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FIRST INTEGRALS AND EXACT SOLUTIONS

OF THE GENERALIZED MODELS

OF MAGNETIC INSULATION

Alexander Kosov, Edward Semenov, and

Alexander Sinitsyn

Abstract. We suggest generalizations of the mathematical model of mag-
netic insulation, described by multidimensional quasi potential ODE system
or PDE system with two-dimensional Laplace operator. Existence conditions
of the first integrals of a certain type for the class of nonlinear quasi poten-
tial systems, including the model vacuum diode are obtained. Integrability of
the vacuum diode models is justified. We find for PDE system the class of
exact radially symmetric solutions given by fractional-rational functions. The
class of systems with variable density, reduced to a similar system with the
constant current density by special transformations is specified. The class of
exact solutions of the non-singular boundary-value problem in annular domain
is found.

1. Introduction

During the recent decade, the international scientific community was involved
in the process of fostering plasma-and nano-technologies. In this connection, in-
vestigations bound up with understanding interactions between electromagnetic
fields and charged particles have been stimulated [1]. Solution of such problems
has necessitated an interdisciplinary approach, in which mathematical modeling
plays an important role. This approach allows the researcher to bring together and
coordinate various principles of physics characteristic of the interacting objects of
diverse physical nature. Modeling plasma represented as a flow of charged parti-
cles interacting in vacuum usually necessitates application of the Vlasov–Maxwell
or Vlasov–Poisson equations [2–8]. When solving these nonlinear systems of par-
tial differential equations (PDEs) with initial and boundary value conditions, it is
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necessary to find the solutions and ascertain their properties for a number of addi-
tional conditions (positiveness, monotony, singularity, etc.). And this is a special
mathematical problem.

Transition to a new, simpler model described by a system of ordinary differen-
tial equations (ODEs) with boundary-value conditions and, nevertheless, retaining
the principal physical and other properties typical of the initial (more complicated)
model represents a constructive and more efficient way to overcome possible math-
ematical difficulties. In this way the limit model of magnetic insulation for the
plane vacuum diode, which is a system of two nonlinear ODEs of second order
is obtained [9]. In this connection, it is necessary to obtain a solution for the
respective singular boundary value problem and study its properties.

Some results related to this limit model and the boundary-value problem were
obtained earlier with the application and combining analytical and numerical meth-
ods [9,10]. Integrability of the limit model is established, a complete system of four
first integrals is constructed and a method for solution of the singular boundary-
value problem is suggested [11]. Moreover, a parametric family of exact solutions
is constructed and it is shown that solutions to singular boundary-value problems
under certain conditions can be found. Therefore, the limit problem of magnetic
insulation [9] has been quite interesting mathematical object for the study.

In this paper we consider a generalization of the mathematical model of mag-
netic insulation [9] in two distinct directions. The first one concerns the transition
from two-dimensional unknown function to the vector of arbitrary dimension: as a
result we obtain the ODE system. The principal questions that we study here are:
1) construct explicit first integrals of a certain class of functions (for example, linear
to the given arguments); 2) search integrability conditions. Let us note that as it
is specified in the surveys [12,13], integrable systems have very much importance
though they are met rather seldom.

The second one concerns the transition from one-dimensional argument of un-
known function to two-dimensional argument, which leads to the system of two
PDEs with two-dimensional Laplace operator. The main question here is to build
parametric families of exact solutions and satisfy the boundary conditions. The
knowledge of explicit exact solutions of the nonlinear PDE is very useful for the
qualitative analysis [14]. The obtained analytical solution can be usefully applied
for testing the other, experimental or numerical results for adequate modeling of
modern technologies [15].

The generalized models of magnetic insulation, as mentioned above, with the
main objectives of the study are given in Section 2. In Sections 3, 4, existence
conditions of the first integrals of the “energy” type and linear in “velocity” are
presented respectively. As an example Section 5 shows to which integrals we come
under the proposed approach in the case of the basic model of magnetic insula-
tion [9]. In the next Section 6, we consider systems with the potential of a special
type, for which we can prove existence of a family linear with respect to “veloc-
ity” integrals. In Section 7, integrability of 12-dimensional model, which is in some
sense analogous to the classic two-body problem is justified. The questions of model
representation in the Hamiltonian form and integrability are considered in Section
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8. Section 9 is devoted to exact solutions of PDEs system with two-dimensional
Laplace operator in the case of a constant current density. The same questions
for the case of a variable current density are discussed in Section 10. In the last
Section 11, the conditions of existence and the explicit form of exact solutions of
the boundary-value problems in the annular domain are given.

