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FIXED POINTS FOR ĆIRIĆ-G-CONTRACTIONS IN
UNIFORM SPACES ENDOWED WITH A GRAPH

Aris Aghanians, Kamal Fallahi,

Kourosh Nourouzi∗, and Ram U. Verma

Abstract. We investigate the notion of λ-generalized contractions introduced
by Ćirić in uniform spaces endowed with a graph and discuss on the existence
and uniqueness of fixed points for this type of contractions using the basic
entourages.

1. Introduction and preliminaries

In [6], Ćirić introduced the notion of a λ-generalized contraction on a metric
space X as follows:

d(T x, T y) 6 q(x, y)d(x, y) + r(x, y)d(x, T x) + s(x, y)d(y, T y)

+ t(x, y)
(
d(x, T y) + d(y, T x)

) (
(x, y) ∈ X),

where q, r, s, t are nonnegative functions on X × X such that

sup
{

q(x, y) + r(x, y) + s(x, y) + 2t(x, y) : x, y ∈ X
}

= λ < 1.

Acharya [1] investigated some well-known types of contractions in uniform
spaces and Rhoades [10] discussed λ-generalized type contractions in uniform spaces.

Recently, Jachymski [8] entered graphs in metric fixed point theory and gener-
alized the Banach contraction principle in both metric and partially ordered metric
spaces. For further works and results in metric and uniform spaces endowed with
a graph, see, e.g., [2, 3, 4, 5, 9].

Here we investigate the notion of λ-generalized contractions in uniform spaces
endowed with a graph and establish some results on the existence and uniqueness
of fixed points via an entourage approach for this type of contractions. Despite the
method given in [5] that the results therein may not be applied for (the partially
ordered contractions induced by graph) their partially ordered counterparts, we
will see that our contractions are both extensions of Ćirić–Reich–Rus operators
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in uniform spaces and may also be converted to the language of partially ordered
metric or uniform spaces.

We start by reviewing a few basic notions in uniform spaces. For a widespread
discussion on the uniform spaces, the reader can see, e.g., [11, pp. 238–277].

Suppose that X is a nonempty set and U and V are nonempty subsets of X×X .
We let

• ∆(X) = {(x, x) : x ∈ X} be the diagonal of X ;
• U−1 = {(x, y) : (y, x) ∈ U} be the inverse of U ; and
• U ◦ V = {(x, y) : ∃ z ∈ X s.t. (x, z) ∈ V, (z, y) ∈ U}.

Now assume that U is a nonempty family of subsets of X×X satisfying the following
properties:

(1) Each member of U contains ∆(X);
(2) The intersection of each two members of U lies in U;
(3) U contains the inverses of its members;
(4) For each U ∈ U, there exists a V ∈ U such that V ◦ V ⊆ U ;
(5) If U ∈ U and U ⊆ V , then V ∈ U.

Then U is called a uniformity on X and the pair (X,U) (shortly denoted by X) is
called a uniform space.

For instance, if (X, d) is a metric space, then the family of all the supersets of
the sets Uε = {(x, y) ∈ X × X : d(x, y) < ε} where ε > 0, forms a uniformity on X
called the uniformity induced by d.

It is well-known that a uniformity U on a set X is separating if the intersection
of all members of U is exactly the diagonal ∆(X). If this is satisfied, then X is
called a separated uniform space.

To remind the convergence and Cauchyness notions in uniform spaces, let {xn}
be a sequence in a uniform space X . Then {xn} is said to be convergent to a point
x ∈ X , denoted by xn → x, if for each U ∈ U, there exists an N > 0 such that
(xn, x) ∈ U for all n > N , and it is said to be Cauchy in X if for each U ∈ U,
there exists an N > 0 such that (xm, xn) ∈ U for all m, n > N . The uniform space
X is called sequentially complete if each Cauchy sequence in X is convergent to
some point of X . It can be easily verified that if xn → x, then each subsequence of
{xn} converges to x, and further in a separated uniform space, each sequence may
converge to at most one point, i.e., the limits of convergent sequences is unique in
separated uniform spaces.

Let F be a nonempty collection of (uniformly continuous) pseudometrics on
X that generates the uniformity U (see, [1, Theorem 2.1]), and denote by V, the
family of all sets of the form

⋂m

i=1

{
(x, y) ∈ X × X : ρi(x, y) < ri

}
, where m is a

positive integer, ρi ∈ F and ri > 0 for i = 1, . . . , m. Then it has been shown that
V is a base for the uniformity U, i.e., V satisfies (U1)–(U4) and each member of U
contains a member of V. Finally, if V =

⋂m

i=1

{
(x, y) ∈ X × X : ρi(x, y) < ri

}
∈ V

and α > 0, then the set αV =
⋂m

i=1

{
(x, y) ∈ X × X : ρi(x, y) < αri

}
is still a

member of V.
The next lemma embodies some important properties about the above-ment-

ioned sets. For other properties, the reader is referred to [1, Lemmas 2.1-2.6].
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Lemma 1.1. [1] Let X be a uniform space and V be as above. Then the following
assertions hold.

