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CONFORMAL AND GEODESIC MAPPINGS

OF GENERALIZED EQUIDISTANT SPACES

Marija S. Najdanović, Milan Lj. Zlatanović,

and Irena Hinterleitner

Abstract. We consider conformal and geodesic mappings of generalized equi-
distant spaces. We prove the existence of mentioned nontrivial mappings and
construct examples of conformal and geodesic mapping of a 3-dimensional gen-
eralized equidistant space. Also, we find some invariant objects (three tensors
and four which are not tensors) of special geodesic mapping of generalized
equidistant space.

1. Introduction

Equidistant spaces are defined by the existence of concincular vector fields
which are characterized by the property that their covariant derivative is pro-
portional to the unity tensor. Examples of Riemannian spaces with concincular
vector fields are the well known spatially homogeneous and isotropic cosmological
models of space-time (pseudo-Riemannian manifolds with Friedmann–Lemaitre–
Robertson–Walker metric) [7]. Equidistant spaces were studied in [1, 2, 6–11, 20,
21,23,24], etc.

The investigation of conformal and geodesic mapping theory for special spaces is
an important and active research topic. Conformal mappings of Riemannian spaces
with concincular vector fields were studied in the works of Brinkmann, Fialkov,
Yano, de Vries. On the other hand, geodesic mappings of equidistant Riemannian
spaces appeared in the papers of Sinjukov, Solodovnikov, Rosenfeld, Mikeš, Kiosak,
Hall and many others.

In recent times, it has become very interesting to investigate spaces with non-
symmetric affine connection. The beginning of the study of general (nonsymmetric)
affine connection spaces is especially related to the works [3,4] of Einstein on Unified
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Field Theory. Many new and interesting results related to generalized Riemann-
ian spaces and, in general, nonsymmetric affine connection spaces, appeared in the
papers of Eisenhart, Minčić, Nitescu, Prvanović, Stanković, Bohner, Yano, etc.

For the first time, equidistant generalized Riemannian space was defined in [1]
where geodesic mappings of such defined spaces were discussed. In the present
paper we continue our previous investigations, primarily from [1] and [6], studying
conformal and geodesic mappings of generalized equidistant spaces. Note that the
study is of a local character. All functions considered are assumed to be sufficiently
smooth.

1.1. Generalized Riemannian spaces. A generalized Riemannian space
GRN in the sense of Eisenhart’s definition [5] is a differentiable N -dimensional
manifold, equipped with a nonsymmetric basic tensor gij(x), x = (x1, . . . , xN ),
where det(gij) 6= 0. We can write gij = gij + gij

∨

where ij denotes symmetriza-

tion and ij
∨

antisymmetrization with division by indices i and j. The Riemannian

space RN determined by the symmetric part of the metric tensor of generalized
Riemannian space GRN, is adjoint space of the space GRN.

Generalized Christoffel symbols of the first kind of the space GRN are given by

Γi.jk =
1

2
(gji,k − gjk,i + gik,j), i, j, k = 1, . . . , N,

where gij,k =
∂gij

∂xk . The connection coefficients of this space are generalized Christof-

fel symbols of the second kind Γijk = gipΓp.jk, where (gij) = (gij)
−1, supposing

det(gij) 6= 0. Generally, it is Γijk 6= Γikj . Therefore, one can define the symmetric

and anti-symmetric part of Γijk, respectively

Γijk =
1

2
(Γijk + Γikj), Γijk

∨

=
1

2
(Γijk − Γikj).

The magnitude Γijk
∨

is torsion tensor of the spaces GRN. Obviously, Γijk = Γijk+Γijk
∨

.

Notice that in GRN we have Γpip
∨

= 0 (eq. (2.10) in [15]).

Using the nonsymmetry of the connection Γijk, in the generalized Riemannian

space, one can define four kinds of covariant derivatives (see [12–19]). For example,
for a tensor aij , we have

(1.1)

aij |
1

m = aij,m + Γipma
p
j − Γpjma

i
p , aij |

2

m = aij,m + Γimpa
p
j − Γpmja

i
p,

aij |
3

m = aij,m + Γipma
p
j − Γpmja

i
p , aij |

4

m = aij,m + Γimpa
p
j − Γpjma

i
p.