2. The generalized mathematical models of

magnetic insulation and the problem statement

The limit model of a plane vacuum diode has been proposed by a group of
mathematicians from the University of Toulouse [9]. The model consists of two
second-order nonlinear ODEs

(2.1)
d2ϕ

dx2 = j
(1 + ϕ)

√

(1 + ϕ)2 − a2 − 1
,

d2a

dx2 = j
a

√

(1 + ϕ)2 − a2 − 1
.

Here the independent variable x ∈ [0, 1] denotes the relative distance from the
cathode, and x = 1 corresponds to the anode. The function ϕ(x) describes the
distribution of the electric potential in the process of moving from cathode to
anode; a(x) is the potential of the magnetic field; the unique constructive model’s
parameter j is the density of current through the diode. System (2.1) describes
the electric and magnetic fields inside the diode, and its solution shall satisfy the
following boundary conditions

ϕ(0) = 0, a(0) = 0, ϕ′(0) =
dϕ

dx
(0) = 0,(2.2)

ϕ(1) = ϕ1, a(1) = a1.(2.3)

Note that boundary-value problem (2.1)–(2.3) is singular: after substituting con-
ditions (2.2) into equations (2.1) for x = 0, the denominator vanishes. Moreover,
in solving (2.1)–(2.3) it is assumed [9] that the parameter j is free and should be
found together with the solution of the boundary value problem. Together with
singular problem (2.1)–(2.3), nonsingular boundary-value problems (2.1) also may
be of interest, when instead of (2.2), the solution must satisfy the conditions of the
type (2.3), given for various values of the independent variable and does not lead to
conversion of denominator to zero in (2.1). Now, we describe the multidimensional
quasi potential system of ODEs generalizing model (2.1).

Let us suppose that Ω ⊂ Rn is a domain, in which the continuously differen-
tiable scalar function Π(q), q ∈ Ω is given, hereinafter called the potential. The
independent real variable t ∈ R to be called “time”, and the first and second order
derivatives of q(t) in t will be denoted by one or two dots over the letter.

Let us consider in a domain Γ = {(q, q̇) ∈ Ω × Rn} the system of ODEs of the
second order

(2.4) Aq̈ +B
∂Π(q)
∂q

= 0,

where A, B are the constant square matrices of the dimension n × n with real
elements.
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The classic Peano theorem guarantees existence of the solution q(t, q0, q̇0),
q̇(t, q0, q̇0) in the case of a non-singular matrix A for every initial point (q0, q̇0) ∈ Γ
of the system (2.4) (generally speaking non-unique) on the “time” interval t ∈ (α, ω)
determined by the initial conditions (q0, q̇0) and the choice of a particular solution
in the nonuniqueness case. In the case of a singular matrix A, the system (2.4)
presents the differential-algebraic system [16] and there are no solutions for any
initial conditions.

Note that model (2.1) is written in the form (2.4), therefore it suffices to put

t = x ∈ R, q = col(q1, q2) ∈ R2, Π(q) = j
√

(1 + q1)2 − 1 − q2,

A =

(

1 0
0 1

)

, B =

(

−1 0
0 1

)

, Ω =
{

q ∈ R2 : (1 + q1)2 − 1 − q2 > 0
}

.

Therefore, system (2.4) can be regarded as a generalized mathematical model of
magnetic insulation. On the other hand system (2.4) can describe many other
physical objects such as the famous problem of the motion of planets in the solar
system under gravity [17].

The function F (q, q̇), which does not reduce to the identical constant, is called
the first integral of (2.4) in the domain Γ if it preserves the constant values along
any real solutions of the system, which does not leave this domain.

Checking of the property of the first integral for continuously differentiable
functions can be performed without actual knowledge of solutions by calculating
the derivative along the system.