(1) If 0 < α 6 β, then αV ⊆ βV for all V ∈ V.
(2) If α, β > 0, then αV ◦ βV ⊆ (α + β)V for all V ∈ V.
(3) For each x, y ∈ X and each V ∈ V, there exists a positive number λ such

that (x, y) ∈ λV .
(4) For each V ∈ V, there exists a pesudometric ρ on X such that (x, y) ∈ V

if and only if ρ(x, y) < 1.

Remark 1.1. The pseudometric ρ in Lemma 1.1 (iv) is called Minkowski’s
psudometric of V . Moreover, for any α > 0, we have (x, y) ∈ αV if and only if
ρ(x, y) < α. In other words, 1

α
ρ is Minkowski’s pseudometric of αV .

2. Main results

Throughout this section, the letter X is used to denote a nonempty set equipped
with a uniformity U unless otherwise stated and F is a nonempty collection of (uni-
formly continuous) pseudometrics on X generating the uniformity U. Furthermore,
V is the collection of all sets of the form

⋂m

i=1

{
(x, y) ∈ X × X : ρi(x, y) < ri

}
,

where m is a positive integer, ρi ∈ F and ri > 0 for i = 1, . . . , m. The uniform
space X is also endowed with a directed graph G without any parallel edges such
that V (G) = X and E(G) ⊇ ∆(X), i.e., E(G) contains all loops, and by G̃, it
is meant the undirected graph obtained from G by ignoring the directions of the
edges of G. The set of all fixed points of a self-mapping T : X → X is denoted by
Fix(T ) and we set XT = {x ∈ X : (x, T x) ∈ E(G)}.

The idea of following definition is taken from [6, 2.1. Definition] and [8, Defi-
nition 2.1].

Definition 2.1. Let T be a mapping of X into itself. Then we call T a
Ćirić-G-contraction if

(1) (x, y) ∈ E(G) implies (T x, T y) ∈ E(G) for all x, y ∈ X , that is, T is
edge-preserving;

(2) for all x, y ∈ X and all V1, V2, V3, V4, V5 ∈ V,

(x, y) ∈ E(G) ∩ V1, (x, T x) ∈ V2, (y, T y) ∈ V3, (x, T y) ∈ V4, (y, T x) ∈ V5

imply

(T x, T y) ∈ a1(x, y)V1 ◦ a2(x, y)V2 ◦ a3(x, y)V3 ◦ a4(x, y)V4 ◦ a4(x, y)V5,

where a1, a2, a3 and a4 are positive-valued functions on X × X satisfying

(2.1) sup
{

a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y) : x, y ∈ X
}

= α < 1.

Note that if (2.1) holds, then

a1(x, y) + a2(x, y) + a4(x, y) + α
(
a3(x, y) + a4(x, y)

)

< a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y) 6 α,

for all x, y ∈ X . So

a1(x, y) + a2(x, y) + a4(x, y) < α
(
1 − a3(x, y) − a4(x, y)

)
(x, y ∈ X),
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which yields

(2.2)
a1(x, y) + a2(x, y) + a4(x, y)

1 − a3(x, y) − a4(x, y)
< α (x, y ∈ X).

Example 2.1. (1) Since E(G) and each member V of V contain ∆(X), it
follows that each constant self-mapping T : X → X is a Ćirić-G-contraction with
any positive-valued functions a1, a2, a3 and a4 satisfying (2.1).

(2) Let G0 be the complete graph with V (G0) = X , i.e., E(G0) = X ×X . Then
Ćirić-G0-contractions (simply Ćirić-contractions) are precisely the counterparts of
λ-generalized contractive mappings introduced by Ćirić in [6, 2.1. Definition] (the
existence and uniqueness of fixed points for this type of contractions on sequentially
complete separated uniform spaces were investigated by Rhoades [10, Theorem 1]).

(3) Let � be a partial order on X , and consider a graph G1 by V (G1) = X
and E(G1) =

{
(x, y) ∈ X × X : x � y

}
. Then E(G1) contains all loops and

Ćirić-G1-contractions are precisely the nondecreasing order Ćirić contractions.

Example 2.2. Let (X, d) be a metric space and consider the set X with the
uniformity induced by the metric d. Let T : X → X be a Ćirić G0-contraction.
For arbitrary x, y ∈ X write

d(x, y) = r1, d(x, T x) = r2, d(y, T y) = r3,

d(x, T y) = r4, and d(y, T x) = r5

and take ε > 0. Then it is clear that

(x, y) ∈ Ur1+ε, (x, T x) ∈ Ur2+ε, (y, T y) ∈ Ur3+ε,

(x, T y) ∈ Ur4+ε, and (x, T y) ∈ Ur5+ε.

Hence it follows by (C2) that

(T x, T y) ∈ a1(x, y)Ur1+ε ◦ a2(x, y)Ur2+ε ◦ a3(x, y)Ur3+ε

◦ a4(x, y)Ur4+ε ◦ a4(x, y)Ur5+ε.