Also, we can consider covariant derivative in GRN with respect to the symmetric
part of the connection Γijk. Thus,

(1.2) aij;m = aij,m + Γipma
p
j − Γpjma

i
p.
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In the Riemannian space (Γijk
∨

= 0) all types of covariant derivates at (1.1) reduce

to (1.2).
In the case of the space GRN, we have five independent curvature tensors [14]

(in [14] R
5

is denoted by R̃
2

):

R
1

i
jmn = Γijm,n − Γijn,m + ΓpjmΓipn − ΓpjnΓipm,

R
2

i
jmn = Γimj,n − Γinj,m + ΓpmjΓ

i
np − ΓpnjΓ

i
mp,

R
3

i
jmn = Γijm,n − Γinj,m + ΓpjmΓinp − ΓpnjΓ

i
pm + Γpnm(Γipj − Γijp),

R
4

i
jmn = Γijm,n − Γinj,m + ΓpjmΓinp − ΓpnjΓ

i
pm + Γpmn(Γipj − Γijp),

R
5

i
jmn =

1

2

(

Γijm,n + Γimj,n − Γijn,m − Γinj,m + ΓpjmΓipn + ΓpmjΓ
i
np

− ΓpjnΓimp − ΓpnjΓ
i
pm

)

These curvature tensors produce Ricci tensors of θ-kind, i.e., R
θ

α
jmα = R

θ
jm, θ ∈

{1, . . . , 5}.

2. Generalized equidistant spaces

Let GRN be a generalized Riemannian space with a nonsymmetric metric tensor
gij .

Definition 2.1. A vector field ϕ is called concircular if

(2.1) ϕi;j = ρδij .

where ρ is a function, δij is the Kronecker delta, (; ) denotes covariant derivative

with respect to the symmetric part of the connection Γijk.
If ρ = const, ϕ is called convergent. A generalized Riemannian space GRN with

concircular vector field is called generalized equidistant space.

Condition (2.1) can be presented as ϕi;j = ρgij which means that the covariant

derivative of ϕi (denoted by (;), (1.2)) is proportional to the symmetric part of the
metric tensor of the space GRN. Also, the previous condition can be presented as

ϕi|
1

j = ρgij − Γpij
∨

ϕp, ϕi|
2

j = ρgij − Γpji
∨

ϕp

where (|) denotes covariant derivative of the corresponding kind in the space GRN

and Γipj
∨

is the torsion tensor of GRN.

It is known that in equidistant space RN with symmetric metric tensor gij ,
where the concircular vector fields are nonisotropic (i.e., gijϕ

iϕj 6= 0), we can
introduce a system of the so-called canonical coordinates (xi), where the metric is
of the form

(2.2) ds2 = a(x1)(dx1)2 + b(x1)ds̃2,
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a, b ∈ C1 are nonzero functions, and ds̃2 = g̃σµ(x2, . . . , xN )dxσ dxµ is the metric

form of certain Riemannian spaces R̃N−1 (see [6]). Here, and in what follows, the
indices σ, µ, θ . . . take values from 2 to N .

Let us look at the metric form of the space GRN:

(2.3) ds2 = gijdx
idxj = (gij + gij

∨

)dxidxj .

As it holds

gijdx
idxj = gjidx

jdxi ⇔ (gij − gji)dx
idxj = 0 ⇔ gij

∨

dxidxj = 0,

we get that (2.3) becomes ds2 = gijdx
idxj = gijdx

idxj . So, we conclude that the

basic metric form of GRN can also be presented as (2.2). The symmetric parts of
Christoffel symbols of the second kind satisfy:

Γ1
11 =

1

2

a′

a
, Γ1

1σ = Γσ11 = 0, Γ1
µσ = −

1

2

b′

a
g̃σµ,

Γµσ1 =
1

2

b′

b
δµσ , Γνσµ = Γ̃νσµ, (σ, µ, ν > 1),

where g̃σµ are arbitrary symmetric functions of x2, . . . , xN , det(g̃σµ) 6= 0, Γ̃νσµ is
Christoffel symbols of the second kind derived from g̃σµ(xν).