One of the main goals of this paper is to obtain the conditions that guarantee
existence of the first integrals of (2.4) of a certain type, whose derivatives are
identically equal to zero by (2.4). We will consider two types of integrals : integral
of “energy”, and integral linear in “velocity” q̇. The system (2.4) with the identity
matrix B = E and the symmetric positive definite matrix A is considered [17] in
analytical mechanics. In this case, the terms “time”, “velocity”, and “energy” are
basic and can be used without quotation marks. But, as shown above, the system
(2.4) can act as the mathematical model of an object having a nonmechanical
nature, such as a vacuum diode. While the independent variable has no relation to
the physical time. Therefore, the terms ŞenergyŤ integral, etc. are only nominal
ones and they have mechanical analogs. Existence of solutions of (2.4) in the case
of a singular matrix A is not guaranteed. Thus, in this situation, the constructed
integrals should be considered only as formal ones providing zero derivative along
the system in the considered domain. The question of existence of real solutions
of the system is not considered here. Existence of the classic solutions of the
differential-algebraic systems has been considered in [16], and generalized in [18].

Therefore, one of the main goals of this paper is to obtain the conditions of
existence and effective construction of the formal first integrals of system (2.4). For
the case of a nonsingular matrix A, the found integrals are guaranteed to be the
first integrals in the precise sense of the above definition.

Now, we give a generalization of model (2.1) in another direction. Replacing
the unknown function in (2.1) by the formula ψ = 1 +ϕ and the second derivatives
by two-dimensional Laplace operator, we obtain the system of two nonlinear PDEs
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of the second order

(2.5)

∆xyψ ≡ ∂2ψ

∂x2 +
∂2ψ

∂y2 = j
ψ

√

ψ2 − a2 − 1
, ψ

△

= ψ(x, y),

∆xya ≡ ∂2a

∂x2 +
∂2a

∂y2 = j
a

√

ψ2 − a2 − 1
, a

△

= a(x, y).

The goal of this part of the paper is: 1) to construct the exact solutions of system
(2.5), and 2) to obtain the exact solutions of the boundary value problems of system
(2.5) in annular domains.

We assume that, along with the search of the solution of system (2.5), just
as for the boundary-value problem (2.1)–(2.3) according to [9], it can be useful
to build the function j(x, y). As we established earlier [19](Theorem 2), the set
of solutions of system (2.1) is certainly contained in the set of solutions of (2.5)
and in this sense it is possible to consider system in partial derivatives (2.5) as a
generalized model of magnetic insulation with respect to model (2.1) offered in [9].

3. “Energy” integral

Theorem 3.1. If the matrix B is nondegenerate, and the matrix S = B−1A is

symmetric, then the function

(3.1) V (q, q̇) = 0.5q̇TSq̇ + Π(q)

is the first integral of (2.4) in the domain Γ.

Proof. Calculate derivative (3.1) with respect to system (2.4)

dV

dt

∣

∣

∣

(2.4)
= 0.5q̈TSq̇ + 0.5q̇TSq̈ +

∂ΠT

∂q
q̇

= 0.5q̈TB−1Aq̇ + 0.5q̇TB−1Aq̈ +
∂ΠT

∂q
q̇

= 0.5q̈T (B−1A)T q̇ + 0.5q̇TB−1
(

−B∂Π
∂q

)

+
∂ΠT

∂q
q̇

= 0.5q̈TAT (B−1)T q̇ + 0.5q̇TB−1
(

−B∂Π
∂q

)

+
∂ΠT

∂q
q̇

= −0.5
∂ΠT

∂q
BT (B−1)T q̇ − 0.5q̇T

∂Π
∂q

+
∂ΠT

∂q
q̇ ≡ 0. �

Note that nondegeneracy of the matrix A is not required during the proof as
well as its symmetry. Function (3.1) takes the form V (q, q̇) = 0.5q̇TAq̇+Π(q) in the
case of a mechanical system and expresses the total energy while A is symmetric
and positive definite. Therefore, integral (3.1) is naturally called “energy” integral.

4. Integral linear in the “velocity”

Theorem 4.1. Let a vector h ∈ Rn exist and the n×n matrices C, M(q) such

that
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1) Cq + h = M(q)
∂Π
∂q

for all q ∈ Ω;

2) the matrix MT (q)B is skew-symmetric for all q ∈ Ω;

3) the matrix CTA is skew-symmetric.