So by Lemma 1.1 we get

d(T x, T y) < a1(x, y)r1 + a2(x, y)r2 + a3(x, y)r3 + a4(x, y)
(
r4 + r5

)

+
(
a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y)

)
ε

6 a1(x, y)d(x, y) + a2(x, y)d(x, T x) + a3(x, y)d(y, T y)

+ a4(x, y)
(
d(x, T y) + d(y, T x)

)
+ αε,

where α = sup{a1(x, y)+a2(x, y)+a3(x, y)+2a4(x, y) : x, y ∈ X} < 1. Since ε > 0
was arbitrary, we obtain

d(T x, T y) 6 a1(x, y)d(x, y) + a2(x, y)d(x, T x) + a3(x, y)d(y, T y)

+ a4(x, y)
(
d(x, T y) + d(y, T x)

)
.

Consequently, T is an α-generalized contraction in the sense of Ćirić [6].

Example 2.3. Let (X, d) be a metric space with the following condition:
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• For all x, y ∈ X and r1, r2 > 0 satisfying d(x, y) < r1 + r2,
there exists a z ∈ X such that d(x, z) < r1 and d(y, z) < r2.

Consider the set X with the uniformity induced by the metric d and let T : X → X
be a λ-generalized contraction. Assume that x, y ∈ X and r1, r2, r3, r4, r5 > 0 are
such that

(x, y) ∈ Ur1
, (x, T x) ∈ Ur2

, (y, T y) ∈ Ur3
, (x, T y) ∈ Ur4

, and (y, T x) ∈ Ur5
.

Then

d(T x, T y) 6 q(x, y)d(x, y) + r(x, y)d(x, T x) + s(x, y)d(y, T y)

+ t(x, y)
(
d(x, T y) + d(y, T x)

)

< q(x, y)r1 + r(x, y)r2 + s(x, y)r3 + t(x, y)r4 + t(x, y)r5.

Using (†) four times, we see that there exist z1, z2, z3, z4 ∈ X such that

d(T x, z1) < t(x, y)r5, d(z1, z2) < t(x, y)r4, d(z2, z3) < s(x, y)r3,

d(z3, z4) < r(x, y)r2, and d(z4, T y) < q(x, y)r1,

that is,

(T x, z) ∈ t(x, y)Ur5
, (z1, z2) ∈ t(x, y)Ur4

, (z2, z3) ∈ s(x, y)Ur3
,

(z3, z4) ∈ r(x, y)Ur2
, and (z4, T y) ∈ q(x, y)Ur1

.

Therefore,

(T x, T y) ∈ q(x, y)Ur1
◦ r(x, y)Ur2

◦ s(x, y)Ur3
◦ t(x, y)Ur4

◦ t(x, y)Ur5
.

Hence T is a Ćirić G0-contraction.

According to Examples 2.2 and 2.3, all Ćirić G0-contractions are λ-generalized
contraction and the converse holds in metric spaces satisfying (†).

In the next example, we see that the self-mapping T given in [6, Example 1]
is a Ćirić G-contraction in the uniformity induced by the usual metric on [0, 2] for
some graphs G.

Example 2.4. Consider the set X = [0, 2] with the usual metric and define
a self-mapping T : X → X by the rule T x = x

9 if 0 6 x 6 1, and T x = x
10 if

1 < x 6 2 for all x ∈ X . Then T is not a contraction on X since
∣∣∣T

1001
1000

− T
999
1000

∣∣∣ =
109

10000
>

1
500

=
∣∣∣
1001
1000

−
999
1000

∣∣∣.

On the other hand, putting

a1(x, y) =
1
10

, a2(x, y) = a3(x, y) =
1
4

, and a4(x, y) =
1
6

(x, y ∈ X),

we have

sup
{

a1(x, y) + a2(x, y) + a3(x, y) + 2a4(x, y) : x, y ∈ X
}

=
14
15

< 1

and it is not hard to see that T is a 14
15 -generalized contraction. Furthermore,

because X satisfies (†), it follows by Example 2.3 that T is a Ćirić G0-contraction.
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More generally, T is a Ćirić G-contraction for all graphs G whose edges are preserved
by T .

To investigate the existence and uniqueness of fixed points for Ćirić-G-contract-
ions, we need the following lemmas.

Lemma 2.1. Let T : X → X be a Ćirić-G-contraction and V ∈ V. If x ∈ XT

is such that (x, T x) ∈ V , then (T nx, T n+1x) ∈ αnV n = 0, 1, . . . , where α is as
in (2.1).

Proof. If n = 0, then there is nothing to prove. Let n > 1 and denote by ρ,
Minkowski’s pseudometric of V . Write

ρ(T n−1x, T nx) = r1, ρ(T nx, T n+1x) = r2, and ρ(T n−1x, T n+1x) = r3

and let ε > 0. Then it is clear that

(T n−1x, T nx) ∈ (r1 + ε)V, (T nx, T n+1x) ∈ (r2 + ε)V,

(T n−1x, T n+1x) ∈ (r3 + ε)V, and (T nx, T nx) ∈ εV.