Consider two generalized equidistant spaces GRN and GRN, where the space
GRN has a metric form (2.2), and the space GRN has an analogous metric

(2.4) ds̄2 = A(x1)(dx1)2 +B(x1)ĝσµdx
σdxµ,

where A,B ∈ C1 are nonzero functions, and ĝσµ are arbitrary symmetric functions
of x2, . . . , xN , det(ĝσµ) 6= 0.

Let f : GRN → GRN be a mapping of two equidistant spaces. Consider the
map in a common coordinate system x, i.e. the point M ∈ GRN and its image
f(M) ∈ GRN have the same coordinates x = (x1, x2, . . . , xN ). The corresponding
geometric objects in GRN will be marked with a bar. Then the symmetric part of

the deformation tensor P ijk = Γ
i

jk − Γijk of that mapping has the form

(2.5)

P 1
11 =

1

2

(

A′

A
−
a′

a

)

, P 1
1σ = P σ11 = 0, P σ1µ =

1

2

(

B′

B
−
b′

b

)

δσµ ,

P 1
σµ = −

1

2

(

B′

A
ĝσµ −

b′

a
g̃σµ

)

, P σµθ = Γ̂σµθ − Γ̃σµθ

The antisymmetric part of the deformation tensor will be denoted by ξijk, i.e.,

ξijk = P ijk
∨

= Γ
i

jk
∨

− Γijk
∨

.

The following lemma holds for an arbitrary mapping of an arbitrary generalized
Riemannian space.

Lemma 2.1. Under a mapping f of generalized Riemannian space GRN onto
generalized Riemannian space GRN, in the common coordinate system x with respect
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to the mapping, antisymmetric tensor ξijk satisfies

(2.6) ξpikgpj + ξpjkgip = −Γpik
∨

gpj − Γpjk
∨

gip,

where gij is the symmetric part of the metric tensor of GRN and Γpij
∨

is the torsion

tensor of GRN.

Proof. It is known that in the generalized Riemannian spaces holds gij||
1

k ≡ 0,

where we denote by ||
1

covariant derivative of the first kind in GRN (see [12]). Using

the definition of covariant derivative, we get

(2.7)

∂gij

∂xk
− Γ

p

ikgpj − Γ
p

jkgip ≡ 0 ⇔
∂gij

∂xk
− (Γ

p

ik + Γ
p

ik
∨

)gpj − (Γ
p

jk + Γ
p

jk
∨

)gip ≡ 0

⇔ Γ
p

ik
∨

gpj + Γ
p

jk
∨

gip ≡ 0,

where we used gij;k ≡ 0, (; ) is covariant derivative in the adjoint Riemannian

space RN. As it is ξijk = Γ
i

jk
∨

− Γijk
∨

, we get (2.6) from the last equation in (2.7). �

3. Conformal mappings of generalized equidistant spaces

Let GRN and GRN be two generalized Riemannian spaces.

Definition 3.1. [22] The mapping f : GRN → GRN is conformal if in the
common coordinate system x with respect to the mapping, the metric tensors gij
and gij of this spaces satisfy gij = e2ψ gij , where ψ is a function on GRN.

For the Christoffel symbols of the first kind of GRN and GRN the following
relation is valid

Γi.jk = e2ψ(Γi.jk + gjiψ,k − gjkψ,i + gikψ,j)

and for the Christoffel symbols of the second kind

(3.1) Γ
i

jk = Γijk + gip(gjpψ,k − gjkψ,p + gpkψ,j).

Let us introduce the notation ψk = ψ,k = ∂ψ/∂xk and ψi = gipψp. From (3.1) we
obtain

Γ
i

jk = Γijk + gip(gjpψk − gjkψp + gpkψj) + gip(gjp
∨

ψk − gjk
∨

ψp + gpk
∨

ψj),

i.e.,

Γ
i

jk = Γijk + δij ψk + δik ψj − ψigjk + ξijk, (ξijk = Γ
i

jk
∨

− Γijk
∨

)

where

ξijk = gip(gjp
∨

ψk − gjk
∨

ψp + gpk
∨

ψj) = −ξikj .
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So, under conformal mappings, the deformation tensor satisfies

(3.2) P ijk = δij ψk + δik ψj − ψi, gjk, P ijk
∨

= ξijk = gip (gjp
∨

ψk − gjk
∨

ψp + gpk
∨

ψj).

