CONVERGENCE THEOREMS OF A SCHEME FOR *I*-ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPING IN BANACH SPACE

Seyit Temir

ABSTRACT. Let X be a Banach space. Let K be a nonempty subset of X. Let $T: K \to K$ be an *I*-asymptotically quasi-nonexpansive type mapping and $I: K \to K$ be an asymptotically quasi-nonexpansive type mappings in the Banach space. Our aim is to establish the necessary and sufficient conditions for the convergence of the Ishikawa iterative sequences with errors of an *I*-asymptotically quasi-nonexpansive type mapping in Banach spaces to a common fixed point of T and I. Also, we study the convergence of the Ishikawa iterative sequences to common fixed point for nonself *I*-asymptotically quasinonexpansive type mapping in Banach spaces.

The results presented in this paper extend and generalize some recent work of Chang and Zhou [1], Wang [19], Yao and Wang [20] and many others.

1. Introduction

Let X be a real Banach space, K be a nonempty subset of Banach space and $T, I: K \to K$. Let $F(T) = \{x \in K : Tx = x\}$ and $F(I) = \{x \in K : Ix = x\}$ denote the set of fixed points of mappings T and I, respectively. Recall some definitions and notations. T is called nonexpansive if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in K$. The quasi-nonexpansive mappings defined as the following were studied by Diaz and Metcalf [4] and Dotson [5] in Banach spaces. T is called a quasi-nonexpansive mapping if $F(T) \neq \emptyset$ and $||Tx - p|| \leq ||x - p||$ for all $x \in K$ and $p \in F(T)$. The concept of asymptotically nonexpansiveness defined as the following was introduced by Goebel and Kirk [7]. T is called asymptotically quasi-nonexpansive mapping if $F(T) \neq \emptyset$ and there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} k_n = 1$ such that $||T^nx - p|| \leq k_n ||x - p||$ for all $x \in K$ and $p \in F(T)$ and $n \ge 1$. Let X be a Banach space and K be a nonempty subset of the Banach space. Let $T, I: K \to K$ be two mappings. T is called I-nonexpansive if $||Tx - Ty|| \leq ||Ix - Iy||$ for all $x, y \in K$. T is called I-quasi-nonexpansive if $F(T) \cap F(I) \neq \emptyset$ and $||Tx - p|| \leq K$ and $p \in F(T) \cap F(I) = 0$ and $||Tx - p|| \leq ||Ix - p||$ for all $x \in K$ and $p \in F(T) \cap F(I) = 0$ and $||Tx - p|| \leq ||Ix - p||$ for all $x \in K$.

²⁰¹⁰ Mathematics Subject Classification: 47H09; 47H10.

Key words and phrases: I-asymptotically quasi-nonexpansive type mapping, nonself I-asymptotically quasi-nonexpansive type mapping, Ishikawa iterative schemes.

Communicated by Stevan Pilipović.

From the above definitions, it follows that if $F(T) \cap F(I)$ is nonempty, an *I*-nonexpansive mapping must be *I* quasi-nonexpansive, and linear *I* quasi-nonexpansive mappings are *I*-nonexpansive mappings. But it is easily seen that there exist nonlinear continuous *I* quasi-nonexpansive mappings which are not *I*-nonexpansive. *T* is called *I*-asymptotically quasi-nonexpansive if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that $||T^n x - p|| \leq k_n ||I^n x - p||$ for all $x \in K$ and $p \in F(T) \cap F(I)$ and $n \geq 1$. *T* is called *I*-asymptotically nonexpansive type mapping if $\limsup_{n\to\infty} \{\sup\{||T^n x - T^n y|| - ||I^n x - I^n y||\}\} \leq 0$ for all $x, y \in K$. *T* is called *I*-asymptotically quasi-nonexpansive type if $F(T) \cap F(I) \neq \emptyset$ and

(1.1)
$$\limsup_{n \to \infty} \{ \sup\{ \|T^n x - p\| - \|I^n x - p\| \} \} \leqslant 0$$

for all $x \in K$ and $p \in F(T) \cap F(I)$.

I is called asymptotically quasi-nonexpansive type if $F(I) \neq \emptyset$ and

(1.2)
$$\limsup_{n \to \infty} \{ \sup\{ \|I^n x - p\| - \|x - p\| \} \} \le 0$$

for all $x \in K$ and $p \in F(I)$.

From the above definitions, it follows that if F(I) is nonempty, quasi-nonexpansive mappings, asymptotically nonexpansive mappings, asymptotically quasi-nonexpansive mappings and asymptotically nonexpansive type mappings all are special cases of asymptotically quasi-nonexpansive type mappings.

Let $\{x_n\}$ be of the Ishikawa iterative scheme [8] associated with $T, x_0 \in K$,

$$y_n = (1 - \beta_n)x_n + \beta_n T x_n$$
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n$$

for every $n \in \mathbb{N}$, where $0 \leq \alpha_n, \beta_n \leq 1$.

Let $S, T : K \to K$ be two mappings. In 2006, Lan [9] introduced the following iterative scheme with errors. The sequence x_n in K defined by

(1.3)
$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + \psi_n$$
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S^n y_n + \varphi_n$$

for every $n \in \mathbb{N}$, where $0 \leq \{\alpha_n\}, \{\beta_n\} \leq 1$ and $\{\varphi_n\}, \{\psi_n\}$ are two sequences in K.

