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BASS NUMBERS OF GENERALIZED

LOCAL COHOMOLOGY MODULES

Sh. Payrovi, S. Babaei, and I. Khalili-Gorji

Abstract. Let R be a Noetherian ring, M a finitely generated R-module
and N an arbitrary R-module. We consider the generalized local cohomology
modules, with respect to an arbitrary ideal I of R, and prove that, for all non-
negative integers r, t and all p ∈ Spec(R) the Bass number µr(p, Ht

I
(M, N))

is bounded above by
∑t

j=0
µr

(

p, Extt−j

R
(M, H

j

I
(N))

)

. A corollary is that

Ass
(

Ht
I
(M, N)

)

⊆
⋃t

j=0
Ass

(

Extt−j

R
(M, H

j

I
(N))

)

. In a slightly different di-

rection, we also present some well known results about generalized local coho-
mology modules.

1. Introduction

The local cohomology theory has been a significant tool in commutative alge-
bra and algebraic geometry. As a generalization of the ordinary local cohomology
modules, Herzog [8] introduced the generalized local cohomology modules and these
had been studied further by Suzuki [15] and Yassemi [16] and some other authors.
They studied some basic duality theorems, vanishing and other properties of gen-
eralized local cohomology modules which also generalize several known facts about
Ext and ordinary local cohomology modules.

An important problem in commutative algebra is to determine when the Bass
numbers of the i-th local cohomology module is finite. In [9] Huneke conjectured
that if (R,m, k) is a regular local ring, then for any prime ideal p of R the Bass

numbers µi(p, Hj
I (R)) = dimk(p) Exti

Rp
(k(p), Hj

IRp
(Rp)) are finite for all i and j.

There is evidence that this conjecture is true. It is shown by Huneke and Sharp
[10] and Lyubeznik [11] that the conjecture holds for regular local ring containing
a field. This conjecture is also true for unramified regular local rings of mixed
characteristic; this is part of the main theorem of [12]. On the other hand there
is a negative answer to the conjecture (over non-regular ring) that is due to Harts-
horne [7]. In [5] Dibaei and Yassemi studied the relationship between the Bass
numbers of a module and its local cohomology modules. We would like to study
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the relationship between the Bass numbers of generalized local cohomology modules
Hi

I(M, N) and Exti
R(M, Hj

I (N)) whenever R is a Noetherian ring, M is a finitely
generated R-module and N is an arbitrary R-module.

2. Main results

Throughout this section R is a Noetherian ring, I is an ideal of R, M is a finitely
generated R-module, N is an arbitrary R-module and r, t are non-negative integers.
For a prime ideal p of R the r-th Bass number of M is denoted by µr(p, M).

The following lemma will be used to prove the main result of this paper.

Lemma 2.1.

µr(p, H1
I (M, N)) 6 µr(p, Ext1

R(M, ΓI(N))) + µr(p, HomR(M, H1
I (N))).

Proof. In view of [3, Corollary 11.1.6] and [6, Lemma 2.1] µr(p, Ht
I(M, N)) =

µr(pRp, Ht
I(Mp, Np)); also in view of [3, Corollary 4.3.3]

µr(p, Extt−j
R (M, Hj

I (N))) = µr(pRp, Extt−j
Rp

(Mp, Hj
IRp

(Np))).

So, we may assume that R is a local ring with maximal ideal p. We denote µr(p, M)
by µr(M) and we have to show that

µr(H1
I (M, N)) 6 µr(Ext1

R(M, ΓI(N))) + µr(HomR(M, H1
I (N))).

By Theorem 11.38 of [14] there is a Grothendieck spectral sequence

Ep,q
2 := Extp

R(M, Hq
I (N)) ⇒p Hp+q

I (M, N) = Ep+q

and there exists a finite filtration 0 = φ2E1 ⊆ φ1E1 ⊆ φ0E1 = H1
I (M, N) such

that E0,1
∞

= E1/φ1E1 and E1,0
∞

∼= φ1E1. Thus µr(E1) 6 µr(E0,1
∞

) + µr(E1,0
∞

).

Now, by the sequence 0 −→ E0,1
2

d
0,1

2

−→ E2,0
2 we have E0,1

∞

∼= E0,1
3

∼= ker d0,1
2 . Also

E1,0
∞

∼= E1,0
2 . Hence, µr(E1) 6 µr(ker d0,1

2 ) + µr(E1,0
2 ) 6 µr(E0,1

2 ) + µr(E1,0
2 ) from

which the result follows. �

Theorem 2.1. We have µr(p, Ht
I(M, N)) 6

∑t

j=0 µr(p, Extt−j
R (M, Hj

I (N))).

