi be the additional coordinates in T Rm. Let (Γ, Λ, Θ) and Ψ = Ψ(Γ, Λ, Θ) be as
in Introduction. Let dyp = F

p
i (x, y)dxi be the coordinate expression of Γ,

(1.1) dξi = Λi
jk(x)ξjdxk

be the coordinate expression of Λ, and dηp = Θp
qi(x, y)ηqdxi + Θp

qs(x, y)ηqdys be
the coordinate expression of Θ. Then we have the following lemma.

Lemma 1.1. The coordinate expression of Ψ = Ψ(Γ, Λ, Θ) is (1.1) and
(1.2)

dηp =
(∂F

p
i

∂xj
ξi + F

p
i Λi

kjξk + Θp
qj(ηq − F

q
i ξi)

)

dxj +
(∂F

p
i

∂ys
ξi + Θp

qs(ηq − F
q
i ξi)

)

dys.

where (the same letters) ξ1, . . . , ξm, η1, . . . , ηn denote the usual additional coordi-
nates on T Rm,n.

Proof. Let ξi = X i(x) and ηp = (θZ)p(x, y) be the coordinate expression of
X or θZ, respectively. Hence

∂X i

∂xj
= Λi

kjXk,
∂(θZ)p

∂xj
= Θp

qj(θZ)q,
∂(θZ)p

∂ys
= Θp

qs(θZ)q.

Then the coordinate expression of ΓX + θZ is

ξi = X i(x) and ηp = F
p
i (x, y)X i(x) + (θZ)p(x, y).

Differentiating this relation, we obtain (1.2). �

2. Main examples

Let (Γ, Λ, Θ) be the triple as in the introduction. According to the usual Γ-
decomposition T Y = V Y ⊕Y HΓY we have the decomposition

T ∗Y ⊗ T Y = (V ∗Y ⊗ V Y ) ⊕Y (V ∗Y ⊗ HΓY )

⊕Y ((HΓY )∗ ⊗ V Y ) ⊕Y ((HΓY )∗ ⊗ HΓY ).
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Let idHY be the tensor field of type T ∗ ⊗ T on Y being the (HΓY )∗ ⊗ HΓY -
component of the identity tensor field idT Y on Y (the other 3 component of idHY

are zero). Let idV Y be the tensor field of type T ∗ ⊗ T on Y being the V ∗Y ⊗ V Y -
component of idT Y (the other 3 components of idV Y are zero).

Quite similarly, we have the decomposition

T ∗Y ⊗ T ∗Y ⊗ T Y = (V ∗Y ⊗ V ∗Y ⊗ V Y ) ⊕Y (V ∗Y ⊗ V ∗Y ⊗ HΓY )

⊕Y (V ∗Y ⊗ (HΓY )∗ ⊗ V Y ) ⊕Y (V ∗Y ⊗ (HΓY )∗ ⊗ HΓY )

⊕Y ((HΓY )∗ ⊗ V ∗Y ⊗ V Y ) ⊕Y ((HΓY )∗ ⊗ V ∗Y ⊗ HΓY )

⊕Y ((HΓY )∗ ⊗ HΓY )∗ ⊗ V Y ) ⊕Y ((HΓY )∗ ⊗ (HΓY )∗ ⊗ HΓY ).

Let Tor
H∗⊗V ∗⊗V (Ψ) be the (HΓY )∗ ⊗ V ∗Y ⊗ V Y -component of the torsion

tensor field Tor(Ψ) of the classical linear connection Ψ = Ψ(Γ, Λ, Θ) (from In-
troduction). This components can be treated as the tensor field of type T ∗ ⊗
T ∗ ⊗ T on Y (the other 7 components of it are zero). Taking contraction C1

2 :
T ∗Y ⊗ T ∗Y ⊗ T Y → T ∗Y , C1

2 (ω1 ⊗ ω2 ⊗ v1) = 〈ω2, v1〉ω1, we produce tensor

field C1
2 Tor

H∗⊗V ∗⊗V (Ψ) of type T ∗ on Y (horizontal vector field). Similarly, let

Tor
H∗⊗H∗⊗V ) (Ψ) or Tor

V ∗⊗H∗⊗V (Ψ) or Tor
V ∗⊗V ∗⊗V (Ψ) be the (treated as the ten-

sor field of type T ∗⊗T ∗⊗T on Y ) (HΓY )∗⊗(HΓY )∗⊗V Y - or V ∗Y ⊗(HΓY )∗⊗V Y -
or V ∗Y ⊗V ∗Y ⊗V Y -component of Tor(Ψ), respectively. Thus we have the following
tensor fields of type T ∗ ⊗ T ∗ ⊗ T on Y canonically depending on (Γ, Λ, Θ).

Example 2.1. τ1(Γ, Λ, Θ) := Tor
H∗⊗H∗⊗V (Ψ) .

Example 2.2. τ2(Γ, Λ, Θ) := Tor
H∗⊗V ∗⊗V (Ψ) .