The iterative approximation problems for nonexpansive mapping, asymptotically nonexpansive mapping and asymptotically quasi-nonexpansive mapping were studied Ghosh and Debnath [6], Goebel and Kirk [7], Liu [10, 11], Petryshyn and Williamson [13] in the settings of Hilbert spaces and uniformly convex Banach spaces. The strong and weak convergences of the sequence of Mann iterates to a fixed point of quasi-nonexpansive maps were studied by Petryshyn and Williamson [13]. Subsequently, the convergence of Ishikawa iterates of quasi-nonexpansive mappings in Banach spaces were discussed by Ghosh and Debnath [6]. The above results and some necessary and sufficient conditions for Ishikawa iterative sequences obtained to converge to a fixed point for asymptotically quasi-nonexpansive mappings were extended by Liu [10]. In [11], the results of Liu [10] were extended and some sufficient and necessary conditions for Ishikawa iterative sequences of

asymptotically quasi-nonexpansive mappings with error member to converge to fixed points were proved. Recently, Temir and Gul [17] obtained the weakly almost convergence theorems for I-asymptotically quasi-nonexpansive mapping in a Hilbert space. In [20], Yao and Wang established the strong convergence of an iterative scheme with errors involving I-asymptotically quasi-nonexpansive mappings in a uniformly convex Banach space. Temir [18], studied the convergence to common fixed point of Ishikawa iterative process of generalized *I*-asymptotically quasi-nonexpansive mappings to common fixed point in Banach space. In [1], the convergence theorems for Ishikawa iterative sequences with mixed errors of asymptotically quasi-nonexpansive type mappings in Banach spaces were studied.

2. Preliminaries and notations

We first recall the following definitions. A Banach space X is said to satisfy Opial's condition [12] if, for each sequence $\{x_n\}$ in X, the condition $x_n \rightharpoonup x$ implies

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

for all $y \in X$ with $y \neq x$. It is well known from [12] that all l_r spaces for $1 < r < \infty$ have this property. However, the L_r space do not have unless r = 2.

In order to prove the main results of this paper, we need the following lemmas.

LEMMA 2.1. [16] Let $\{a_n\}$, $\{b_n\}$ be sequences of nonnegative real numbers satisfying the following conditions: $\forall n \ge 1$, $a_{n+1} \le a_n + b_n$, where $\sum_{n=1}^{\infty} b_n < \infty$. Then $\lim_{n\to\infty} a_n$ exists.

LEMMA 2.2. [15] Let K be a nonempty closed bounded convex subset of a uniformly convex Banach space X and $\{\alpha_n\} \subseteq [\epsilon, 1-\epsilon] \subset (0,1)$. Let $\{x_n\}$ and $\{y_n\}$ be two sequences in K such that $\limsup_{n\to\infty} ||x_n|| \leq c$, $\limsup_{n\to\infty} ||y_n|| \leq c$, and $\limsup_{n\to\infty} ||\alpha_n x_n + (1-\alpha_n)y_n|| = c$ for some $c \geq 0$. Then $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

LEMMA 2.3. [2] Let X be a uniformly convex Banach space, K a nonempty closed convex subset of X and $T: K \to K$ an asymptotically nonexpansive mapping with a sequence $\{k_n\} \subset [1, \infty)$ and $\lim_{n\to\infty} k_n = 1$. Then E - T is semi-closed (demi-closed) at zero, i.e., for each sequence $\{x_n\}$ in K, if $\{x_n\}$ converges weakly to $q \in K$ and $(E - T)\{x_n\}$ converges strongly to 0, then (E - T)q = 0.

3. Convergence theorems for *I*-asymptotically quasi-nonexpansive type mapping

In this section, X is a Banach space and K is its nonempty subset. Let $T, I : K \to K$ be two mappings, where T is an I-asymptotically quasi-nonexpansive type mapping and $I : K \to K$ is an asymptotically quasi-nonexpansive type mapping. We study the strong and weak convergences of the sequence of Ishikawa iterates with mixed errors to a common fixed point of T and I.

THEOREM 3.1. Let X be a Banach space, K its nonempty subset, and $T, I : K \to K$ two mappings. Let T be an I-asymptotically quasi-nonexpansive type and I be an asymptotically quasi-nonexpansive type in the Banach space satisfying

$$||Tx - p|| \leq L||Ix - p||$$

for all $x \in K$ and $p \in F(T) \cap F(I)$, where L > 0 is a constant and

$$(3.2) ||Ix - p|| \leq \Gamma ||x - p||$$

for all $x \in K$ and $p \in F(I)$, where $\Gamma > 0$ is a constant. Write $I: K \to K$ instead of $S: K \to K$ in (1.3) and get

(3.3)
$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + \psi_n$$
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n I^n y_n + \varphi_n$$

for every $n \in \mathbb{N}$, where $0 \leq \{\alpha_n\}, \{\beta_n\} \leq 1$ and $\{\varphi_n\}, \{\psi_n\}$ be two sequences in K satisfying: (i) $\sum_{n=1}^{\infty} \alpha_n < \infty$; (ii) $\{\psi_n\}$ is bounded, $\varphi_n = \varphi'_n + \varphi''_n$, $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} ||\varphi'_n|| < \infty$, $||\varphi''_n|| = o(\alpha_n)$.