By comparing (2.5) with the first equation in (3.2) for all cases of concrete values
of indices i, j, k, we get

ψ1 =
1

2

(

A′

A
−
a′

a

)

=
1

2

(

B′

B
−
b′

b

)

=
a

2b

(

B′

A
−
b′

a

)

, ψσ = 0, σ = 2, . . . , N,

wherefrom we obtain A(x1) = ρ(x1)a(x1), B(x1) = ρ(x1)b(x1) and

(3.3) ψ =
1

2
ln |ρ| + c,

where ρ is an arbitrary function of x1, ρ′ 6= 0, and c is a constant. And also,
according to (3.2), right, and (3.3), we get

(3.4) ξ1
1σ = ξσµθ = 0, ξ1

σµ = −
ρ′

2aρ
gσµ

∨

, ξσ1µ =
1

2

ρ′

ρ
gσρgρµ

∨

.

The basic metric form of the space GRN is

(3.5) ds̄2 = ρ(x1)
(

a(x1)(dx1)2 + b(x1)g̃σµdx
σdxµ

)

.

Thus, the following theorem holds

Theorem 3.1. Generalized equidistant space GRN with fundament metric form
(2.2) admits conformal mapping f on the generalized equidistant space GRN with
fundament metric form (3.5), which is nontrivial for ρ′ 6= 0, determined by a non-
constant ψ given in (3.3), and by the anti-symmetric tensor ξijk given by (3.4).

Example 3.1. Let the generalized Riemannian space GR3 be given by the
nonsymmetric matrix

(gij) =





1 (x1)2 + (x3)2 (x2)2

−(x1)2 − (x3)2 ex
1

x3 ex
1

x2 + 1

−(x2)2 ex
1

x2 − 1 ex
1

(x2 + x3)





Suppose that x2x3 +(x3)2 −(x2)2 6= 0. Consider the symmetric and anti-symmetric
part of the basic matrix, respectively

(gij) =





1 0 0

0 ex
1

x3 ex
1

x2

0 ex
1

x2 ex
1

(x2 + x3)





(gij
∨

) =





0 (x1)2 + (x3)2 (x2)2

−(x1)2 − (x3)2 0 1
−(x2)2 −1 0
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Obviously, this space is equidistant and has the metric form (2.2) for a(x1) = 1 and

b(x1) = ex
1

. The inverse matrix (gij) = (gij)
−1 is in the form

(gij) =













1 0 0

0
x2 + x3

ex1(x2x3 + (x3)2 − (x2)2)

−x2

ex1(x2x3 + (x3)2 − (x2)2)

0
−x2

ex1(x2x3 + (x3)2 − (x2)2)

x3

ex1(x2x3 + (x3)2 − (x2)2)













Let us construct a conformal mapping of the space GR3. According to the

previous theorem, we can take ρ(x1) = ex
1

, ρ′ 6= 0, wherefrom ψ = 1
2x

1 for c = 0.
From (3.4) we obtain

(3.6)

ξ1
1σ = ξσµθ = 0, ξ1

23 = −
1

2
, ξ2

13 =
x2 + x3

2ex1(x2x3 + (x3)2 − (x2)2)
,

ξ3
12 =

−x3

2ex1(x2x3 + (x3)2 − (x2)2)
.

Thus, the conformal mapping is determined by the deformation tensor

P ijk = δij ψk + δik ψj − ψigjk + ξijk,

where ψ1 = 1
2 , ψ2 = ψ3 = 0, and ξijk is given by (3.6).

4. Geodesic mappings of generalized equidistant spaces

Let GRN and GRN be two generalized Riemannian spaces.

Definition 4.1. [15] A diffeomorphism f : GRN → GRN is called geodesic
mapping of GRN onto GRN if f maps any geodesic curve in GRN onto a geodesic
curve in GRN.