Note that by (C1), we have (T n−1x, T nx) ∈ E(G). Hence it follows by (C2) and
Lemma 1.1 that

(T nx, T n+1x) ∈ a1(T n−1x, T nx)(r1 + ε)V ◦ a2(T n−1x, T nx)(r1 + ε)V

◦ a3(T n−1x, T nx)(r2 + ε)V ◦ a4(T n−1x, T nx)(r3 + ε)V

◦ a4(T n−1x, T nx)εV

⊆
((

a1(T n−1x, T nx) + a2(T n−1x, T nx)
)
r1 + a3(T n−1x, T nx)r2

+ a4(T n−1x, T nx)r3 +
(
a1(T n−1x, T nx) + a2(T n−1x, T nx)

+ a3(T n−1x, T nx) + 2a4(T n−1x, T nx)
)
ε
)

V

⊆
((

a1(T n−1x, T nx) + a2(T n−1x, T nx)
)
r1

+ a3(T n−1x, T nx)r2 + a4(T n−1x, T nx)r3 + αε
)

V,

where α is as in (2.1). Because ρ is Minkowski’s pseudometric of V , it follows by
Remark 1.1 that

ρ(T nx, T n+1x) <
(
a1(T n−1x, T nx) + a2(T n−1x, T nx)

)
r1

+ a3(T n−1x, T nx)r2 + a4(T n−1x, T nx)r3 + αε

=
(
a1(T n−1x, T nx) + a2(T n−1x, T nx)

)
ρ(T n−1x, T nx)

+ a3(T n−1x, T nx)ρ(T nx, T n+1x)

+ a4(T n−1x, T nx)ρ(T n−1x, T n+1x) + αε.

Since ε > 0 was arbitrary, we obtain

ρ(T nx, T n+1x) 6
(
a1(T n−1x, T nx) + a2(T n−1x, T nx)

)
ρ(T n−1x, T nx)

+ a3(T n−1x, T nx)ρ(T nx, T n+1x)
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+ a4(T n−1x, T nx)ρ(T n−1x, T n+1x)

6
(
a1(T n−1x, T nx) + a2(T n−1x, T nx)

)
ρ(T n−1x, T nx)

+ a3(T n−1x, T nx)ρ(T nx, T n+1x)

+ a4(T n−1x, T nx)
(
ρ(T n−1x, T nx) + ρ(T nx, T n+1x)

)
.

Therefore, by (2.2),

(2.3) ρ(T nx, T n+1x) 6
a1(T n−1x, T nx) + a2(T n−1x, T nx) + a4(T n−1x, T nx)

1 − a3(T n−1x, T nx) − a4(T n−1x, T nx)

× ρ(T n−1x, T nx) < αρ(T n−1x, T nx) < · · · < αnρ(x, T x).

Because (x, T x) ∈ V , it follows that ρ(x, T x) < 1, and hence using (2.3), one has
ρ(T nx, T n+1x) < αn, that is, (T nx, T n+1x) ∈ αnV . �

Lemma 2.2. Let T : X → X be a Ćirić-G-contraction. Then the sequence
{T nx} is Cauchy in X for all x ∈ XT .

Proof. Let x ∈ XT and V ∈ V be given. Then Lemma 1.1 ensures the
existence of a positive number λ such that (x, T x) ∈ λV , and so, by Lemma 2.1
we have (T nx, T n+1x) ∈ (αnλ)V , n = 0, 1, . . . , where α is as in (2.1). Now, if ρ is
Minkowski’s pseudometric of V , then by Remark 1.1, ρ(T nx, T n+1x) < αnλ for all
n > 0, and since α < 1, it follows that

∞∑

n=0

ρ(T nx, T n+1x) 6
∞∑

n=0

αnλ =
λ

1 − α
< ∞.

An easy argument shows that ρ(T mx, T nx) → 0 as m, n → ∞. Hence there exists
an N > 0 such that ρ(T mx, T nx) < 1 for all m, n > N . Therefore, (T mx, T nx) ∈ V
for all m, n > N , and because V ∈ V was arbitrary, it is concluded that the sequence
{T nx} is Cauchy in X . �

We are now ready to prove our main theorem.

Theorem 2.1. Suppose that the uniform space X is sequentially complete and
separated, and has the following property:

(∗) If a sequence {xn} converges to some point x ∈ X and it satisfies (xn, xn+1) ∈
E(G) for all n > 1, then there exists a subsequence {xnk

} of {xn} such that
(xnk

, x) ∈ E(G) for all k > 1.

Then a Ćirić-G-contraction T : X → X has a fixed point if and only if XT 6= ∅.
Furthermore, this fixed point is unique if

(1) the functions a2 and a3 in (C2) coincide on X × X; and
(2) for all x, y ∈ X, there exists a z ∈ X such that (x, z), (y, z) ∈ E(G̃).