Then $\{x_n\}$ converges strongly to a common fixed point of T and I in K iff

(3.4)
$$\liminf_{n \to \infty} d(x_n, F(T) \cap F(I)) = 0$$

LEMMA 3.1. Suppose all conditions in Theorem 3.1 are satisfied; then for $\varepsilon > 0$, there exists a positive integer n_0 and M > 0 such that

$$\|x_{n+1} - p\| \leq \|x_n - p\| + \alpha_n M + \|\varphi'_n\|$$

for all $p \in F(T) \cap F(I)$, $n \ge n_0$ and

$$||x_{n+m} - p|| \le ||x_n - p|| + M \sum_{i=n}^{n+m-1} \alpha_i + \sum_{i=n}^{n+m-1} ||\varphi_i'||$$

for all $p \in F(T) \cap F(I)$, $n \ge n_0$, $\forall m \ge 1$, where $M = \sup_{n \ge 0} \{\varepsilon_n + \|\psi_n\|\} + 3\varepsilon \le \infty$, and ε_n is a sequence with $\varepsilon_n > 0$ and $\varepsilon_n \to 0$ such that $\|\varphi_n''\| = \varepsilon_n \alpha_n$.

PROOF. For
$$p \in F(T) \cap F(I)$$
, from (3.3), we have
(3.5) $||x_{n+1} - p|| = ||(1 - \alpha_n)(x_n - p) + \alpha_n(I^n y_n - p) + \varphi_n||$
 $\leq (1 - \alpha_n)||x_n - p|| + \alpha_n||I^n y_n - p|| + ||\varphi_n||$
 $= (1 - \alpha_n)||x_n - p|| + \alpha_n\{||I^n y_n - p|| - ||y_n - p||\}$
 $+ \alpha_n||y_n - p|| + ||\varphi_n||$

Now we consider the second term 0n the right-hand side of (3.5). From (1.1) and (1.2), for any given $\varepsilon > 0$, there exists a positive integer n_0 such that $n \ge n_0$, so we have

$$\begin{split} \sup_{x\in K, p\in F(T)\cap F(I)} \{\|T^nx-p\|-\|I^nx-p\|\} < \varepsilon, \\ \sup_{x\in K, p\in F(I)} \{\|I^nx-p\|-\|x-p\|\} < \varepsilon. \end{split}$$

Therefore, in particular, we have

(3.6)
$$\{\|T^n x_n - p\| - \|I^n x_n - p\|\} < \varepsilon,$$

for all $p \in F(T) \cap F(I)$ and $\forall n \ge n_0$.

(3.7)
$$\{\|I^n y_n - p\| - \|y_n - p\|\} < \varepsilon,$$

for all $p \in F(I)$ and $\forall n \ge n_0$. From (3.7), we have

(3.8)
$$||x_{n+1} - p|| \leq (1 - \alpha_n) ||x_n - p|| + \alpha_n \varepsilon + \alpha_n ||y_n - p|| + ||\varphi_n||$$

Consider the third term on the right-hand side of (3.8). From (3.6) and (3.7), we get

(3.9)
$$\|y_n - p\| = \|(1 - \beta_n)(x_n - p) + \beta_n(T^n x_n - p) + \psi_n\|$$

$$\leq (1 - \beta_n)\|x_n - p\| + \beta_n\{\|T^n x_n - p\| - \|I^n x_n - p\|\}$$

$$+ \beta_n\{\|I^n x_n - p\| - \|x_n - p\|\} + \beta_n\|x_n - p\| + \|\psi_n\|$$

$$\leq (1 - \beta_n)\|x_n - p\| + 2\beta_n\varepsilon + \beta_n\|x_n - p\| + \|\psi_n\|$$

$$= \|x_n - p\| + 2\beta_n\varepsilon + \|\psi_n\|$$

Now consider the fourth term on the right side of (3.5); we have $\|\varphi_n\| \leq \|\varphi'_n\| + \|\varphi''_n\|$, $\forall n \ge 0$. Substituting (3.9) into (3.8), we have

$$\|x_{n+1} - p\| \leq (1 - \alpha_n) \|x_n - p\| + \alpha_n \varepsilon + \alpha_n \{\|x_n - p\| + 2\beta_n \varepsilon + \|\psi_n\|\} + \|\varphi_n\|$$
$$\leq (1 - \alpha_n) \|x_n - p\| + \alpha_n \varepsilon + \alpha_n \|x_n - p\|$$
$$+ 2\alpha_n \beta_n \varepsilon + \alpha_n \|\psi_n\| + \|\varphi'_n\| + \|\varphi''_n\|$$
$$= \|x_n - p\| + \alpha_n \varepsilon (1 + 2\beta_n) + \alpha_n \varepsilon_n + \alpha_n \|\psi_n\| + \|\varphi'_n\|$$

Taking $M = \sup_{n \ge 0} \{\varepsilon_n + \|\psi_n\|\} + 3\varepsilon$ we obtain

(3.10)
$$||x_{n+1} - p|| \leq ||x_n - p|| + \alpha_n M + ||\varphi'_n||$$

for all $p \in F(T) \cap F(I)$, $n \ge n_0$. Writing n+m-1 instead of n in inequality (3.10), for $m \ge 1$, we get

$$\begin{aligned} \|x_{n+m} - p\| &\leq \|x_{n+m-1} - p\| + \alpha_{n+m-1}M + \|\varphi'_{n+m-1}\| \\ &\leq \|x_{n+m-2} - p\| + (\alpha_{n+m-1} + \alpha_{n+m-2})M + \|\varphi'_{n+m-2}\| + \|\varphi'_{n+m-1}\| \\ &\vdots \\ &\leq \|x_n - p\| + M \sum_{i=n}^{n+m-1} \alpha_i + \sum_{i=n}^{n+m-1} \|\varphi'_i\| \end{aligned}$$

for all $p \in F(T) \cap F(I)$, $n \ge n_0$. Thus Lemma 3.1 is proved.