Then the function

(4.1) J(q, q̇) = (Cq + h)TAq̇

is the first integral of (2.4) in the domain Γ.

Proof. Calculate derivative (4.1) with respect to system (2.4)

dJ

dt

∣

∣

∣

(2.4)
= q̇TCTAq̇ + (Cq + h)T

(

−B∂Π
∂q

)

= −∂ΠT

∂q
MT (q)B

∂Π
∂q

≡ 0. �

Note that nondegeneracy of the matrices A, B is not required in the proof, as
well as their symmetry. In the case of a mechanical system, q̇ represents a vector
of generalized velocities. Therefore, integral (4.1) is naturally called the integral
linear in “velocities”. It is also important to note that in some cases (4.1) may
contain more than one integral even a whole family.

5. Integrals of the system modeling vacuum diode

Applying Theorem 3.1 to system (2.1), we obtain the expression of the “energy”
integral

(5.1) V = 0.5(q̇2
2 − q̇2

1) + j
√

(1 + q1)2 − 1 − q2
2 .

We put

C =

(

0 −1
1 0

)

, h =

(

0
1

)

, M(q) =

√

(1 + q1)2 − 1 − q2
2

j

(

0 1
1 0

)

.

Applying Theorem 4.1 to system (2.1), we obtain the expression of the integral
linear in “velocity”

(5.2) J = (1 + q1)q̇2 − q2q̇1.

Note that integrals (5.1), (5.2) for the diode model (2.1) can be also obtained with
direct observation of (2.1), and not as a consequence of integrals of general system
(2.4).

6. Systems with a potential of the special form

Let us suppose the matrix S = B−1A to be symmetric and consider (2.4) in
the case of a potential of special form

(6.1) Π(q) = f(σ), σ =
1
2
qTSq + qTk,

where k ∈ Rn is a constant vector, and f(σ) is a continuously differentiable scalar
function of scalar argument. It is easy to see that we can take f(σ) =

√
−2σ,

k = col(−1, 0) for diode model (2.1), i.e., this model is included in considered class
(6.1).
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Theorem 6.1. If the matrices A, B are nondegenerate, the matrix S = B−1A
is symmetric, and the potential has the form (6.1), then the function

(6.2) K(q, q̇) = q̇T (Cq + h), h = CA−1Bk

is the first integral of (2.4) in the domain Γ for any constant skew-symmetric matrix

C.

Proof. Calculate derivative (6.2) with respect to system (2.4)

(6.3)

dK

dt

∣

∣

∣

(2.4)
= q̇TCq̇ + q̈T (Cq + h) = −

(

A−1B
∂Π
∂q

)T

(Cq + h)

= −f ′(σ)(Sq + k)T (A−1B)T (Cq + h).

The domain Ω splits into two disjoint subsets: Ω0, where f ′(0.5qTSq+qTk) = 0, and
Ω1 with f ′(0.5qTSq+qTk) 6= 0. From (6.3), it follows that the equality dK

dt

∣

∣

(2.4) ≡ 0
will be satisfied on the set Ω0. To establish the same equality for the subset Ω1, we
define the matrix M(q) on it by the following way M(q) = 1

f ′(σ)CA
−1B. We have

the chain of equalities

M(q)
∂Π
∂q

=
1

f ′(σ)
CA−1Bf ′(σ)(Sq + k)

= CA−1BB−1Aq + CA−1Bk = Cq + h.

We express Cq+h = CA−1B(Sq + k) from this chain and we substitute it in (6.3),
then, taking into account the skew-symmetric matrix C, we obtain

dK

dt

∣

∣

∣

(2.4)
= −f ′(σ)(Sq + k)T (A−1B)TCA−1B(Sq + k) ≡ 0

for the subset Ω1. Thus, Theorem 6.1 is proved completely. �

Since the skew-symmetric matrix C can be considered arbitrary, then, in fact,
(6.2) gives not one, but a whole family of integrals.

Note that if the conditions of Theorem 6.1 and Theorem 3.1 are satisfied, then
along with family of integrals (6.1), the system has “energy” integral (3.1).