According to [15,16], a necessary and sufficient condition that the mapping f
is geodesic is that the deformation tensor has the form

(4.1) P ijk = δijψk + δikψj + ξijk,

where

ψi =
1

1 +N
P pip =

1

1 +N
(Γpip − Γpip),(4.2)

ξijk = P ijk
∨

= Γ
i

jk
∨

− Γijk
∨

.(4.3)

Equation (4.1) can be written as Γ
i

jk = Γijk + δijψk + δikψj + ξijk.

Definition 4.2. [15] A geodesic mapping f : GRN → GRN is equitorsion
if the torsion tensors of the spaces GRN and GRN are equal in the corresponding
points.
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According to (4.3), it means that Γ
i

jk
∨

− Γijk
∨

= ξijk = 0.

Let us construct a geodesic mapping of generalized equidistant space GRN with
metric form (2.2) onto generalized equidistant space GRN with metric form (2.4).
By comparing equations which describe symmetric part of deformation tensor (2.5)
with necessary and sufficient condition (4.1) of the geodesic mapping we obtain

P 1
11 =

1

2

(A′

A
−
a′

a

)

= ψ1δ
1
1 + ψ1δ

1
1 = 2ψ1 ⇒ ψ1 =

1

4

(A′

A
−
a′

a

)

P 1
1σ = 0 = ψ1δ

1
σ + ψσδ

1
1 ⇒ ψσ = 0

P σ1µ =
1

2

(B′

B
−
b′

b

)

δσµ = ψ1δ
σ
µ + ψµδ

σ
1 = ψ1δ

σ
µ ⇒ ψ1 =

1

2

(B′

B
−
b′

b

)

P 1
σµ = −

1

2

(B′

A
ĝσµ −

b′

a
g̃σµ

)

= ψσδ
1
µ + ψµδ

1
σ = 0 ⇒

B′

A
−
b′

a
= 0

From here, after some calculation, we obtain

A =
pa(x1)

(1 + qb(x1)2 , B =
pb(x1)

1 + qb(x1)
,

where p, q are constants such that p 6= 0, 1 + qb(x1) 6= 0 and qb′(x1) is not zero
identically. The metric of GRN has the form

(4.4) ds2 =
pa(x1)

(1 + qb(x1)2 (dx1)2 +
pb(x1)

1 + qb(x1)
g̃σµdx

σdxµ.

Also,

(4.5) ψ = −
1

2
ln |1 + qb(x1)| + c,

where c is a constant. According to (2.6) and (4.4) for all cases of concrete values
of indices i, j, k, we get the following system of equations

ξ1
σ1 = −Γ1

σ1
∨

, (ξρ1µ + Γρ1µ
∨

)gρσ + (ξ1
σµ + Γ1

σµ
∨

)g11 = 0,

(ξρσθ + Γρσθ
∨

)gρµ + (ξρµθ + Γρµθ
∨

)gσρ = 0,

i.e.,

(4.6)

ξ1
σ1 = −Γ1

σ1
∨

, pb(x1)(1 + qb(x1))(ξρ1µ + Γρ1µ
∨

)g̃ρσ + pa(x1)(ξ1
σµ + Γ1

σµ
∨

) = 0,

(ξρσθ + Γρσθ
∨

)g̃ρµ + (ξρµθ + Γρµθ
∨

)g̃σρ = 0,

wherefrom we can determine anti-symmetric tensor ξijk.
Thus, the following theorem holds

Theorem 4.1. Generalized equidistant space GRN with fundament metric form
(2.2) admits geodesic mapping f on the generalized equidistant space GRN with fun-
dament metric form (4.4), which is nontrivial for p 6= 0, 1+qb(x1) 6= 0 and nonzero
qb′(x1), determined by nonconstant ψ given in (4.5), and by the antisymmetric ten-
sor ξijk given by (4.6).
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Example 4.1. By the theorem given above, the function ψ = − 1
2 ln |1 + x1|

and the antisymmetric tensor

ξ1
21 = ξ1

31 = ξ2
23 = ξ3

23 = 0, ξ1
23 = x3 − x2,

ξ2
12 = −ξ3

13 =
x2(x2 − x3)

ex1(x2x3 + (x3)2 − (x2)2)
,

ξ2
13 =

(x2)2 − (x3)2

ex1(x2x3 + (x3)2 − (x2)2)
, ξ3

12 =
x3(x3 − x2)

ex1(x2x3 + (x3)2 − (x2)2)
,

determine a geodesic mapping of generalized equidistant space GR3 given in the
Example 3.1 onto equidistant space R3.