Since $\{\psi_n\}$ is bounded, $\varphi_n = \varphi'_n + \varphi''_n$, $n \in \mathbb{N}$ and $\sum_{n=0}^{\infty} \|\varphi'_n\| < \infty$, $\|\varphi''_n\| = o(\alpha_n)$, then we have $\sum_{n=0}^{\infty} (M\alpha_n + \|\varphi'_n\|) < \infty$. From Lemma 2.1, we take $\{a_n\} = \{x_n - p\}$ and $\{b_n\} = M\alpha_n + \|\varphi'_n\|$. This implies that $\lim_{n \to \infty} \|x_n - p\|$ exists.

PROOF OF THEOREM 3.1. We only prove the sufficiency of Theorem 3.1. Suppose that (3.4) is satisfied; then $\lim_{n\to\infty} d(x_n, F(T) \cap F(I)) = 0$.

First we show that $\{x_n\}$ is a Cauchy sequence in K. For $\varepsilon > 0$ and $n \ge n_1$ there exists $n_1 \ge n_0$ such that $d(x_n, F(T) \cap F(I)) < \varepsilon$, $\sum_{n=n_1}^{\infty} \alpha_n < \frac{\varepsilon}{M}$, $\sum_{n=n_1}^{\infty} \|\varphi'_n\| < \varepsilon$. By the definition of infimum and $d(x_n, F(T) \cap F(I)) < \varepsilon$ there exists $p_0 \in F(T) \cap$

F(I) such that $d(x_{n_1}, p) < 2\varepsilon$. Furthermore, for $n \ge n_1 \ge n_0$ and $\forall m \ge 1$

$$\begin{aligned} \|x_{n+m} - x_n\| &\leq \|x_{n+m} - p_0\| + \|x_n - p_0\| \\ &\leq \|x_{n_1} - p_0\| + M \sum_{i=n_1}^{n+m-1} \alpha_i + \sum_{i=n_1}^{n+m-1} \|\varphi_i'\| \\ &+ \|x_{n_1} - p_0\| + M \sum_{i=n_1}^{n-1} \alpha_i + \sum_{i=n_1}^{n-1} \|\varphi_i'\|. \end{aligned}$$

Then for $n \ge n_1 \ge n_0$ and $\forall m \ge 1$ we have $||x_{n+m} - x_n|| \le 8\varepsilon$. Since ε is arbitrary, then $\{x_n\}$ is a Cauchy sequence in K. Since X is a Banach space, let $\{x_n\} \to p^*$ as $n \to \infty$. We prove that $p^* \in F(T) \cap F(I)$. We have $\{x_n\} \to p^*$ as $n \to \infty$ and $\lim_{n\to\infty} d(x_n, F(T) \cap F(I)) = 0$, for $\varepsilon > 0$, there exists a positive integer $n_2 \ge n_1 \ge n_0$ and $n \ge n_2$ we have $||x_n - p^*|| < \varepsilon$, $d(x_n, F(T) \cap F(I)) < \varepsilon$. Then there exists $q \in F(T) \cap F(I)$ such that $d(x_{n_2}, q) < 2\varepsilon$. Furthermore, for $n \ge n_2$

$$\begin{split} \|T^n p^* - p^*\| &\leq \{\|T^n p^* - q\| - \|p^* - q\|\} + 2\|p^* - q\| \\ &\leq \{\|T^n p^* - q\| - \|I^n p^* - q\|\} + \{\|I^n p^* - q\| - \|p^* - q\|\} + 3\|p^* - q\| \\ &< 2\varepsilon + 3\{3\varepsilon\} = 11\varepsilon \end{split}$$

Since T is I-asymptotically quasi nonexpansive type and I is asymptotically quasi nonexpansive type, this implies that $\{T^n p^*\} \to p^*$ as $n \to \infty$. Furthermore,

$$\|T^np^* - Tp^*\| \leqslant \{\|T^np^* - q\| - \|p^* - q\|\} + \|p^* - q\| + \|Tp^* - q\|.$$

Then for $n \ge n_2$ by (3.1), (3.2), (3.6) and (3.7) we have

$$\begin{aligned} \|T^{n}p^{*} - Tp^{*}\| &\leq \{\|T^{n}p^{*} - q\| - \|I^{n}p^{*} - q\|\} + \{\|I^{n}p^{*} - q\| - \|p^{*} - q\|\} \\ &+ 2\|p^{*} - q\| + L\|Ip^{*} - q\| \\ &\leq 2\varepsilon + 2\|p^{*} - q\| + L\Gamma\|p^{*} - q\| \\ &\leq 2\varepsilon + (2 + L\Gamma)\{\|x_{n_{2}} - p^{*}\| + \|x_{n_{2}} - q\|\} \\ &\leq 2\varepsilon + (2 + L\Gamma)3\varepsilon < \varepsilon(8 + 3L\Gamma) \end{aligned}$$

Since ε is arbitrary, $\{T^np^*\} \to Tp^*$ as $n \to \infty$, implying $Tp^* = p^* \in F(T) \cap F(I)$.