7. Generalized model of diode with 6 degrees of freedom

In this section we consider system (2.4) with the vector q ∈ R6, the identity
matrix A = E, nondegenerate diagonal matrix B = diag (bi, i = 1, 6) and potential
of the form

(7.1) Π(q) = f(σ), σ =
1
2

6
∑

i=1

b−1
i q2

i +
6

∑

i=1

kiqi,

where bi, ki are some constants, and f(σ) is an arbitrary scalar continuously dif-
ferentiable function of scalar argument. It is easy to see that system (2.4), (7.1) is
a special case of (2.4), (6.1). At the same time, (2.4), (7.1) can be considered as a
generalization of diode model (2.1), because it has three times as much coordinates,
not fixed values of parameters bi, ki, i = 1, 6, and in the arbitrary scalar function
in potential.
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To construct the integrals of system (2.4), (7.1), we apply Theorem 6.1, whose
conditions are satisfied. Choosing only one element above the principal diagonal of
the matrix C from (6.2) as a nonzero one and applying Theorem 6.1, we obtain 15
first integrals

(7.2)
Kij(q, q̇) = (qi + biki)q̇j − (qj + bjkj)q̇i = const,

i = 1, 6, j = i+ 1, 6.

Certainly, all these integrals cannot be independent. Only 9 are, because the rank
of the Jacobian matrix for (7.2) is 9. For example, one of the minors of the 9-th
order can be written as

∆ = q̇6((q5 + b5k5)q̇6 − (q6 + b6k6)q̇5)((q1 + b1k1)q̇2 − (q2 + b2k2)q̇1)3

and does not vanish in some open sub-domains of Γ.
Note that (2.4), (7.1) is analogous in some sense to the classic problem of

celestial mechanics of two gravitating material points [17] (two-body problem):
both problems are described by six differential equations of the second order (or by
twelve equations of the first order), in both there are 10 first integrals of this type
(1 “energy” integral +9 linear in “velocities”).

The classic two-body problem is known to be integrable [17], so that the gen-
eralized vacuum diode model (2.4), (7.1) must also be integrable.

8. Representation in Hamiltonian form and integrability

Let us assume that the matrices A, B are nondegenerate, and the matrix
S = B−1A is symmetric. We show that in this case system (2.4) can be represented
in the Hamiltonian form. We set p = Sq̇, H(q, p) = 0.5pTS−1p+ Π(q). Thus, the
system (2.4) can be written in the new coordinates in the canonical form

(8.1) q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

Because diode model (2.1) satisfies the conditions of nondegeneracy of A, B, and
S = B−1A is diagonal for it, then (2.1) can be written in the form (8.1) with
Hamiltonian H(q, p) = 0.5(−p2

1 + p2
2) + j

√

(1 + q1)2 − 1 − q2
2 . Integrals (5.1), (5.2)

in the canonical variables are presented as H(q, p) = const, J = (1 + q1)p2 + q2p1 =
const. They are independent, independent of time and are in involution. Therefore,
due to Liouville’s theorem [17], the diode model (2.1) is integrable. Integration was
done in [11], where using Liouville theorem, a complete system of 4-th first integrals
is constructed.

Representation in the canonical form for generalized model (2.4), (7.1) is also
possible, and integrals (3.1), (7.2) are now written as

(8.2)

H(q, p) =
1
2

6
∑

i=1

bip
2
i + Π(q) = const,

Kij(q, p) = (qi + biki)bjpj − (qj + bjkj)bipi = const,

i = 1, 6, j = i+ 1, 6.
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There will be only four independent integrals in involution as follows: H(q, p) =
const, b1p1(q2 + b2k2) + b2p2(q1 + b1k1) = const, b3p3(q4 + b4k4) + b4p4(q3 + b3k3) =
const, b5p5(q6 + b6k6) + b6p6(q5 + b5k5) = const. They are not sufficient to justify
the integrability by Liouville theorem [17].

However, as noted above, the generalized diode model represented in the canon-
ical form, has 10 independent first integrals (1 “energy” integral +9 linear in “mo-
mentum” p). Using the linear momentum integral, we can transform the system
while preserving its Hamiltonian form so that the transformed system would have
a cyclic coordinate [17] and reduce the order of the system by two units. The
energy integral reduces the system order by two units more [17]. Still unused 8
independent integrals of family (8.2) represented in new coordinates will provide
integrability of reduced Hamiltonian system with 4 degrees of freedom.