Proof. It is clear that each fixed point of T is an element of XT . For the
converse, let x ∈ XT . Then by Lemma 2.2, the sequence {T nx} is Cauchy in X . By
sequential completeness of X , there exists an x∗ ∈ X such that T nx → x∗. On the
other hand, since x ∈ XT and T is edge-preserving, it follows that (T nx, T n+1x) ∈
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E(G) for all n > 0. Therefore, by Property (∗), there exists a strictly increasing
sequence {nk} of positive integers such that (T nkx, x∗) ∈ E(G) for all k > 1. We
shall show that T nk+1x → T x∗. To this end, let V be an arbitrary member of V
and denote by ρ, Minkowski’s pseudometric of V . Let k > 1; write

ρ(T nkx, x∗) = r1, ρ(T nkx, T nk+1x) = r2, ρ(x∗, T x∗) = r3,

ρ(T nkx, T x∗) = r4, and ρ(x∗, T nk+1x) = r5,

and take ε > 0. Then it is clear that

(T nkx, x∗) ∈ (r1 + ε)V, (T nkx, T nk+1x) ∈ (r2 + ε)V, (x∗, T x∗) ∈ (r3 + ε)V,

(T nkx, T x∗) ∈ (r4 + ε)V, and (x∗, T nk+1x) ∈ (r5 + ε)V.

Therefore, by (C2) and Lemma 1.1, we have

(T nk+1x, T x∗) ∈ a1(T nkx, x∗)(r1 + ε)V ◦ a2(T nkx, x∗)(r2 + ε)V

◦ a3(T nkx, x∗)(r3 + ε)V ◦ a4(T nkx, x∗)(r4 + ε)V

◦ a4(T nkx, x∗)(r5 + ε)V

⊆
(

a1(T nkx, x∗)r1 + a2(T nkx, x∗)r2 + a3(T nkx, x∗)r3

+ a4(T nkx, x∗)
(
r4 + r5

)
+

(
a1(T nkx, x∗)

+ a2(T nkx, x∗) + a3(T nkx, x∗) + 2a4(T nkx, x∗)
)
ε
)

V

⊆
(

a1(T nkx, x∗)r1 + a2(T nkx, x∗)r2 + a3(T nkx, x∗)r3

+ a4(T nkx, x∗)
(
r4 + r5

)
+ αε

)
V,

where α is as in (2.1). Now by Remark 1.1, we get

ρ(T nk+1x, T x∗) < a1(T nkx, x∗)r1 + a2(T nkx, x∗)r2 + a3(T nkx, x∗)r3

+ a4(T nkx, x∗)
(
r4 + r5

)
+ αε

= a1(T nkx, x∗)ρ(T nkx, x∗) + a2(T nkx, x∗)ρ(T nkx, T nk+1x)

+ a3(T nkx, x∗)ρ(x∗, T x∗)

+ a4(T nkx, x∗)
(
ρ(T nkx, T x∗) + ρ(x∗, T nk+1x)

)
+ αε.

Since ε > 0 was arbitrary, we obtain

ρ(T nk+1x, T x∗) 6 a1(T nkx, x∗)ρ(T nkx, x∗) + a2(T nkx, x∗)ρ(T nkx, T nk+1x)

+ a3(T nkx, x∗)ρ(x∗, T x∗)

+ a4(T nkx, x∗)
(
ρ(T nkx, T x∗) + ρ(x∗, T nk+1x)

)

6 a1(T nkx, x∗)ρ(T nkx, x∗) + a2(T nkx, x∗)ρ(T nkx, T nk+1x)

+ a3(T nkx, x∗)
(
ρ(x∗, T nk+1x) + ρ(T nk+1x, T x∗)

)

+ a4(T nkx, x∗)
(
ρ(T nkx, T nk+1x)

+ ρ(T nk+1x, T x∗) + ρ(x∗, T nk+1x)
)
.
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Therefore,

ρ(T nk+1x, T x∗) 6
1

1 − a3(T nkx, x∗) − a4(T nkx, x∗)

(
a1(T nkx, x∗)ρ(T nkx, x∗)

+
(
a2(T nkx, x∗) + a4(T nkx, x∗)

)
ρ(T nkx, T nk+1x)

+
(
a3(T nkx, x∗) + a4(T nkx, x∗)

)
ρ(T nk+1x, x∗)

)

6
1

1 − α

(
αρ(T nkx, x∗) + αρ(T nk x, T nk+1x) + αρ(T nk+1x, x∗)

)

=
α

1 − α

(
ρ(T nkx, x∗) + ρ(T nkx, T nk+1x) + ρ(T nk+1x, x∗)

)
.