Example 2.3. τ3(Γ, Λ, Θ) := idHY ⊗C1
2 Tor

H∗⊗V ∗⊗V (Ψ).

Example 2.4. τ4(Γ, Λ, Θ) := C1
2 Tor

H∗⊗V ∗⊗V (Ψ) ⊗ idHY .

Example 2.5. τ5(Γ, Λ, Θ) := C1
2 Tor

H∗⊗V ∗⊗V (Ψ) ⊗ idV Y .

Example 2.6. τ6(Γ, Λ, Θ) := idV Y ⊗C1
2 Tor

H∗⊗V ∗⊗V (Ψ) .

Example 2.7. τ7(Γ, Λ, Θ) = Tor
V ∗⊗V ∗⊗V (Ψ) .

Example 2.8. τ8(Γ, Λ, Θ) := idHY ⊗C1
2 Tor

V ∗⊗V ∗⊗V (Ψ) .

Example 2.9. τ9(Γ, Λ, Θ) := C1
2 Tor

V ∗⊗V ∗⊗V (Ψ) ⊗ idHY .

Example 2.10. τ10(Γ, Λ, Θ) := idV Y ⊗C1
2 Tor

V ∗⊗V ∗⊗V (Ψ) .

Example 2.11. τ11(Γ, Λ, Θ) := C1
2 Tor

V ∗⊗V ∗⊗V (Ψ) ⊗ idV Y .

Example 2.12. τ12(Γ, Λ, Θ) := Tor
V ∗⊗H∗⊗V (Ψ) .
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3. Natural operators

Let FMm,n be the category of fibred manifolds with m-dimensional bases and
n-dimensional fibres and their fibred (local) diffeomorphisms. The general concept
of natural operators can be found in [6]. We need the following particular cases of
natural operators, only.

Definition 3.1. An FMm,n-natural operator A sending systems (Γ, Λ, Θ)
as in Introduction on fibred manifolds Y → M into classical linear connections
AY (Γ, Λ, Θ) on Y is an FMm,n-invariant system of regular operators

AY : Con(Y ) × Con0
clas(M) × Convert–clas(Y ) → Conclas(Y )

for any FMm,n-object Y = (Y → M), where Con(Y ) is the set of general con-

nections Γ in Y → M , Con0
clas(M) is the set of torsion free classical linear connec-

tions Λ on M , Convert–clas(Y ) is the set of vertical classical linear connections Θ on
Y → M and Conclas(Y ) is the set of classical linear connections on Y . The FMm,n-

invariance of A means that if (Γ, Λ, Θ) ∈ Con(Y ) × Con0
clas(M) × Convert–clas(Y ) is

f -related to (Γ1, Λ1, Θ1) ∈ Con(Y1)×Con0
clas(M1) × Convert–clas(Y1) for a FMm,n-

map f : Y → Y1 with the base map f : M → M1, then AY (Γ, Λ, Θ) and

AY1
(Γ1, Λ1, Θ1) are f -related. The regularity of A means that AY transforms

smoothly parametrized families into smoothly parametrized families.

Clearly, the construction of classical linear connection Ψ(Γ, Λ, Θ) (from Intro-
duction) determines a natural operator in the above sense.

To classify all natural operators in the sense of Definition 3.1, it suffices to
classify all natural operators in the following sense.

Definition 3.2. An FMm,n-natural operator A sending systems (Γ, Λ, Θ) as
in Introduction on fibred manifolds Y → M into tensor fields AY (Γ, Λ, Θ) of type
T ∗ ⊗ T ∗ ⊗ T on Y is an FMm,n-invariant system of regular operators

AY : Con(Y ) × Con0
clas(M) × Convert–clas(Y ) → Ten

(1,2)(Y )

for any FMm,n-object Y → M , where Ten
(1,2)(Y ) is the space of tensor fields of

type T ∗ ⊗ T ∗ ⊗ T on Y .

Of course, the constructions of tensor fields τi(Γ, Λ, Θ) from Examples 2.1–2.12
determine natural operators in the sense of Definition 3.2.

4. Estimation of dimension

We denote the trivial general connection on Rm,n by Γ0 (i.e., Γ0 =
∑m

i=1 dxi ⊗
∂

∂xi ), the torsion free flat classical linear connection on Rm by Λ0 (i.e., Λ0 =

(0)) and the trivial vertical classical linear connection on Rm,n by Θ0 (i.e., Θ0 =
∑m

i=1 dxi ⊗ ∂
∂xi +

∑n
p=1 dyp ⊗ ∂

∂yp ).