Further we apply for $I: K \to K$ asymptotically quasi nonexpansive type mapping. Then for $n \ge n_2$ we have

$$||I^n p^* - p^*|| \leq \{ ||I^n p^* - q|| - ||q - p^*|| \} + 2||p^* - q||$$

$$\leq \varepsilon + 2\{ ||x_{n_2} - p^*|| + ||x_{n_2} - q|| \} < \varepsilon + 2\{\varepsilon + 2\varepsilon\} = 7\varepsilon$$

This implies that $\{I^n p^*\} \to p^*$ as $n \to \infty$. Furthermore,

$$||I^n p^* - Ip^*|| \leq \{||I^n p^* - q|| - ||p^* - q||\} + ||p^* - q|| + ||Ip^* - q||.$$

Then for $n \ge n_2$ by (3.2) and (3.7) we have

$$||I^{n}p^{*} - Ip^{*}|| \leq \{||I^{n}p^{*} - q|| - ||p^{*} - q||\} + ||p^{*} - q|| + \Gamma ||Ip^{*} - q||$$

$$\leq \varepsilon + ||p^{*} - q|| + \Gamma ||p^{*} - q||$$

$$\leq \varepsilon + (1 + \Gamma)\{||x_{n_{2}} - p^{*}|| + ||x_{n_{2}} - q||\}$$

$$< \varepsilon + (1 + \Gamma)3\varepsilon < \varepsilon(4 + 3\Gamma).$$

Since ε is arbitrary, $\{I^n p^*\} \to p^*$ as $n \to \infty$. Also

$$||I^n p^* - Ip^*|| \leq ||I^n p^* - q|| + ||Ip^* - q|| < 2\varepsilon$$

Since ε is arbitrary, $\{I^n p^*\} \to Ip^*$ as $n \to \infty$. This shows that $Ip^* = p^* \in F(I)$. From this we obtain $p^* \in F(T) \cap F(I)$.

Thus $\{x_n\}$ converges strongly to a common fixed point of T and I in K, subset of X Banach space.

Now we establish the weak convergence theorem for Ishikawa iterates of *I*-asymptotically quasi-nonexpansive type mappings in Banach spaces. First, we prove the following lemma.

LEMMA 3.2. Let X be a uniformly convex Banach space and K be a nonempty closed convex subset of X. Let T, I and $\{x_n\}$ be the same as in Lemma 3.1. If $F = F(T) \cap F(I) \neq \emptyset$, then $\lim_{n \to \infty} ||Tx_n - x_n|| = \lim_{n \to \infty} ||Ix_n - x_n|| = 0$.

PROOF. By Lemma 3.1, for any $p \in F(T) \cap F(I)$, $\lim_{n \to \infty} ||x_n - p||$ exists. Let $\lim_{n \to \infty} ||x_n - p|| = c$. If c = 0, then the proof is completed.

Now suppose c > 0. From (3.9), we have $||y_n - p|| \leq ||x_n - p|| + 2\beta_n \varepsilon + ||\psi_n||$. Taking lim sup on both sides in the above inequality,

$$\lim_{n \to \infty} \sup \|y_n - p\| \le c.$$

Since I is asymptotically nonexpansive type self-mappings on K, from (3.7), which is on taking $\limsup_{n\to\infty}$ and using (3.11), then we get $\limsup_{n\to\infty} \|I^n y_n - p\| \leq c$. Further, $\lim_{n\to\infty} \|x_{n+1} - p\| = c$ means that

$$\lim_{n \to \infty} \|\alpha_n I^n y_n + (1 - \alpha_n) x_n - p\| = c$$
$$\lim_{n \to \infty} (1 - \alpha_n) \|x_n - p\| + \alpha_n \|I^n y_n - p\| = c.$$

It follows from Lemma 2.2

(3.12)
$$\lim_{n \to \infty} \|I^n y_n - x_n\| = 0.$$

Further,

$$\lim_{n \to \infty} \|\alpha_n (T^n x_n - p) + (1 - \alpha_n) (x_n - p)\| = \lim_{n \to \infty} \|y_n - p\| = c.$$

By Lemma 2.2, we have

(3.13)
$$\lim_{n \to \infty} \|T^n x_n - x_n\| = 0.$$

From (3.12) and (3.13), we have

(3.14)
$$\lim_{n \to \infty} \|I^n x_n - x_n\| = 0.$$

Using (3.1), (3.2), (3.3), (3.13) and (3.14), it is easy to show that

$$(3.16)\qquad\qquad\qquad\lim_{n\to\infty}\|Ix_n-x_n\|=0.$$

Then the proof is completed.

THEOREM 3.2. Let X be a uniformly convex Banach space which satisfies Opial's condition, K be a nonempty closed convex subset of X. Let T, I and $\{x_n\}$ be the same as in Lemma 3.1. If $F(T) \cap F(I) \neq \emptyset$, the mappings E - T and E - Iare semi-closed at zero, then $\{x_n\}$ converges weakly to a common fixed point of T and I.