Consequently, from T nx → x∗, there exists a k0 > 0 such that

(T nkx, x∗) ∈
1 − α

3α
· V, (T nkx, T nk+1x) ∈

1 − α

3α
· V, and (T nk+1x, x∗) ∈

1 − α

3α
· V,

for all k > k0. Therefore,

ρ(T nk+1x, T x∗) <
α

1 − α

(1 − α

3α
+

1 − α

3α
+

1 − α

3α

)
= 1 (k > k0),

that is, (T nk+1x, T x∗) ∈ V for all k > k0. Since V ∈ V was arbitrary, it is seen
that T nk+1x → T x∗. On the other hand, since T nk+1x → x∗ and X is separated,
we must have x∗ = T x∗, and therefore x∗ is a fixed point for T .

To see that x∗ is the unique fixed point for T whenever (i) and (ii) are satisfied,
let y∗ ∈ X be a fixed point for T . If V ∈ V, then we consider the following two
cases to show that (x∗, y∗) ∈ V :

Case 1: (x∗, y∗) is an edge of G. Let ρ be Minkowski’s pseudometric of V .
Take any arbitrary ε > 0 and write ρ(x∗, y∗) = r. Then (x∗, y∗) ∈ (r + ε)V and so
by (C2) and Lemma 1.1, we have

(x∗, y∗) = (T x∗, T y∗) ∈ a1(x∗, y∗)(r + ε)V ◦ a2(x∗, y∗)(r + ε)V

◦ a2(x∗, y∗)(r + ε)V ◦ a4(x∗, y∗)(r + ε)V

◦ a4(x∗, y∗)(r + ε)V

⊆
((

a1(x∗, y∗) + 2a2(x∗, y∗) + 2a4(x∗, y∗)
)
r

+
(
a1(x∗, y∗) + 2a2(x∗, y∗) + 2a4(x∗, y∗)

)
ε
)

V

⊆ (αr + αε)V.

Therefore, ρ(x∗, y∗) < αr + αε = αρ(x∗, y∗) + αε. Since ε > 0 was arbitrary, we
get ρ(x∗, y∗) 6 αρ(x∗, y∗), and since α < 1, it follows that ρ(x∗, y∗) = 0, that is,
(x∗, y∗) ∈ V .

Case 2: (x∗, y∗) is not an edge of G. In this case, by (ii), there exists a
z ∈ X such that (x∗, z), (y∗, z) ∈ E(G̃). First assume that (x∗, z), (y∗, z) ∈ E(G).
Pick a W ∈ V such that W ◦ W ⊆ V and denote by ρ′, Minkowski’s pseudometric
of W and let n > 1. Since T preserves the edges of G, it follows that (x∗, T nz) =
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(T nx∗, T nz) ∈ E(G̃). Now write

ρ′(x∗, T n−1z) = r1, ρ′(T n−1z, T nz) = r2, and ρ′(x∗, T nz) = r3.

Then, clearly,

(x∗, T n−1z) ∈ (r1 + ε)W, (x∗, x∗) ∈ εW, (T n−1z, T nz) ∈ (r2 + ε)W,

(x∗, T nz) ∈ (r3 + ε)W, and (T n−1z, x∗) ∈ (r1 + ε)W.

Therefore, from (C2) and Lemma 1.1, we have

(x∗, T nz) = (T nx∗, T nz) ∈ a1(x∗, T n−1z)(r1 + ε)W ◦ a2(x∗, T n−1z)εW

◦ a2(x∗, T n−1z)(r2 + ε)W ◦ a4(x∗, T n−1z)(r3 + ε)W

◦ a4(x∗, T n−1z)(r1 + ε)W

⊆
((

a1(x∗, T n−1z) + a4(x∗, T n−1z)
)
r1

+ a2(x∗, T n−1z)r2+ a4(x∗, T n−1z)r3+
(
a1(x∗, T n−1z)

+ 2a2(x∗, T n−1z) + 2a4(x∗, T n−1z)
)
ε
)

W

⊆
((

a1(x∗, T n−1z) + a4(x∗, T n−1z)
)
r1

+ a2(x∗, T n−1z)r2 + a4(x∗, T n−1z)r3 + αε
)

W.

Hence by Remark 1.1,

ρ′(x∗, T nz) <
(
a1(x∗, T n−1z) + a4(x∗, T n−1z)

)
r1 + a2(x∗, T n−1z)r2

+ a4(x∗, T n−1z)r3 + αε

=
(
a1(x∗, T n−1z) + a4(x∗, T n−1z)

)
ρ′(x∗, T n−1z)

+ a2(x∗, T n−1z)ρ′(T n−1z, T nz) + a4(x∗, T n−1z)ρ′(x∗, T nz) + αε.

Since ε > 0 was arbitrary, we obtain

ρ′(x∗, T nz) 6
(
a1(x∗, T n−1z) + a4(x∗, T n−1z)

)
ρ′(x∗, T n−1z)

+ a2(x∗, T n−1z)ρ′(T n−1z, T nz) + a4(x∗, T n−1z)ρ′(x∗, T nz)

6
(
a1(x∗, T n−1z) + a2(x∗, T n−1z) + a4(x∗, T n−1z)

)
ρ′(x∗, T n−1z)

+
(
a2(x∗, T n−1z) + a4(x∗, T n−1z)

)
ρ′(x∗, T nz),

which accompanied with (2.2) yields

ρ′(x∗, T nz) 6
a1(x∗, T n−1z) + a2(x∗, T n−1z) + a4(x∗, T n−1z)

1 − a2(x∗, T n−1z) − a4(x∗, T n−1z)
· ρ′(x∗, T n−1z)

< αρ′(x∗, T n−1z) = αρ′(T n−1x∗, T n−1z) < · · · < αnρ′(x∗, z).