4.1. Invariant objects of equitorsion geodesic mapping. Invariant ge-
ometrical objects (invariants) are objects that do not change structure according
to the corresponding mappings. In the case of geodesic mapping between two Rie-
mannian spaces we have invariant geometric objects: the Tomas projective param-
eter and the Weyl projective tensor (see, for example, [10]). In [25] we found some
new invariants according to the equitiorsion geodesic mappings f : GRN → GRN.
All these objects exist in the space GRN and they are generalization of the Weyl
projective tensor. Among five invariants, three of them are tensors and we called
them “equitorsion projective tensors", and two of them are not tensors and we called
them “equitorsion projective parameters". Using the condition of the equidistant
spaces, we can find some interesting invariant geometrical objects which appear
under equitorsion geodesic mapping of generalized equidistant spaces.

Let f : GRN → GRN be a geodesic mapping of the generalized Riemannian
space which satisfies the condition

(4.7) ψij = ωgij ,

where ω is an invariant and ψij = ψi;j−ψiψj , or in the terms of covariant derivatives
of the first and the second kinds

(4.8) ψ
1
ij = ωgij − Γpij

∨

ψp, i.e. ψ
2
ij = ωgij + Γpij

∨

ψp,

ψ
k
ij = ψi|

k

j − ψiψj , k = 1, 2. Then the space GRN is generalized equidistant whose

equidistant congruence is generated by the vector ψi. Indeed, conditions (4.7) and
(4.8) are equivalent to ϕi;j = ρgij in the case ϕ = e−ψ, ρ = −ωe−ψ and the last

one presents the equation of generalized equidistant space. Further, suppose that
the mapping f is equitorsion, i.e., the condition ξijk = 0 is in force. Let us find the
invariant objects of this mapping of generalized equidistant space GRN.

As it is known, the relations between the corresponding kinds of curvatures
tensors of the spaces GRN and GRN under equitorsion geodesic mapping are [22]
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(4.9)

R
1

i
jmn = R

1

i
jmn + δij(ψ

1
mn − ψ

1
nm) + δimψ

1
jn − δinψ

1
jm + 2Γimn

∨

ψj + 2Γpmn
∨

ψpδ
i
j

R
2

i
jmn = R

2

i
jmn + δij(ψ

2
mn − ψ

2
nm) + δimψ

2
jn − δinψ

2
jm + 2Γinm

∨

ψj + 2Γpnm
∨

ψpδ
i
j

R
3

i
jmn = R

3

i
jmn + δij(ψ

2
mn − ψ

1
nm) + δimψ

2
jn − δinψ

1
jm + 2Γimj

∨

ψn + 2Γinj
∨

ψm

R
4

i
jmn = R

4

i
jmn + δij(ψ

2
mn − ψ

1
nm) + δimψ

2
jn − δinψ

1
jm + 2Γimj

∨

ψn + 2Γinj
∨

ψm

R
5

i
jmn = R

5

i
jmn +

1

2
δij(ψ

1
mn − ψ

2
nm + ψ

2
mn − ψ

1
nm) +

1

2
δim(ψ

1
jn + ψ

2
jn)

−
1

2
δin(ψ

1
jm + ψ

2
jm).

Let us start from the curvature tensor of the first kind. After using conditions (4.8)
we obtain

(4.10) R
1

i
jmn = R

1

i
jmn + ω(δimgjn − δingjm) − (δimΓpjn

∨

− δinΓpjm
∨

)ψp + 2Γimn
∨

ψj .

Contracting by indices i and n in the previous equation we get

R
1
jm = R

1
jm + ω(1 −N) − (1 −N)Γpjm

∨

ψp,

wherefrom we have

(4.11) ωgjm =
1

N − 1
(R

1
jm −R

1
jm) + Γpjm

∨

ψp.