We study a natural operators A in the sense of Definition 3.2. For simplic-
ity, we will omit the subscripts Y on AY . It is clear that A is determined by the
values A(Γ, Λ, Θ)(y) ∈ T ∗

y Y ⊗ T ∗
y Y ⊗ TyY for fibred manifolds pY : Y → M with

m-dimensional bases and n-dimensional fibres, general connections Γ on Y → M ,
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torsion free classical linear connections Λ on M and vertical classical linear con-
nections Θ on Y → M and y ∈ Yx, x ∈ M . More, using the invariance of A with
respect to (respective) fibred manifold charts, we can assume Y = Rm,n, y = (0, 0).
Further, using Corollary 19.8 in [6], we may assume

(4.1) Γ = Γ0 +
∑

F
p
j;αβxαyβdxj ⊗

∂

∂yp
,

where the sum is over all m-tuples α and all n-tuples β of non-negative integers and
j = 1, . . . , m and p = 1, . . . , n with 1 6 |α| + |β| 6 K (we can assume F

p

j;(0)(0) = 0

by the existence of respective “adapted" (for Γ) fibred coordinates),

(4.2) Λ =
(

∑

Λi
jk;γxγ

)

i,j,k=1,...,m
, Λi

jk;γ = Λi
kj;γ ,

where the sums are over all m-tuples γ of non-negative integers with 1 6 |γ| 6 K

(we can assume Λi
jk;(0) = 0 by the existence of Λ-normal coordinates on the base

and the fact that torsion free classical linear connection has vanishing symbols in
the center of normal coordinates),

(4.3) Θ = Θ0 +
∑

Θr
ip;δσxδyσηpdxi ⊗

∂

∂ηr
+

∑

Θr
sp;δσxδyσηpdys ⊗

∂

∂ηr
,

where the first sum is over all m-tuples δ and all n-tuples σ of non-negative integers
and i = 1, . . . , m and r, p = 1, . . . , n with 0 6 |δ| + |σ| 6 K and the second sum
is over all m-tuples δ and n-tuples σ of non-negative integers and r, s, p = 1, . . . , n

with 0 6 |δ| + |σ| 6 K, where K is an arbitrary positive integer.
(More precisely, from Corollary 19.8 in [6], given (Γ, Λ, Θ) ∈ Con(Rm,n) ×

Con0
clas(R

m) × Convert–clas(R
m,n), there exists a finite number r = r(Γ, Λ, Θ) such

that for any Γ1 ∈ Con(Rm,n) we have the following implication

jr
(0,0)Γ1 = jr

(0,0)Γ ⇒ A(Γ1, Λ, Θ)(0, 0) = A(Γ, Λ, Θ)(0, 0),

i.e., we may replace Γ by Γ1 being polynomial. Next, by the quite similar argument,
we can replace Λ by Λ1 being polynomial. Next, by the quite similar argument, we
can replace Θ by Θ1 being polynomial.)

So, A is determined by the collection of smooth maps AK : Rn(K) → Rq =
T ∗

(0,0)R
m,n ⊗ T ∗

(0,0)R
m,n ⊗ T(0,0)R

m,n (K = 1, 2, . . . ) given by

AK((F p
j;αβ), (Λi

jk;γ), (Θr
ip;δσ), (Θr

sp;δσ)) := A(Γ, Λ, Θ)(0, 0),

where Γ, Λ, Θ are as in (4.1),(4.2) and (4.3).

Using the invariance of A with respect to ϕt × φt, ϕt = t idRm , φt = t idRn ,
t > 0, we get the homogeneous condition

tAK((F p
j;αβ), (Λi

jk;γ), (Θr
ip;δσ), (Θr

sp;δσ))

= AK((t|α|+|β|F
p
j;αβ), (t|γ|+1Λi

jk;γ), (t|δ|+|σ|+1Θr
ip;δσ), (t|δ|+|σ|+1Θr

sp;δσ)).

By the homogeneous function theorem [6], from this homogeneity condition we
obtain.



154 MIKULSKI

Lemma 4.1. AK is independent of F
p
j;αβ with |α| + |β| > 2, A is independent

of Λi
jk;γ with |γ| > 1, AK is independent of Θr

ip;δσ with |δ| + |σ| > 1 and AK is

independent of Θr
sp;δσ with |δ| + |σ| > 1. Even, AK is a linear combination with

real coefficients of Θr
ip;(0)(0), Θr

sp;(0)(0) and F
p
j;αβ with |α| + |β| = 1, i, j = 1, . . . , m,

p, r, s = 1, . . . , n. In particular, AK(Γ0, Λ0, Θ0)(0, 0) = 0.

Now, we prove the following two lemmas.

Lemma 4.2. Let m > 2 and n > 2. Any natural operator A in the sense of
Definition 3.2 is fully determined by the collection of values

A1 := A
(

Γ0 + x2dx1 ⊗
∂

∂y1 , Λ0, Θ0
)

(0, 0),

A2 := A
(

Γ0 + y1dx1 ⊗
∂

∂y1 , Λ0, Θ0
)

(0, 0),

A3 := A
(

Γ0, Λ0, Θ0 + η1dy2 ⊗
∂

∂η1

)

(0, 0),

where Γ0, Λ0, Θ0 are the trivial connections.