Similarly, one can show that ρ′(y∗, T nz) 6 αnρ′(y∗, z). Now, for sufficiently large
n, we have αnρ′(x∗, z) < 1 and αnρ′(y∗, z) < 1, that is, (x∗, T nz), (y∗, T nz) ∈ W .
Since W is symmetric, that is W = W −1, we get (x∗, y∗) ∈ W ◦ W ⊆ V .
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Finally, since every member of V is symmetric, with a similar argument to that
of above one can show that in the other three cases, namely, (x∗, z), (z, y∗) ∈ E(G),
(z, x∗), (y∗, z)∈E(G), and (z, x∗), (z, y∗)∈E(G), we again get (x∗, y∗)∈W ◦W ⊆V .

Consequently, in both Cases 1 and 2, we have (x∗, y∗) ∈ V . Since V ∈ V was
arbitrary and X is separated, it follows that y∗ = x∗. �

Setting G = G0 and G = G1 in Theorem 2.1, we get the next results in uniform
spaces and partially ordered uniform spaces, respectively. Note that Corollary 2.1
is a generalization of [6, 2.5 Theorem].

Corollary 2.1. Let the uniform space X be sequentially complete and sepa-
rated and T : X → X be a Ćirić-contraction. Then for each x ∈ X, the sequence
{T nx} converges to a fixed point of T . Moreover, if a2 and a3 in (C2) coincide on
X × X, then this fixed point is unique, i.e., there exists a unique x∗ ∈ Fix(T ) such
that {T nx} converges to x∗ for all x ∈ X.

Corollary 2.2. Let � be a partial order on the sequentially complete and
separated uniform space X satisfying the following property:

If a nondecreasing sequence {xn} converges to some point x ∈ X, then it
contains a subsequence {xnk

} such that xnk
� x for all k > 1.

Then a nondecreasing order Ćirić-contraction T : X → X has a fixed point if and
only if there exists an x0 ∈ X such that x0 � T x0. Moreover, this fixed point is
unique if

(1) the functions a2 and a3 in (C2) coincide on X × X; and
(2) every two elements of X has either a lower or an upper bound.

Our next result is a generalization of the fixed point theorem for Hardy and
Rogers-type contraction [7] from metric spaces to uniform spaces endowed with a
graph. It also generalizes Banach, Kannan and Chatterjea contractions provided
that 0V = ∆(X).

Corollary 2.3. Suppose that the uniform space X is sequentially complete
and separated, and satisfies the following properties:

• If a sequence {xn} converges to some point x ∈ X and it satisfies (xn, xn+1) ∈
E(G) for all n > 1, then there exists a subsequence {xnk

} of {xn} such that
(xnk

, x) ∈ E(G) for all k > 1;
• For all x, y ∈ X, there exists a z ∈ X such that (x, z), (y, z) ∈ E(G̃).

Let T : X → X be an edge-preserving self-mapping satisfying the following contrac-
tive condition:

For all x, y ∈ X and all V1, V2, V3, V4, V5 ∈ V,

(x, y) ∈ E(G) ∩ V1, (x, T x) ∈ V2, (y, T y) ∈ V3, (x, T y) ∈ V4, and (y, T x) ∈ V5

imply
(T x, T y) ∈ aV1 ◦ bV2 ◦ bV3 ◦ cV4 ◦ cV5,

where a, b and c are positive real numbers such that a + 2b + 2c < 1.

Then T has a unique fixed point if and only if XT 6= ∅.
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Remark 2.1. In [5], Bojor established some results on the existence and
uniqueness of fixed points for edge-preserving self-mappings T , called G-Ćirić–
Reich–Rus operators, on a metric space (X, d) endowed with a T -connected graph
G satisfying

d(T x, T y) 6 ad(x, y) + bd(x, T x) + cd(y, T y)
(
x, y ∈ X, (x, y) ∈ E(G)

)
,

where a, b, c > 0 and a + b + c < 1. Let us review the notion of T -connectedness
introduced by Bojor: Let (X, d) be a metric space endowed with a graph G (see, [8,
Section 2]) and T be a self-mapping on X . The graph G is said to be T -connected if
for all x, y ∈ X with (x, y) /∈ E(G), there exists a finite sequence (xi)N

i=0 of vertices
of G such that x0 = x, xN = y, (xi−1, xi) ∈ E(G) for i = 1, . . . , N , and xi ∈ XT

for i = 1, . . . , N − 1.
Note that if � is a partial order on X and the graph G1 is T -connected, then for

all x, y ∈ X with x � y, there exists a finite sequence (xi)N
i=0 of vertices of G1 such

that x0 = x, xN = y, xi−1 � xi for i = 1, . . . , N , and xi � T xi for i = 1, . . . , N − 1.
Hence by the transitivity of �, we get x � y, which is impossible. Therefore, the
graph G1 is T -connected if and only if X is a singleton. More generally, a transitive
graph G (that is, (x, y), (y, z) ∈ E(G) implies (x, z) ∈ E(G) for all x, y, z ∈ V (G))
is T -connected if and only if the set of its vertices is a singleton. Hence, in [5,
Theorem 6], to get a nontrivial result, the graph G should not be replaced with the
graph G1 induced by a partial order �.