Put (4.11) into (4.10) and obtain

(4.12) R
1

i
jmn = R

1

i
jmn +

δim
N − 1

(R
1
jn −R

1
jn) −

δin
N − 1

(R
1
jm −R

1
jm) + 2Γimn

∨

ψj .

In the similar way, starting from the second equation in (4.9) and using (4.8)
we obtain the following equation for the curvature tensor of the second kind

(4.13) R
2

i
jmn = R

2

i
jmn +

δim
N − 1

(R
2
jn −R

2
jn) −

δin
N − 1

(R
2
jm −R

2
jm) + 2Γinm

∨

ψj .

Let us sum up (4.12) and (4.13). We get

R
1

i
jmn +R

2

i
jmn = R

1

i
jmn +R

2

i
jmn +

δim
N − 1

[R
1
jn +R

2
jn − (R

1
jn +R

2
jn)]

−
δin

N − 1
[R

1
jm +R

2
jm − (R

1
jm +R

2
jm)].

If we introduce the notation

Q
1

i
jmn = R

1

i
jmn +R

2

i
jmn +

δim
N − 1

(R
1
jn +R

2
jn) −

δin
N − 1

(R
1
jm +R

2
jm),

we obtain Q
1

i
jmn = Q

1

i
jmn, which means that Q

1

i
jmn is an invariant object of equitor-

sion geodesic mapping. Obviously, this object is a tensor.
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Analogously to the previous consideration we can determine the relationships
between the curvature tenors of the third, the fourth and the fifth kind under
equitorsion geodesic mapping satisfying condition (4.8). Thus we have

(4.14)

R
3

i
jmn = R

3

i
jmn +

δim
N − 1

(R
3
jn −R

3
jn) −

δin
N − 1

(R
3
jm −R

3
jm)

+ 2δimΓpjn
∨

ψp + 2ψnΓimj
∨

+ 2ψmΓinj
∨

,

R
4

i
jmn = R

4

i
jmn +

δim
N − 1

(R
4
jn −R

4
jn) −

δin
N − 1

(R
4
jm −R

4
jm)

+ 2δimΓpjn
∨

ψp + 2ψnΓimj
∨

+ 2ψmΓinj
∨

,

R
5

i
jmn = R

5

i
jmn +

δim
N − 1

(R
5
jn −R

5
jn) −

δin
N − 1

(R
5
jm −R

5
jm).

After subtraction of the second equations from the first in (4.14) we obtain

R
3

i
jmn −R

4

i
jmn = R

3

i
jmn −R

4

i
jmn +

δim
N − 1

[R
3
jn −R

4
jn − (R

3
jn −R

4
jn)]

−
δin

N − 1
[R

3
jm −R

4
jm − (R

3
jm −R

4
jm)].

After introducing the denotation

Q
2

i
jmn = R

3

i
jmn −R

4

i
jmn +

δim
N − 1

(R
3
jn −R

4
jn) −

δin
N − 1

(R
3
jm −R

4
jm),

we obtain Q
2

i
jmn = Q

2

i
jmn, which presents the second invariant tensor of the map-

ping. From the last equation in (4.14) we get

Q
3

i
jmn = R

5

i
jmn +

δim
N − 1

R
5
jn −

δin
N − 1

R
5
jm,

which is the third invariant tensor, i.e., Q
3

i
jmn = Q

3

i
jmn.

Further, let us use (4.2) and the fact that the torsions of the corresponding
spaces are equal under equitorsion mapping in (4.12). Then we have

R
1

i
jmn = R

1

i
jmn +

δim
N − 1

(R
1
jn − R

1
jn) −

δin
N − 1

(R
1
jm −R

1
jm)

+ 2Γimn
∨

1

N + 1
(Γ
p

jp − Γpjp)

= R
1

i
jmn +

δim
N − 1

(R
1
jn − R

1
jn) −

δin
N − 1

(R
1
jm −R

1
jm)

−
2

N + 1
Γimn

∨

Γpjp.