Proof. We know that the collection of maps AK for K = 1, 2, . . . determines
A. Then, using Lemma 4.1, it remains to prove that:
(a) A(Γ0 + xj0 dxi0 ⊗ ∂

∂yp0
, Λ0, Θ0)(0, 0) is determined by A1,

(b) A(Γ0 + yq0 dxi0 ⊗ ∂
∂yp0

, Λ0, Θ0)(0, 0) is determined by A2,

(c) A(Γ0, Λ0, Θ0 + ηq0 dxi0 ⊗ ∂
∂ηp0

)(0, 0) is determined by A2, and

(d) A(Γ0, Λ0, Θ0 + ηq0 dyr0 ⊗ ∂
∂ηp0

)(0, 0) is determined by A3

We start with the proof of (a). By the invariance of A with respect to the
(local) FMm,n-map k = (x1, . . . , xm, y1, . . . , yp0−1, yp0 + 1

2 (xi0 )2, yp0+1, . . . , yn),

from A(Γ0, Λ0, Θ0)(0, 0) = 0, we get A(Γ0 + xi0 dxi0 ⊗ ∂
∂yp0

, Λ0, Θ0)(0, 0) = 0 as k

preserves Λ0 and Θ0 and sends Γ0 into Γ0 + xi0 dxi0 ⊗ ∂
∂yp0

. If i0 6= j0, there exists

a permutation of coordinates sending A1 into A(Γ0 + xi0 dxj0 ⊗ ∂
∂yp0

, Λ0, Θ0)(0, 0).

So, (a) is complete.
Now, we prove (b). By the invariance of A with respect to the FMm,n-map

f := (x1, . . . , xm, y1 + y2, y2, . . . , yn) we see that A0 = A(Γ0 + (y1 − y2)dx1 ⊗
∂

∂y1 , Λ0, Θ0)(0, 0) is the image of A2 by f . Therefore A(Γ0+y2dx1⊗ ∂
∂y1 , Λ0, Θ0)(0, 0)

= A2 − A0 is determined by A2. So, using the invariance of A with respect to re-
spective permutations of coordinates, we complete (b).

Next we prove (c). By the invariance of A with respect to the (local) FMm,n-
map g := (x1, . . . , xm, y1 + x1y1, y2, . . . , yn) (then V g = (g, η1 + x1η1, η2, . . . , ηn))
from A(Γ0, Λ0, Θ0)= 0 we get that A(Γ0+y1dx1⊗ ∂

∂y1 , Λ0, Θ0+η1dx1⊗ ∂
∂η1 )(0, 0) = 0.

More precisely, g preserves Λ0 and transforms Γ0 and Θ0 into Γ0 + y1

1+x1 dx1 ⊗ ∂
∂y1 =

Γ0 + y1dx1 ⊗ ∂
∂y1 + . . . and Θ0 + η1

1+x1 dx1 ⊗ ∂
∂η1 = Θ0 + η1dx1 ⊗ ∂

∂η1 + . . .

(where the dots have the 1-jets at (0, 0) equal to 0) which can be replaced by
Γ0 + y1dx1 ⊗ ∂

∂y1 and Θ0 + η1dx1 ⊗ ∂
∂η1 in A in account of Lemma 4.1. Then
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A′ = A(Γ0, Λ0, Θ0 + η1dx1 ⊗ ∂
∂η1 )(0, 0) is determined by A2 (it is −A2). Then

using the invariance of A with respect to f (the one of case (b)) we see that
A′′ = A(Γ0, Λ0, Θ0 + (η1 − η2)dx1 ⊗ ∂

∂η1 )(0, 0) is determined by A2 (it is the image

of A′ by f). Then A(Γ0, Λ0, Θ0 + η2dx1 ⊗ ∂
∂η1 )(0, 0) is determined by A2 (it is

A′ − A′′). Now, using the invariance of A with respect to respective permutations
of coordinates, we complete (c).

Finally, we prove (d). By the invariance of A with respect to the (local)
FMm,n-map H = (x1, . . . , xm, y1 + 1

2 (y1)2, y2, . . . , yn) (then V H = (H, η1 + y1η1,

η2, . . . , ηn)), from A(Γ0, Λ0, Θ0)(0, 0) = 0 and Lemma 4.1 we get (using similar
arguments as in (c)) that A′′′ = A(Γ0, Λ0, Θ0 + η1dy1 ⊗ ∂

∂η1 )(0, 0) = 0. If q0 > 2,

by the invariance of A with respect to the FMm,n-map h =: (x1, . . . , xm, y1 + yq0 ,

y2, . . . , yn), we see that A′′′′ = A(Γ0, Λ0, Θ0 + (η1 − ηq0 )dy2 ⊗ ∂
∂η1 )(0, 0) is deter-

mined by A3 (it is the image of A3 by h). Then A(Γ0, Λ0, Θ0 + ηq0 dy2 ⊗ ∂
∂η1 )(0, 0)

is determined by A3 (it is A3 − A′′′′). In particular, for q0 = 2, A′′′′′ = A(Γ0, Λ0,