PROOF. By assumption, $F(T) \cap F(I)$ is nonempty. Take $p \in F(T) \cap F(I)$. It follows from Lemma 3.1 that the limit $\lim_{n\to\infty} ||x_n - p||$ exists. Therefore, $\{x_n - p\}$ is a bounded sequence in X. Since X is a uniformly convex Banach space and K is a nonempty closed convex subset of X, then K is weakly compact. This implies that there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\}$ converges to a point $p \in w(\{x_n\})$, where $w(\{x_n\})$ denotes the weak limit set of $\{x_n\}$, which shows that $w(\{x_n\})$ is nonempty. For any $p \in w(\{x_n\})$, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\} \to p$ weakly. Hence, it follows from (3.15) and (3.16) in Lemma 3.2 that Tp = p and Ip = p. By Opial's condition, $\{x_n\}$ has only one weak limit point, i.e., $\{x_n\}$ converges weakly to a common fixed point of T and I.

4. Convergence for nonself *I*-asymptotically quasi-nonexpansive type mappings

In this section, the convergence of the Ishikawa iterative sequences to common fixed point for nonself *I*-asymptotically quasi-nonexpansive type mappings is obtained in Banach spaces.

A subset K of X is called a *retract* of X if there exists a continuous map $P: X \to K$ such that Px = x for all $x \in K$. A map $P: X \to K$ is called a retraction if $P^2 = P$. In particular, a subset K is called a *nonexpansive retract* of X if there exists a *nonexpansive retraction* $P: X \to K$ such that Px = x for all $x \in K$.

Next, we introduce the following concepts for nonself mappings. Let X be a real Banach space. A subset K of X be nonempty nonexpansive retraction of X and P be nonexpansive retraction from X onto K. A nonself mapping $T: K \to X$ is called *asymptotically nonexpansive* if there exists a sequence $\{v_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} v_n = 1$ such that

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le v_n ||x - y||$$

for all $x, y \in K$ and $n \ge 1$. T is called *uniformly L-Lipschitzian* if there exists a constant L > 0 such that

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le L||x - y||$$

for all $x, y \in K$ and $n \ge 1$. From the above definition, it is obvious that nonself asymptotically nonexpansive mappings is uniformly *L*-Lipschitzian.

246

Let $I: K \to X$ be a nonself asymptotically quasi-nonexpansive type mappings and $T: K \to X$ be a nonself *I*-asymptotically quasi-nonexpansive type mappings with $F(T) \cap F(I) = \{x \in K : Tx = x = Ix\} \neq \emptyset$. A mapping $T: K \to X$ is called Λ -Lipschitzian if there exists constant $\Lambda > 0$ such that

$$\|T(PT)^{n-1}x - T(PT)^{n-1}y\| \leq \Lambda \|I(PI)^{n-1}x - I(PI)^{n-1}y\|$$

for all $x, y \in K$ and $n \ge 1$.

Iterative techniques for converging fixed points of nonexpansive non-self mappings have been studied by many authors (see, for example, [3, 19, 14]). The concept of nonself asymptotically nonexpansive mappings was introduced in [3] as a generalization of asymptotically nonexpansive self-mappings and some strong and weak convergence theorems for such mappings were obtained. The sequence $\{x_n\}_{n\geq 1}$ generated as follows: $x_1 \in K$,

$$y_n = P(\alpha_n T(PT)^{n-1} x_n + \beta_n x_n),$$

$$x_{n+1} = P(\alpha'_n T(PT)^{n-1} y_n + \beta'_n x_n), \quad \forall n \ge 1,$$

where $\{\alpha_n\}, \{\beta_n\}, \{\alpha'_n\}, \{\beta'_n\} \in (0, 1).$

Let $T: K \to X$ be a nonself I-asymptotically quasi-nonexpansive type mapping and $I: K \to X$ be a nonself asymptotically quasi-nonexpansive type mapping.

Now we define an $\{x_n\}_{n \ge 1}$ sequence as follows:

(4.1)
$$y_n = P(\alpha_n T(PT)^{n-1} x_n + \beta_n x_n + \gamma_n \psi_n),$$
$$x_{n+1} = P(\alpha'_n I(PI)^{n-1} y_n + \beta'_n x_n + \gamma'_n \varphi_n), \quad \forall n \ge 1,$$

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\alpha'_n\}, \{\beta'_n\}, \{\gamma'_n\}$ are sequences in (0, 1) with $\alpha_n + \beta_n + \gamma_n = 1 = \alpha'_n + \beta'_n + \gamma'_n$ and $\{\psi_n\}, \{\varphi_n\}$ are bounded sequences in K.

$$\limsup_{n \to \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| - \|I(PI)^{n-1}x - p\| \} \right) \leqslant 0.$$

Observe that

$$\begin{split} &\limsup_{n \to \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| - \|I(PI)^{n-1}x - p\| \} \right) \\ & \quad \times \limsup_{n \to \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| + \|I(PI)^{n-1}x - p\| \} \right) \\ & = \limsup_{n \to \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\|^2 - \|I(PI)^{n-1}x - p\|^2 \} \right) \leqslant 0. \end{split}$$

Therefore we have

$$\limsup_{n \to \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| - \|I(PI)^{n-1}x - p\| \} \right) \le 0.$$

This implies that for any given $\varepsilon > 0$, there exists a positive integer n_0 such that for $n \ge n_0$ we have

$$\left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| - \|I(PI)^{n-1}x - p\| \} \right) \leqslant 0.$$