Proof. The proof which we include for the reader’s convenience, is based on
[5, Theorem 2.1]. By the same argument as Lemma 2.1 we may assume that R is
a local ring with maximal ideal p. We have to show that

µr(Ht
I(M, N)) 6

t
∑

j=0

µr(Extt−j
R (M, Hj

I (N))).

We use induction on t. In the case t = 0, we have H0
I (M, N) = HomR(M, ΓI(N))

so that there is nothing to prove. In the case when t = 1, the claim follows from
Lemma 2.1. We therefore assume, inductively, that t > 1 and the result has been
proved for smaller values of t. Then the exact sequence 0 −→ ΓI(N) −→ N −→

N/ΓI(N) −→ 0 induces a long exact sequence

· · · −→ Ht
I(M, ΓI(N)) −→ Ht

I(M, N) −→ Ht
I(M, N/ΓI(N)) −→ · · ·



BASS NUMBERS OF GENERALIZED LOCAL COHOMOLOGY MODULES 235

which implies that

µr(Ht
I(M, N)) 6 µr(Ht

I(M, ΓI(N))) + µr(Ht
I(M, N/ΓI(N))).

Let E be an injective hull of ΓI(N) and let L = E/ΓI(N). Then by the sequence
0 −→ ΓI(N) −→ E −→ L −→ 0 it follows that Hi−1

I (M, L)) ∼= Hi
I(M, ΓI(N)), for

all i > 2. Thus by induction hypothesis for t − 1, we have

µr(Ht−1
I (M, L)) 6

t−1
∑

j=0

µr(Extt−1−j
R (M, Hj

I (L))) = µr(Extt
R(M, ΓI(N)))

since Hi
I(L) ∼= Hi+1

I (ΓI(N)) = 0, for all i > 1. Also, the exact sequence 0 −→

ΓI(N) −→ ΓI(E) −→ ΓI(L) −→ 0 shows Extt−1
R (M, H0

I (L)) ∼= Extt
R(M, ΓI(N)))

because ΓI(E) is an injective R-module. Let E′ be an injective hull of N/ΓI(N) and
let K = E′/N/ΓI(N). Then by the sequence 0 −→ N/ΓI(N) −→ E′ −→ K −→ 0
it follows that Hi−1

I (M, K)) ∼= Hi
I(M, N/ΓI(N)), for all i > 2. Thus by induction

hypothesis for t − 1, we have

µr(Ht−1
I (M, K)) 6

t−1
∑

j=0

µr(Extt−1−j
R (M, Hj

I (K)))

=

t−1
∑

j=1

µr(Extt−1−j
R (M, Hj

I (K))) + µr(Extt−1
R (M, H0

I (K)))

=

t−1
∑

j=1

µr(Extt−1−j
R (M, Hj+1

I (N/ΓI(N))))+µr(Extt−1
R (M, H0

I (K)))

=
t−1
∑

j=1

µr(Extt−1−j
R (M, Hj+1

I (N))) + µr(Extt−1
R (M, H0

I (K)))

=

t
∑

j=2

µr(Extt−j
R (M, Hj

I (N))) + µr(Extt−1
R (M, H0

I (K))).

Now, the exact sequence 0 −→ ΓI(E′) −→ ΓI(K) −→ H1
I (N/ΓI(N)) −→ 0 shows

that Extt−1
R (M, H0

I (K)) ∼= Extt−1
R (M, H1

I (N/ΓI(N))) ∼= Extt−1
R (M, H1

I (N)). Thus

µr(Ht−1
I (M, K)) 6

t
∑

j=2

µr(Extt−j
R (M, Hj

I (N))) + µr(Extt−1
R (M, H1

I (N)))

=
t

∑

j=1

µr(Extt−j
R (M, Hj

I (N))).
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Hence,

µr(Ht
I(M, N)) 6 µr(Ht

I(M, ΓI(N))) + µr(Ht
I(M, N/ΓI(N)))

= µr(Ht−1
I (M, L)) + µr(Ht−1

I (M, K))

6 µr(Extt
R(M, ΓI(N))) +

t
∑

j=1

µr(Extt−j
R (M, Hj

I (N)))

which is claimed. �

Corollary 2.1. [13, Theorem 1.1] We have

Ass(Ht
I(M, N)) ⊆

t
⋃

j=0

Ass(Extt−j
R (M, Hj

I (N))).

Proof. Let p ∈ Ass(Ht
I(M, N)). Then µ0(p, Ht

I(M, N)) 6= 0. So, by Theorem

2.1 we have
∑t

j=1 µ0(p, Extt−j
R (M, Hj

I (N))) 6= 0. Hence, there exists 0 6 j 6 t such

that µ0(p, Extt−j
R (M, Hj

I (N))) 6= 0. Therefore, p ∈
⋃t

j=0 Ass(Extt−j
R (M, Hj

I (N))).
�

Definition 2.1. An R-module X is said to be I-cofinite, whenever Supp(X) ⊆

V (I) and Exti
R(R/I, X) is finitely generated R-module, for all i > 0.