Θ0 + η2dy2 ⊗ ∂
∂η1 )(0, 0) is determined by A3. Then using the invariance of A with

respect to f (the one of case (b)) from A′′′ = 0 we get

A
(

Γ0, Λ0, Θ0 + (η1 − η2)(dy1 − dy2) ⊗
∂

∂η1

)

(0, 0) = 0,

and consequently A(Γ0, Λ0, Θ0 + η2dy1 ⊗ ∂
∂η1 )(0, 0) = A′′′′′ − A3 + A′′′ = A′′′′′ − A3

is determined by A3. So, using the invariance of A with respect to respective
permutations of coordinates, we complete (d). �

Lemma 4.3. Let m > 2 and n > 3. Let A1, A2, A3 be the values from the last
lemma. There are real numbers a1, . . . ., a12 such that

A1 = a1

(

d(0,0)x
2 ⊗ d(0,0)x

1 ⊗
∂

∂y1
|(0,0)

− d(0,0)x
1 ⊗ d(0,0)x

2 ⊗
∂

∂y1
|(0,0)

)

,

A2 = a2

n
∑

p=1

d(0,0)x
1 ⊗ d(0,0)y

p ⊗
∂

∂yp
|(0,0)

+ a3

n
∑

p=1

d(0,0)y
p ⊗ d(0,0)x

1 ⊗
∂

∂yp
|(0,0)

+ a4d(0,0)x
1 ⊗ d(0,0)y

1 ⊗
∂

∂y1
|(0,0)

+ a5d(0,0)y
1 ⊗ d(0,0)x

1 ⊗
∂

∂y1
|(0,0)

+ a6

m
∑

i=1

d(0,0)x
1 ⊗ d(0,0)x

i ⊗
∂

∂xi |(0,0)
+ a7

m
∑

i=1

d(0,0)x
i ⊗ d(0,0)x

1 ⊗
∂

∂xi |(0,0)
,

A3 = a8

n
∑

p=1

d(0,0)y
p ⊗ d(0,0)y

2 ⊗
∂

∂yp
|(0,0)

+ a9

n
∑

p=1

d(0,0)y
2 ⊗ d(0,0)y

p ⊗
∂

∂yp
|(0,0)

+ a10

m
∑

i=1

d(0,0)x
i ⊗ d(0,0)y

2 ⊗
∂

∂xi |(0,0)
+ a11

m
∑

i=1

d(0,0)y
2 ⊗ d(0,0)x

i ⊗
∂

∂xi |(0,0)

+ a12

(

d(0,0)y
2 ⊗ d(0,0)y

1 ⊗
∂

∂y1
|(0,0)

− d(0,0)y
1 ⊗ d(0,0)y

2 ⊗
∂

∂y1
|(0,0)

)

.
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Proof. We start with the proof of the first formula. By the invariance of
A with respect to the FMm,n-maps at,τ := (t1x1, . . . , tmxm, τ1y1, . . . , τnyn) for
t1 > 0, . . . , tm > 0 and τ1 > 0, . . . , τn > 0 we get easily

A1 = b1d(0,0)x
2 ⊗ d(0,0)x

1 ∂

∂y1
|(0,0)

+ b2d(0,0)x
1 ⊗ d(0,0)x

2 ∂

∂y1
|(0,0)

for some real numbers b1, b2. Then (by the invariance of A with respect to permuting
x1 and x2)

A(Γ0 + x1dx2 ⊗
∂

∂y1 , Λ0, Θ0)(0, 0)

= b1d(0,0)x
1 ⊗ d(0,0)x

2 ⊗
∂

∂y1
|(0,0)

+ b2d(0,0)x
2 ⊗ d(0,0)x

1 ⊗
∂

∂y1
|(0,0)

.

But by the invariance of A with respect to the (local) FMm,n-map (x1, . . . , xm,

y1 + x1x2, y3, . . . , yn) from A(Γ0, Λ0, Θ0)(0, 0) = 0, we get (using the similar argu-
ments as in (a) of the proof of Lemma 4.2) that A(Γ0 + x2dx1 ⊗ ∂

∂y1 + x1dx2 ⊗
∂

∂y1 , Λ0, Θ0)(0, 0) = 0. Therefore b1 = −b2. That is why, the first formula of the

lemma is complete.
Now, we prove the second formula of the lemma. By the invariance of A with

respect to at,τ (the same as above), we get immediately

A2 =

n
∑

p=1

bpd(0,0)y
p ⊗ d(0,0)x

1 ⊗
∂

∂yp
|(0,0)

+

n
∑

p=1

cpd(0,0)x
1 ⊗ d(0,0)y

p ⊗
∂

∂yp
|(0,0)

+
m

∑

i=1

did(0,0)x
i ⊗ d(0,0)x

1 ⊗
∂

∂xi |(0,0)
+

m
∑

i=1

eid(0,0)x
1 ⊗ d(0,0)x

i ⊗
∂

∂xi |(0,0)
.