Let us denote

Q
4

i
jmn = R

1

i
jmn +

δim
N − 1

R
1
jn −

δin
N − 1

R
1
jm −

2

N + 1
Γimn

∨

Γpjp.
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The object Q
4

i
jmn is invariant of the mapping, but is not a tensor. In the similar

way we can write the second, the third and the fourth curvature tensor

R
2

i
jmn = R

2

i
jmn +

δim
N − 1

(R
2
jn −R

2
jn) −

δin
N − 1

(R
2
jm −R

2
jm)

+
2

N + 1
Γ
i

nm
∨

Γ
p

jp −
2

N + 1
Γinm

∨

Γpjp.

R
3

i
jmn = R

3

i
jmn +

δim
N − 1

(R
3
jn −R

3
jn) −

δin
N − 1

(R
3
jm −R

3
jm)

+
2

N + 1
δim(Γ

p

jn
∨

Γ
q

pq − Γpjn
∨

Γqpq)

+
2

N + 1
(Γ
i

mj
∨

Γ
p

np − Γimj
∨

Γpnp) +
2

N + 1
(Γ
i

nj
∨

Γ
p

mp − Γinj
∨

Γpmp),

R
4

i
jmn = R

4

i
jmn +

δim
N − 1

(R
4
jn −R

4
jn) −

δin
N − 1

(R
4
jm −R

4
jm)

+
2

N + 1
δim(Γ

p

jn
∨

Γ
q

pq − Γpjn
∨

Γqpq)

+
2

N + 1
(Γ
i

mj
∨

Γ
p

np − Γimj
∨

Γpnp) +
2

N + 1
(Γ
i

nj
∨

Γ
p

mp − Γinj
∨

Γpmp)

wherefrom we get three more invariant parameters of the mapping which are not
tensors:

Q
5

i
jmn = R

2

i
jmn +

δim
N − 1

R
2
jn −

δin
N − 1

R
2
jm −

2

N + 1
Γinm

∨

Γpjp,

Q
6

i
jmn = R

3

i
jmn +

δim
N − 1

R
3
jn −

δin
N − 1

R
3
jm −

2

N + 1
δimΓpjn

∨

Γqpq

−
2

N + 1
Γimj

∨

Γpnp −
2

N + 1
Γinj

∨

Γpmp,

Q
7

i
jmn = R

4

i
jmn +

δim
N − 1

R
4
jn −

δin
N − 1

R
4
jm −

2

N + 1
δimΓpjn

∨

Γqpq

−
2

N + 1
Γimj

∨

Γpnp −
2

N + 1
Γinj

∨

Γpmp.

Thus, we proved the following theorem.

Theorem 4.2. Let f : GRN → GRN be an equitorsion geodesic mapping of
generalized equidistant space GRN in which the equidistant congruence is generated
by the vector ψi such that ϕ = e−ψ. Then Q

1

i
jmn, Q

2

i
jmn, Q

3

i
jmn are invariant

tensors and Q
4

i
jmn, Q

5

i
jmn, Q

6

i
jmn, Q

7

i
jmn are invariant parameters (not tensors) of

this mapping.
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5. Conclusion

The notion of generalized equidistant spaces first appeared in our paper [1].
We here continued the idea of generalized equidistant spaces, studying conformal
and geodesic mappings of such spaces. We proved the existence of mentioned
nontrivial mappings and constructed examples of conformal and geodesic mapping
of a generalized equidistant space GR3.

Also, we found three invariant tensors and four invariant objects which are not
tensors under geodesic mapping. By linear combinations of the obtained objects
one can form new interesting invariant objects, but the question is how many of
them are linearly independent and what they are.

The equidistant spaces are defined as the spaces satisfying the condition ϕi;j =

ρδij , for some vector field ϕ and a function ρ.
Due to the fact that in the generalized Riemannian spaces there are four kinds

of covariant derivatives with respect to the connection Γijk, we can also define
generalized equidistant spaces of the first and second kinds respectively by the
conditions

ϕi|
1

j = ρδij , ϕi|
2

j = ρδij .

(Note that the covariant derivatives of the third and fourth kinds are reduced to
the second and the first kind, respectively, in the case of ϕi.)

All this opens new questions and gives quite interesting ideas for the further
investigation.
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