Thus, generalized diode model (2.4), (7.1) is integrable as well as the model (2.1).

9. Exact solutions of the system of equations

related to magnetic insulation of the vacuum diode

in two-dimensional coordinate space

In this section, we consider the problem of finding the exact solutions of system
of nonlinear elliptic equations (2.5). First of all, we are interested in a radially
symmetric solutions of (2.5) as the simplest class of multi-dimensional solutions,
i.e., the functions

ψ(x, y)
△

= ψ(r), a(x, y)
△

= a(r), where r2 = x2 + y2.

In this case, the system (2.5) is transformed to a nonlinear system of the second
order ODEs

(9.1)

ψ′′ +
1
r
ψ′ = j

ψ
√

ψ2 − a2 − 1
, ψ

△

= ψ(r),

a′′ +
1
r
a′ = j

a
√

ψ2 − a2 − 1
, a

△

= a(r).

Hereinafter in this section, the prime sign denotes the derivative with respect to
the argument r. One can easily make sure that system (9.1) possesses the following
first integral

(9.2) I ≡ r(ψa′ − aψ′) = const .

We seek a solution of system (9.1) in the form of the following functional ansatz

(9.3)
ψ(r) =

1
2γ
z(r)

(

eω(r) + γ2e−ω(r)),

a(r) =
1
2γ
z(r)

(

eω(r) − γ2e−ω(r)),

where γ 6= 0 is an arbitrary real constant, and new functions z
△

= z(r), ω
△

= ω(r)
have to be determined. If the constant γ is chosen to be equal to one then instead
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of formulas (9.3) we obtain an ansatz of the form

ψ(r) = z(r) coshω(r), a(r) = z(r) sinhω(r).

As it will be shown below, system (9.1) may be decomposed with the ansatz (9.3),
that is to reduce it to two equations: one for the function z(r), and the other for
the function ω(r).

Substituting ansatz (9.3) into (9.1) and calculating the required derivatives, we
group the terms in such a way to get the following algebraic system

X
( 1

2γ
eω(r) +

γ

2
e−ω(r)

)

+ Y
( 1

2γ
eω(r) − γ

2
e−ω(r)

)

= 0,

X
( 1

2γ
eω(r) − γ

2
e−ω(r)

)

+ Y
( 1

2γ
eω(r) +

γ

2
e−ω(r)

)

= 0.

The following notations are introduced

X = z′′ +
1
r
z′ + zω′2 − j

z√
z2 − 1

,

Y =
(

2z′ +
1
r
z
)

ω′ + zω′′.

With respect to the variables X,Y , the resulting system of algebraic equations is
linear and homogeneous, its determinant is equal to one, therefore, it has only one
trivial solution X = 0, Y = 0. Hence, system (9.1) is reduced to the following two
ODEs:

z′′ +
1
r
z′ + zω′2 − j

z√
z2 − 1

= 0,(9.4)

(

2z′ +
1
r
z
)

ω′ + zω′′ = 0.(9.5)

Integrating relation (9.5) we obtain

(9.6) ω′ =
B0

rz2 ,

where B0 > 0 is a constant of integration. Substitution of (9.6) into (9.4) gives

(9.7) z′′ +
1
r
z′ +

B2
0

r2 z
−3 − j

z√
z2 − 1

= 0.

Therefore, solvability of system (9.1) in the form of ansatz (9.3) has been reduced
to the solvability of one nonlinear nonautonomous second order ODE (9.7) for the
function z(r), because the function ω(r) can be found by (9.6) by simple integra-

tion. My means of the substitution z =
√

y2 + 1, y
△

= y(r), equation (9.7) can be
transformed into the form without radicals via simple transformations

y2(y2 + 1)
(

y′′ +
1
r
y′

)

+ yy′2 +
B2

0

r2 y − j(y2 + 1)2 = 0.

This equation has an exact solution in the form of exponential function with B0 = 2

y(r) =
1
4
jr2,
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whence it is easy to obtain an explicit solution of (9.7) of the form

(9.8) z(r) =
1
4

√

j2 r4 + 16.