Then by the invariance of A with respect to respective permutation of coordinates,
we deduce b2 = · · · = bn, c2 = · · · = cn, d2 = · · · = dm, e2 = · · · = em. Then A2 =
the right-hand side of the second formula of the lemma +bdx1 ⊗ dx1 ⊗ ∂

∂x1 . Now,

by the invariance of A with respect to (x1, x2 + x1, x3, . . . , xm, y1, . . . , yn) one can
obtain that b = 0. That is why, the second formula of the lemma is true.

Finally we prove the last formula of the lemma. By the invariance of A with
respect to at,τ (the same as above) we get immediately

A3 =

n
∑

p=1

bpd(0,0)y
2 ⊗ d(0,0)y

p ⊗
∂

∂yp
|(0,0)

+

n
∑

p=1

cpd(0,0)y
p ⊗ d(0,0)y

2 ⊗
∂

∂yp
|(0,0)

+

m
∑

i=1

did(0,0)y
2 ⊗ d(0,0)x

i ⊗
∂

∂xi |(0,0)
+

m
∑

i=1

eid(0,0)x
i ⊗ d(0,0)y

2 ⊗
∂

∂xi |(0,0)
.

Then by the invariance of A with respect to respective permutation of coordinates,
we deduce b3 = · · · = bn, c3 = · · · = cn, d1 = · · · = dm and e1 = · · · = em. Then

(*) A3 = λ1d(0,0)y
2 ⊗ d(0,0)y

1 ⊗
∂

∂y1
|(0,0)
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+ λ2d(0,0)y
1 ⊗ d(0,0)y

2 ⊗
∂

∂y1
|(0,0)

+ λ3d(0,0)y
2 ⊗ d(0,0)y

2 ⊗
∂

∂y2
|(0,0)

+ λ4

n
∑

p=1

d(0,0)y
p ⊗ d(0,0)y

2 ⊗
∂

∂yp
|(0,0)

+ λ5

n
∑

p=1

d(0,0)y
2 ⊗ d(0,0)y

p ⊗
∂

∂yp
|(0,0)

+ λ6

m
∑

i=1

d(0,0)x
i ⊗ d(0,0)y

2 ⊗
∂

∂xi |(0,0)
+ λ7

m
∑

i=1

d(0,0)y
2 ⊗ d(0,0)x

i ⊗
∂

∂xi |(0,0)
.

Then by invariance of A with respect to FMm,n-map (x1, . . . , xm, y1−y2, y2, . . . , yn),
from (*) we deduce

A3 + A
(

Γ0, Λ0, Θ0 + η2dy2 ⊗
∂

∂η1

)

(0, 0) = A3 + λ1d(0,0)y
2 ⊗ d(0,0)y

2 ⊗
∂

∂y1
|(0,0)

+ λ2d(0,0)y
2 ⊗ d(0,0)y

2 ⊗
∂

∂y1
|(0,0)

− λ3d(0,0)y
2 ⊗ d(0,0)y

2 ⊗
∂

∂y1
|(0,0)

.

On the other hand, from the invariance of A with respect to the (local) FMm,n-
map G = (x1, . . . , xm, y1+ 1

2 (y2)2, y2, . . . , yn) (then V G = (G, η1+y2η2, η2, . . . , ηn))

from A(Γ0, Λ0, Θ0)(0, 0) = 0 and Lemma 4.1 (using similar arguments as in (c) of
the proof of Lemma 4.2), we get A(Γ0, Λ0, Θ0 + η2dy2 ⊗ ∂

∂η1 )(0, 0) = 0. So, λ1 +

λ2 − λ3 = 0. Further, from the invariance of A with respect to (x1, . . . , xm, y1 − y3,

y2, . . . , yn) (we assume n > 3) from (*) we get (after cancelling A3)

A
(

Γ0, Λ0, Θ0 + η3dy2 ⊗
∂

∂η1

)

(0, 0) = λ1d(0,0)y
2 ⊗ d(0,0)y

3 ⊗
∂

∂y1
|(0,0)

+ λ2d(0,0)y
3 ⊗ d(0,0)y

2 ⊗
∂

∂y1
|(0,0)

.

Then from the invariance of A with respect to the switching y2 and y3 we get

A
(

Γ0, Λ0, Θ0 + η2dy3 ⊗
∂

∂η1

)

(0, 0) = λ1d(0,0)y
3 ⊗ d(0,0)y

2 ⊗
∂

∂y1
|(0,0)

+ λ2d(0,0)y
2 ⊗ d(0,0)y

3 ⊗
∂

∂y1
|(0,0)

.