THEOREM 4.1. Let X be a Banach space and K be a nonempty subset of the Banach space. Let $T, I : K \to X$ be two nonself mappings. Let T be a nonself I-asymptotically quasi-nonexpansive type and I be a nonself asymptotically quasinonexpansive type in Banach space with $F(T) \cap F(I) \neq \emptyset$. Let the sequence $\{x_n\}$ be defined by (4.1) and for every $n \in \mathbb{N}$, where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}\{\alpha'_n\}, \{\beta'_n\}, \{\gamma'_n\}$ are sequences in (0,1) with $\alpha_n + \beta_n + \gamma_n = 1 = \alpha'_n + \beta'_n + \gamma'_n$, $\sum_{i=1}^{\infty} \gamma_n < \infty$, $\sum_{i=1}^{\infty} \gamma'_n < \infty$, and $\{\psi_n\}, \{\varphi_n\}$ are bounded sequences in K.

Then $\{x_n\}$ converges strongly to a common fixed point of T and I in K iff

(4.2)
$$\liminf_{n \to \infty} d(x_n, F(T) \cap F(I)) = 0.$$

PROOF. The necessity of condition (4.2) is obvious. Next we prove the sufficiency of condition (4.2). Let the sequence $\{x_n\}$ be defined by (4.1). Let $p \in F(T) \cap F(I)$, by boundedness of the sequences $\{\psi_n\}, \{\varphi_n\}$, so we can put

$$M = \max\{\sup_{n \ge 1} \|\psi_n - p\|, \sup_{n \ge 1} \|\varphi_n - p\|\}.$$

For any given $\varepsilon > 0$, there exists a positive integer n_0 such that $n \ge n_0$

$$\sup_{x \in K, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| - \|I(PI)^{n-1}x - p\| \} < \varepsilon.$$
$$\sup_{x \in K, p \in F(I)} \{ \|I(PI)^{n-1}x - p\| - \|x - p\| \} < \varepsilon.$$

Therefore, in particular, we have

(4.3)
$$\{ \|T(PT)^{n-1}x_n - p\| - \|I(PI)^{n-1}x_n - p\| \} < \varepsilon,$$

for all $p \in F(T) \cap F(I)$ and $\forall n \ge n_0$.

(4.4)
$$\{\|I(PI)^{n-1}y_n - p\| - \|y_n - p\|\} < \varepsilon,$$

for all $p \in F(I)$ and $\forall n \ge n_0$. Thus for each $n \ge 1$ and for any $p \in F(T) \cap F(I)$, using (4.1), (4.3) and (4.4), we have

$$(4.5) ||x_{n+1} - p|| = ||P(\alpha'_n x_n + \beta'_n I(PI)^{n-1} y_n + \gamma'_n \varphi_n - p)|| \leq \alpha'_n ||x_n - p|| + \beta'_n ||I(PI)^{n-1} y_n - p|| + \gamma'_n ||\varphi_n - p|| = \alpha'_n ||x_n - p|| + \beta'_n \{ ||I(PI)^{n-1} y_n - p|| - ||y_n - p|| \} + \beta'_n ||y_n - p|| + \gamma'_n ||\varphi_n - p|| \leq \alpha'_n ||x_n - p|| + \beta'_n \{\varepsilon\} + \beta'_n ||y_n - p|| + \gamma'_n M$$

and

$$(4.6) ||y_n - p|| = ||P(\alpha_n x_n + \beta_n T (PT)^{n-1} x_n + \gamma_n \psi_n - p)|| \leq \alpha_n ||x_n - p|| + \beta_n ||T (PT)^{n-1} x_n - p|| + \gamma_n ||\psi_n - p|| \leq \alpha_n ||x_n - p|| + \beta_n \{ ||T (PT)^{n-1} x_n - p|| - ||I (PI)^{n-1} x_n - p|| \} + \beta_n \{ ||I (PI)^{n-1} x_n - p|| - ||x_n - p|| \} + \beta_n ||x_n - p|| + \gamma_n M \leq \alpha_n ||x_n - p|| + 2\beta_n \{\varepsilon\} + \beta_n ||x_n - p|| + \gamma_n M \leq (\alpha_n + \beta_n) ||x_n - p|| + 2\beta_n \varepsilon + \gamma_n M \leq (1 - \gamma_n) ||x_n - p|| + 2\beta_n \varepsilon + \gamma_n M \leq ||x_n - p|| + D_n$$

where $D_n = 2\beta_n \varepsilon + \gamma_n M$. Then $\sum_{n=1}^{\infty} D_n < \infty$ since $\sum_{n=1}^{\infty} \gamma_n < \infty$. Substituting (4.6) into (4.5), we have

$$(4.7) ||x_{n+1} - p|| \leq \alpha'_n ||x_n - p|| + \beta'_n \varepsilon + \beta'_n (||x_n - p|| + D_n) + \gamma'_n M \leq (\alpha'_n + \beta'_n) ||x_n - p|| + \beta'_n (\varepsilon + D_n) + \gamma'_n M \leq (1 - \gamma'_n) ||x_n - p|| + G_n \leq ||x_n - p|| + G_n$$

where $G_n = \beta'_n(\varepsilon + D_n) + \gamma'_n M$. Then $\sum_{n=1}^{\infty} G_n < \infty$ since $\sum_{n=1}^{\infty} \gamma'_n < \infty$ and $\sum_{n=1}^{\infty} D_n < \infty$. It follows from (4.7) that $d(x_{n+1}, F(T) \cap F(I)) \leq d(x_n, F(T) \cap F(I)) + G_n$.