Integrating (9.6), with the account of (9.8), we obtain

ω(r) = ln

(

C0r
2

√

j2r4 + 16

)

,

where C0 > 0 is a constant of integration. Thus, we obtain the following exact
solution of system (9.1) from (9.3) (9.1)

(9.9)
ψ1(r) =

γ2
0 + j2

8γ0
r2 +

2
γ0
r−2,

a1(r) =
γ2

0 − j2

8γ0
r2 − 2

γ0
r−2.

We introduce the new constant γ0 = C0/γ. In turn of the analysis of first integral
(9.2), we propose another exact solution of (9.4), which is distinct from ((9.9) but
close in structure to it

(9.10)
ψ2(r) =

γ2
0 + j2

8γ0
r2 +

2γ0

j2 r−2,

a2(r) =
γ2

0 − j2

8γ0
r2 +

2γ0

j2 r−2.

Functions (9.9), (9.10) for γ0 6= j represent linearly independent solutions. If we
choose a constant γ0 such that γ0 = j, then, in this particular case, solutions (9.9),
(9.10) coincide and may be written as

ψ(r) =
j

4
r2 +

2
j
r−2, a(r) =

2
j
r−2.

Finally, in terms of the initial variables x, y, from (9.9), (9.10), we obtain the
following exact radial-symmetric solutions of system (2.5):

ψ1(x, y) =
γ2

0 + j2

8γ0
(x2 + y2) +

2
γ0

(x2 + y2)−1,

a1(x, y) =
γ2

0 − j2

8γ0
(x2 + y2) − 2

γ0
(x2 + y2)−1,

(9.11)

ψ2(x, y) =
γ2

0 + j2

8γ0
(x2 + y2) +

2γ0

j2 (x2 + y2)−1,

a2(x, y) =
γ2

0 − j2

8γ0
(x2 + y2) +

2γ0

j2 (x2 + y2)−1.

(9.12)

Having resumed the above considerations, we can conclude the following.

Theorem 9.1. System of nonlinear elliptic equations (2.5) with a constant

current density possesses the exact radial-symmetric solutions (9.11), (9.12).

The validity of this statement may be confirmed by direct substitution of for-
mulas (2.5), (9.11), into (9.12), which transforms it into identity.
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10. Exact solutions with a variable current density

In this section, we consider the problem of constructing the exact multi dimen-
sional solutions of the system of nonlinear elliptic equations with a variable current
density:

(10.1)

∆xyψ = j(x, y)
ψ

√

ψ2 − a2 − 1
, ψ

△

= ψ(x, y),

∆xya = j(x, y)
a

√

ψ2 − a2 − 1
, a

△

= a(x, y).

Definition 10.1. The harmonic functions ξ(x, y), η(x, y) are called conjugate
in the single-connected domain D if the function F (z) = ξ(x, y) + iη(x, y), is an
analytical function of complex argument z = x+ iy in the domain D.

The conjugate harmonic functions are related by the Cauchy–Riemann equa-
tions

∂ξ

∂x
=
∂η

∂y
,

∂ξ

∂y
= −∂η

∂x
,

and define each other everywhere in D within an additive constant and conse-
quently, have the following properties

(10.2) (∇ξ,∇η) = 0, |∇ξ|2 = |∇η|2.

Here ∇ =
(

∂
∂x
, ∂
∂y

)T
is nabla operator.

Theorem 10.1. If the current density j(x, y) in system (10.1) is a square of

gradient of the arbitrary harmonic function, i.e.,

j(x, y) = J0 |∇ξ|2, J0 = const > 0,

then by transformation

(10.3) ψ(x, y) = ψ(ξ, η), a(x, y) = a(ξ, η),

where ξ
△

= ξ(x, y), η
△

= η(x, y) are conjugate harmonic functions, system (10.1) is

reduced to the equation of a similar form with a constant current density

(10.4)

∆ξηψ = J0
ψ

√

ψ2 − a2 − 1
, ψ

△

= ψ(ξ, η),

∆ξηa = J0
a

√

ψ2 − a2 − 1
, a

△

= a(ξ, η).