On the other hand from the invariance of A with respect to K = (x1, . . . , xm, y1 +
y2y3, y2, . . . , yn) (then V K = (K, η1 + y2η3 + y3η2, η2, . . . , ηn)) from Lemma 4.1
and A(Γ0, Λ0, Θ0)(0, 0) = 0, we get (using similar arguments as in (c) of the proof of
Lemma 4.2) that A(Γ0, Λ0, Θ0 +η3dy2 ⊗ ∂

∂η1 +η2dy3 ⊗ ∂
∂η1 )(0, 0) = 0. So, λ1 = −λ2

(and then λ3 = 0). That is why, the last formula of the lemma holds. �

From Lemmas 4.2 and 4.3 it follows immediately the following proposition.

Proposition 4.1. If m > 2 and n > 3, the vector space of all natural operators
in the sense of Definition 3.2 is of dimension not more than 12.
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5. Linear independence

We prove the following proposition.

Proposition 5.1. Let m > 2 and n > 3. The natural operators τi (i =
1, . . . , 12) in the sense of Definition 3.2 from Examples 2.1–2.12 are linearly inde-
pendent.

Proof. By Lemma 4.2, it is sufficient to study the values A1, A2, A3 from
Lemma 4.2 for A = τi, i = 1, . . . , 12. To compute these values, we use Lemma 1.1.

The case Σ = (Γ0 +x2dx1 ⊗ ∂
∂y1 , Λ0, Θ0). In this case, we have (in the notation

of Lemma 1.1) F 1
1 (x, y) = x2 and other F

p
i (x, y) = 0, Λk

ij = 0, Θp
sj = 0, Θp

qs = 0.

Then (by Lemma 1.1) dη1 = ξ1dx2 and other dηp = 0, and dξi = 0. Then (modulo
signum)

Tor(Ψ(Σ))(0, 0) = d(0,0)x
1 ⊗ d(0,0)x

2 ⊗
∂

∂y1
|(0,0)

− d(0,0)x
2 ⊗ d(0,0)x

1 ⊗
∂

∂y1
|(0,0)

.

Hence (modulo signum)

τ1(Σ)(0, 0) = d(0,0)x
1 ⊗ d(0,0)x

2 ⊗
∂

∂y1
|(0,0)

− d(0,0)x
2 ⊗ d(0,0)x

1 ⊗
∂

∂y1
|(0,0)

and τi(Σ)(0, 0) = 0 for i = 2, . . . , 12.

The case Σ = (Γ0 + y1dx1 ⊗ ∂
∂y1 , Λ0, Θ0). In this case, by Lemma 1.1, dη1 =

ξ1dy1 and other dηp = 0, and dξi = 0. Then (modulo signum)

Tor(Ψ(Σ))(0, 0) = d(0,0)x
1 ⊗ d(0,0)y

1 ⊗
∂

∂y1
|(0,0)

− d(0,0)y
1 ⊗ d(0,0)x

1 ⊗
∂

∂y1
|(0,0)

.

Then τ1(Σ)(0, 0) = 0 and (modulo signum)

τ2(Σ)(0, 0) = d(0,0)x
1 ⊗ d(0,0)y

1 ⊗
∂

∂y1
|(0,0)

,

τ3(Σ)(0, 0) =

m
∑

i=1

d(0,0)x
i ⊗ d(0,0)x

1 ⊗
∂

∂xi |(0,0)
,

τ4(Σ)(0, 0) =

m
∑

i=1

d(0,0)x
1 ⊗ d(0,0)x

i ⊗
∂

∂xi |(0,0)
,

τ5(Σ)(0, 0) =

n
∑

p=1

d(0,0)x
1 ⊗ d(0,0)y

p ⊗
∂

∂yp
|(0,0)

,

τ6(Σ)(0, 0) =

n
∑

p=1

d(0,0)y
p ⊗ d(0,0)x

1 ⊗
∂

∂yp
|(0,0)

,

τi(Σ)(0, 0) = 0 for i = 7, . . . , 11 and (modulo signum) τ12(Σ)(0, 0) = d(0,0)y
1 ⊗

d(0,0)x
1 ⊗ ∂

∂y1
|(0,0)

.
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The case Σ = (Γ0, Λ0, Θ0 + η1dy2 ⊗ ∂
∂η1 ). In this case, by Lemma 1.1, dη1 =

η1dy2 and dηp = 0 for other p, and dξi = 0. Then (modulo signum)

Tor(Ψ(Σ))(0, 0) = d(0,0)y
1 ⊗ d(0,0)y

2 ⊗
∂

∂y1
|(0,0)

− d(0,0)y
2 ⊗ d(0,0)y

1 ⊗
∂

∂y1
|(0,0)

. Then τi(Σ)(0, 0) = 0 for i = 1, . . . , 6, and (modulo signum)

τ7(Σ)(0, 0) = d(0,0)y
2 ⊗ d(0,0)y

1 ⊗
∂

∂y1
|(0,0)