Corollary 2.2. If Supp(M) ⊆ V (I) and Hj
I (N) is I-cofinite, for all 0 6

j 6 t, then µr(p, Hi
I(M, N)) < ∞, for all 0 6 i 6 t. In particular, if I is an

ideal of R with Spec(R) = V (I) and Hj
I (N) is I-cofinite, for all 0 6 j 6 t, then

µr(p, Hi
I(N)) < ∞, for all 0 6 i 6 t.

Proof. In view of [4, Proposition 1] Extt−j
R (M, Hj

I (N)) is a finitely generated
R-module, for all 0 6 j 6 t. Now, the claim is obvious by Theorem 2.1. �

Corollary 2.3. If Supp(M) ⊆ V (I) and N is a finitely generated R-module

for which Hj
I (N) is finitely generated, for all 0 6 j < t, then µr(p, Hi

I(M, N)) < ∞,

for all 0 6 i 6 t. In particular, if I is an ideal of R with Spec(R) = V (I) and

N is a finitely generated R-module for which Hj
I (N) is finitely generated, for all

0 6 j < t, then µr(p, Hi
I(N)) < ∞, for all 0 6 i 6 t.

Proof. In view of [1, Theorem 2.5] and [4, Proposition 1] Extt−j
R (M, Hj

I (N))
is a finitely generated R-module, for all 0 6 j 6 t. Now, the claim follows by
Theorem 2.1. �

Corollary 2.4. [2, Proposition 5.2] Let pd M < ∞ and let dim N < ∞, then

Ht
I(M, N) = 0, for all t > pd M + dim N . In particular,

µr(p, Hpd M+dim N
I (M, N)) 6 µr(p, Extpd M

R (M, Hdim N
I (N))).

Proof. By Theorem 2.1 it follows that µ0(p, Ht
I(M, N)) = 0, for any prime

ideal p of R and for all t > pd M + dim N . Thus Ht
I(M, N)) = 0. The second

assertion also follows by Theorem 2.1. �
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Corollary 2.5. [16, Theorem 2.5] Let pd M < ∞ and let ara(I) < ∞; then

Ht
I(M, N) = 0, for all t > pd M + ara(I), where ara(I), the arithmetic rank of the

ideal I, is the least number of elements of R required to generate an ideal which has

the same radical as I. In particular,

µr(p, H
pd M+ara(I)
I (M, N)) 6 µr(p, Extpd M

R (M, H
ara(I)
I (N))).

Proof. It follows by the same argument as that of Corollary 2.4. �

Theorem 2.2. We have

µr(p, Extt
R(M, H0

I (N))) 6

t
∑

j=2

µr(p, Extt−j
R (M, Hj−1

I (N))) + µr(p, Ht
I(M, N)).

Proof. We may assume that R is a local ring with maximal ideal p. So we
have to show that

µr(Extt
R(M, H0

I (N))) 6

t
∑

j=2

µr(Extt−j
R (M, Hj−1

I (N))) + µr(Ht
I(M, N)).

Theorem 11.38 of [14] shows that there is a Grothendieck spectral sequence

Ep,q
2 := Extp

R(M, Hq
I (N)) ⇒p Hp+q

I (M, N) = Ep+q.

Now, the exact sequence

· · · −→ Et−2,1
2

d
t−2,1

2

−→ Et,0
2 −→ 0

and Et,0
3 = Et,0

2 /Imdt−2,0
2 show that µr(Et,0

2 ) 6 µr(Et−2,1
2 ) + µr(Et,0

3 ). Also, the
exact sequence

· · · −→ Et−3,2
3

d
t−3,2

3

−→ Et,0
3 −→ 0

and Et,0
4 = Et,0

3 / Im dt−3,2
3 show that µr(Et,0

3 ) 6 µr(Et,0
4 ) + µr(Et−3,2

3 ). Hence,

µr(Et,0
2 ) 6 µr(Et−2,1

2 ) + µr(Et−3,2
3 ) + µr(Et,0

4 )

6 µr(Et−2,1
2 ) + µr(Et−3,2

2 ) + µr(Et,0
4 )

6 · · · =

t
∑

j=2

µr(Et−j,j−1
2 ) + µr(Et,0

t+1)

=

t
∑

j=2

µr(Et−j,j−1
2 ) + µr(Et)

since Et−j,j−1
k is a subquotient of Et−j,j−1

2 , for all 3 6 k 6 t, and Et,0
t+1 is a

subquotient of Et, where Et,0
∞

∼= φtEt/φt+1Et ∼= φtEt ⊂ Et and

0 = φtEt ⊆ · · · ⊆ φ1Et ⊆ φ0Et = Et

is a finite filtration. This completes the proof. �
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