In Theorem 2.1 of the present work, we have proved the existence of a fixed
point for a Ćirić-G-contraction T with XT 6= ∅ in a sequentially complete and
separated uniform space X endowed with a graph G using (∗) rather than the T -
connectedness of G. Moreover, by (i) and (ii) we have obtained the uniqueness of
the fixed point. Therefore, the fact that every partial order � on X induces the
graph G1 implies that Theorem 2.1 may be restated in a partially ordered form
(see, Corollary 2.2).

If a metric space (X, d) endowed with a graph G satisfies (†) (given in Ex-
ample 2.3), then by Examples 2.2 and 2.3, Ćirić G-contractions are precisely the
edge-preserving self-mappings T : X → X such that

d(T x, T y) 6 a1(x, y)d(x, y) + a2(x, y)d(x, T x) + a3(x, y)d(y, T y)

+ a4(x, y)
(
d(x, T y) + d(y, T x)

) (
x, y ∈ X, (x, y) ∈ E(G)

)
,

where a1, a2, a3, a4 : X × X → (0, 1) satisfy (2.1). Moreover, a G-Ćirić-Reich-Rus
operator in metric spaces endowed with a graph given in [5, Definition 7] may
have a counterpart in uniform spaces endowed with a graph G as follows: Let X
be a uniform space endowed with a graph G. An edge-preserving self-mapping
T : X → X is called a G-Ćirić–Reich–Rus operator if for all x, y ∈ X and all
V1, V2, V3 ∈ V,

(x, y) ∈ V1 ∩ E(G), (x, T x) ∈ V2, (y, T y) ∈ V3

imply (T x, T y) ∈ aV1 ◦ bV2 ◦ cV3, where a, b, c > 0 and a + b + c < 1.
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It is easily seen that in this case, every G-Ćirić-Reich-Rus operator is a Ćirić
G-contraction. Therefore, a uniformity version of [5, Theorem 6] may be obtained
from Theorem 2.1 as follows:

Suppose that X is a sequentially complete and separated uniform space endowed
with a graph G satisfying (∗) and T : X → X is a G-Ćirić–Reich–Rus operator.
Then T has a fixed point if and only if XT 6= ∅. Furthermore, if b = c and for all
x, y ∈ X, there exists z ∈ X such that (x, z), (y, z) ∈ E(G̃), then the fixed point is
unique.

Acknowledgments. The authors would like to thank the anonymous referee
for his/her constructive comments to improve the present work.

References

1. S. P. Acharya, Some results on fixed points in uniform spaces, Yokohama Math. J. 22 (1974),
105–116.

2. A. Aghanians, K. Fallahi, K. Nourouzi, An entourage approach to the contraction principle

in uniform spaces endowed with a graph, Panamer. Math. J. 23 (2013), 87–102.
3. , Fixed points for G-contractions on uniform spaces endowed with a graph, Fixed Point

Theory Appl. 2012:182 (2012), 12 pages.
4. F. Bojor, Fixed point of ϕ-contraction in metric spaces endowed with a graph, An. Univ.

Craiova Ser. Mat. Inform. 37 (2010), 85–92.
5. , Fixed point theorems for Reich type contractions on metric spaces with a graph,

Nonlinear Anal. 75 (2012), 3895–3901.
6. Lj. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd)

(N.S.) 12(26) (1971), 19–26.
7. G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math.

Bull. 16 (1973), 201–206.
8. J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc.

Amer. Math. Soc. 136 (2008), 1359–1373.
9. A. Nicolae, D. O’Regan, A. Petruşel, Fixed point theorems for singlevalued and multivalued

generalized contractions in metric spaces endowed with a graph, Georgian Math. J. 18 (2011),
307–327.

10. B. E. Rhoades, Fixed point theorems in a uniform space, Publ. Inst. Math., Nouv. Sér. 25(39)
(1979), 153–156.

11. S. Willard, General Topology, Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1970.

Faculty of Mathematics (Received 09 01 2013)
K. N. Toosi University of Technology (Revised 09 10 2014 and 19 12 2014)
Tehran
Iran
a.aghanians@dena.kntu.ac.ir

k_fallahi@dena.kntu.ac.ir

nourouzi@kntu.ac.ir

Department of Mathematics
Texas State University
San Marcos TX 78666
USA
verma99@msn.com


	1. Introduction and preliminaries
	2. Main results
	References