− d(0,0)y
1 ⊗ d(0,0)y

2 ⊗
∂

∂y1
|(0,0)

,

τ8(Σ)(0, 0) =
m

∑

i=1

d(0,0)x
i ⊗ d(0,0)y

2 ⊗
∂

∂xi |(0,0)
,

τ9(Σ)(0, 0) =

m
∑

i=1

d(0,0)y
2 ⊗ d(0,0)x

i ⊗
∂

∂xi |(0,0)
,

τ10(Σ)(0, 0) =
n

∑

p=1

d(0,0)y
p ⊗ d(0,0)y

2 ⊗
∂

∂yp
|(0,0)

,

τ11(Σ)(0, 0) =
n

∑

p=1

d(0,0)y
2 ⊗ d(0,0)y

p ⊗
∂

∂yp
|(0,0)

and τ12(Σ)(0, 0) = 0.
Now, it is easily seen that the natural operators τ1, . . . , τ12 are linearly inde-

pendent. Proposition 5.1 is complete. �

6. The main result

From Propositions 4.1 and 5.1 the main theorem of the paper follows immedi-
ately.

Theorem 6.1. Let m > 2 and n > 3. Any natural operator A in the sense of
Definition 3.1 is of the form A(Γ, Λ, Θ) = Ψ(Γ, Λ, Θ) +

∑

i λiτi(Γ, Λ, Θ) for some
(uniquely determined by A) real numbers λi, i = 1, . . . , 12, where τi are the natural
operators described in Examples 2.1–2.12 and Ψ(Γ, Λ, Θ) is the connection from
Introduction.

7. Final remarks

Let Y → M be a fibred manifold with m-dimensional basis and n-dimensional
fibres. Let E → M be a vector bundle with the same base M and n-dimensional fi-
bres (the same n). A vertical parallelism on Y → M is a vector bundle isomorphism
Φ : Y ×M E → V Y covering the identity map of Y , i.e., a system of parallelism
Φx : Yx × Ex → T Yx, x ∈ M . Let Γ be a general connection on Y → M , Λ be a
classical linear connection on M , Φ : Y ×M E → V Y be a vertical parallelism on
Y → M and ∆ be a linear connection on E → M .

In [5], Kolář constructed the classical linear connection (Γ, Λ, Φ, ∆) on Y de-
pending canonically on (Γ, Λ, Φ, ∆). Using our connection Ψ(Γ, Λ, Θ) from Intro-
duction, we can reobtain the connection (Γ, Λ, Φ, ∆) by Kolář as follows. The sys-
tem (∆, Φ) determines a vertical classical linear connection Θ = Θ(∆, Φ) : V Y →
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J1(V Y → Y ) on Y → M . Indeed, for any point v = Φ(y, v0) ∈ VyY , y ∈ Yx,
v0 ∈ Ex, x = p(y), we take a section σ : M → E such that j1

xσ = ∆(v0) and
we define Θ(v) = j1

y(ϕ(σ)), where ϕ(σ) : Y → V Y is a vertical vector field given
by ϕ(σ)(y) = Φ(y, σ(p(y))). Now, if we additionally use the connections Γ and Λ
we can produce the classical linear connection Ψ(Γ, Λ, Θ(∆, Φ)), which (as easily
to see) coincides with the Kolář connection (Γ, Λ, Φ, ∆). So, the construction of
Ψ(Γ, Λ, Θ) from Introduction is a generalization of the construction of (Γ, Λ, Φ, ∆)
by Kolář [5].

If Y = E → M , Γ = ∆ and Φ is the canonical vertical parallelism, the connec-
tion by Kolář (and then the connection Ψ from Introduction) is a generalization
of the classical linear connection on E from ∆ by means of Λ presented by Gan-
carzewicz [3]. If P = Y → M is a principal G-bundle, Γ is principal (i.e., right
invariant), E → M is the usual L(G)-algebra bundle of P and Φ is the canoni-
cal vertical parallelism, the connection by Kolář (and then the connection Ψ from
Introduction) is a generalization of the classical linear connection N(Γ, Λ) on P

considered in [6, p. 415], see [5].
In [7], we described all classical linear connections A(Γ, Λ, Φ, ∆) on Y canoni-

cally depending on the system (Γ, Λ, Φ, ∆). Thus the present paper can be treated
as the generalization of [7]. In [7], we showed that all A(Γ, Λ, Φ, ∆) form the
12-parameter family, too.

Let us also remark, why we must use an auxiliary object (in the paper we use
Θ) to construct from Γ and Λ a classical linear connection A(Γ, Λ) on Y . In the
other case we would have a classical linear connection A(Γ0, Λ0) on Rm ×Rn which
would be GL(m) × Diff(Rn, Rn) invariant. But this is impossible as the group of
affine transformations of a classical linear connection is a (finite dimensional) Lie
group.

Classifications of constructions on connections has been studied in many papers,
e.g., [1, 2, 4, 6, 7], e.t.c.
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