By Lemma 2.1, we can get that $\lim_{n\to\infty} d(x_n, F(T) \cap F(I))$ exists. By condition $\liminf_{n\to\infty} d(x_n, F(T) \cap F(I)) = 0$, we have

(4.8)
$$\lim_{n \to \infty} d(x_n, F(T) \cap F(I)) = 0.$$

Next we prove that $\{x_n\}$ is a Cauchy sequence in X. In fact, for any $n \ge n_0$, any $m \ge n_1$ and any $p \in F(T) \cap F(I)$ we have

(4.9)
$$||x_{n+m} - p|| \leq ||x_{n+m-1} - p|| + G_{n+m-1}$$
$$\leq ||x_{n+m-2} - p|| + G_{n+m-1} + G_{n+m-2}$$
$$\leq \dots \leq ||x_n - p|| + \sum_{k=n}^{\infty} G_k.$$

So by (4.9), we have

(4.10)
$$||x_{n+m} - x_n|| \leq ||x_{n+m} - p|| + ||x_n - p|| \leq 2||x_n - p|| + \sum_{k=n}^{\infty} G_k.$$

By the arbitrariness of $p \in F(T) \cap F(I)$ and (4.10), we have

$$||x_{n+m} - p|| \leq 2d(x_n, F(T) \cap F(I)) + \sum_{k=n}^{\infty} G_k \qquad \forall n \ge n_0.$$

For any given $\varepsilon > 0$, there exists a positive integer $n_1 \ge n_0$, such that for any $n \ge n_1$, $d(x_n, F(T) \cap F(I)) < \frac{\varepsilon}{4}$ and $\sum_{k=n}^{\infty} G_k < \frac{\varepsilon}{2}$, we have $||x_{n+m} - x_n|| < \varepsilon$, and so for any $m \ge 1$

$$\lim_{n \to \infty} \|x_{n+m} - x_n\| = 0.$$

This shows that $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, there exists a $p^* \in X$ such that $x_n \to p^*$ as $n \to \infty$.

Finally, by the routine method, we have to prove that $p^* \in F(T) \cap F(I)$. By contradiction, we assume that p^* is not in $F(T) \cap F(I)$. Since $F(T) \cap F(I)$ is a closed set, $d(p^*, F(T) \cap F(I)) > 0$. Hence for all $p \in F(T) \cap F(I)$, we have

$$||p^* - p|| \le ||x_n - p^*|| + ||x_n - p||.$$

This implies that

(4.11)
$$d(p^*, F(T) \cap F(I)) \leq ||x_n - p^*|| + d(x_n, F(T) \cap F(I)).$$

Letting $n \to \infty$ in (4.11) and noting (4.8), we have $d(p^*, F(T) \cap F(I)) \leq 0$. This is a contradiction. Hence $p^* \in F(T) \cap F(I)$. This completes the proof of Theorem 4.1.

References

- S.S. Chang, Y.Y. Zhou, Some convergence theorems for mappings of asymptotically quasinonexpansive type in Banach spaces, J. Appl. Math. Comput. 12(1-2) (2003), 119–127.
- S.S. Chang, Y.J. Cho, H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc. 38(6) (2001), 1245–1260.
- C. E. Chidume, E. U. Ofoedu, H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 280 (2003), 364–374.
- J. B. Diaz, F. T. Metcalf, On the set of sequential limit points of successive approximations, Trans. Am. Math. Soc. 135 (1969), 459–485.
- 5. W. G. Dotson Jr., On the Mann iterative process, Trans. Am. Math. Soc. 149 (1970), 65-73.
- M.K. Ghosh, L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207 (1997), 96–103.
- K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc. 35 (1972), 171–174.
- S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1974), 147– 150.
- H. Y. Lan, Common fixed point iterative processes with errors for generalized asymptotically quasi-nonexpansive mappings, Comput. Math. Appl. 52 (2006) 1403–1412.
- Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1–7.
- _____, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18–24.
- Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
- W. V. Petryshyn, T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459–497.
- N. Shahzad, Approximating fixed points of non-self nonexpansive mappings in Banach spaces, Nonlinear Anal. 61 (2005), 1031–1039.
- J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc. 43(1) (1991), 153–159.
- K. K. Tan, H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process, J. Math. Anal. Appl. 178 (1993), 301–308.

- S. Temir, O. Gul, Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space, J. Math. Anal. Appl. 329 (2007) 759–765.
- S. Temir, Convergence of iterative process for generalized I-asymptotically quasi-nonexpansive mappings, Thai J. Math. 7(2) (2009), 367–379.
- L. Wang, Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, J. Math. Anal. Appl. 323 (2006), 550–557.
- S.S. Yang, L. Wang, Convergence of the Ishikawa iteration scheme with errors for Iasymptotically quasi-nonexpansive mappings, Thai J. Math. 5(2) (2007), 199-207.

Department of Mathematics Art and Science Faculty Harran University Sanliurfa Turkey temirseyit@harran.edu.tr (Received 14 04 2012) (Revised 16 11 2012)