Proof. Due to the properties of (10.2) of conjugate harmonic functions, it is
easy to show that by transformation (10.3) the following relations are obtained

∆x y ψ(x, y) = |∇ξ|2∆ξη ψ(ξ, η), ∆x y a(x, y) = |∇ξ|2∆ξη a(ξ, η).
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Here ∆ξη· =
(

∂2

∂ξ2 · + ∂2

∂η2 ·
)

is a two-dimensional Laplace operator in the space of
the variables (ξ, η). In this case, the system (10.1) assumes the form

(10.5)

|∇ξ|2∆ξηψ = j(x, y)
ψ

√

ψ2 − a2 − 1
,

|∇ξ|2∆ξηa = j(x, y)
a

√

ψ2 − a2 − 1
.

Hence, assuming that the current density j(x, y) satisfies the condition of the the-
orem, we immediately obtain the system of equations (10.4). �

Example 10.1. Let us construct the exact solutions for the following system
of equations:

(10.6)

∆xyψ = j0(x2 + y2)k−1 ψ
√

ψ2 − a2 − 1
,

∆xya = j0(x2 + y2)k−1 a
√

ψ2 − a2 − 1
,

where j0 = const > 0. Note that the following relation

(x2 + y2)k−1 =
1
k2 |∇φ(x, y)|2,

is satisfied, where the function φ(x, y) is a harmonic polynomial of degree k ∈ N.
Therefore, the current density in equations (10.6) satisfies the condition of Theo-
rem 10.1. Hence, by transformation of (10.3), they are reduced to the system of
equations (10.4) to the functions ψ(ξ, η), a(ξ, η). Furthermore, the new variables
ξ, η are conjugate harmonic polynomials, i.e.,

ξ(x, y) = (x2 + y2)
k

2 cos(kϕ(x, y)), η(x, y) = (x2 + y2)
k

2 sin(kϕ(x, y)),

where the functions ϕ(x, y) can be represented in the form of the following two
types

ϕ(x, y) = arccos

(

x
√

x2 + y2

)

or ϕ(x, y) = arcsin

(

y
√

x2 + y2

)

.

Now, in order to write out the exact solutions of (10.6) with the variable current
density, it is necessary to obtain explicit non-trivial solutions of (10.4) with a
constant current density. In the previous section, we have found the exact radial-
symmetric solutions (9.11), (9.12) for the model of magnetic insulation (2.5), which
we present in terms of the variables ξ, η for system (10.4)

ψ1(ξ, η) =
γ2

0 + J2
0

8γ0
(ξ2 + η2) +

2
γ0

(ξ2 + η2)−1,

a1(ξ, η) =
γ2

0 − J2
0

8γ0
(ξ2 + η2) − 2

γ0
(ξ2 + η2)−1,

(10.7)
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ψ2(ξ, η) =
γ2

0 + J2
0

8γ0
(ξ2 + η2) +

2γ0

J2
0

(ξ2 + η2)−1,

a2(ξ, η) =
γ2

0 − J2
0

8γ0
(ξ2 + η2) +

2γ0

J2
0

(ξ2 + η2)−1.

(10.8)

Here γ0 6= 0 is an arbitrary constant. Making the transition to the variables x, y in
(10.7), (10.8) and taking into account the equality J0 = j0/k

2, we can write down
the exact radial-symmetric solutions of (10.6)

ψ1(x, y) =
γ2

0k
4 + j2

0

8γ0k4 (x2 + y2)k +
2
γ0

(x2 + y2)−k,

a1(x, y) =
γ2

0k
4 − j2

0

8γ0k4 (x2 + y2)k − 2
γ0

(x2 + y2)−k,

(10.9)

ψ2(x, y) =
γ2

0k
4 + j2

0

8γ0k4 (x2 + y2)k +
2γ0k

4

j2
0

(x2 + y2)−k,

a2(x, y) =
γ2

0k
4 − j2

0

8γ0k4 (x2 + y2)k +
2γ0k

4

j2
0

(x2 + y2)−k.

(10.10)

By direct verification, we can see that the obtained solutions (10.9), (10.10) satisfy
(10.6) for any real k ∈ R, k 6= 0, despite the fact that the number k is natural.
Note that the current density for k in system (10.6) becomes constant. Therefore,
in this case it is obvious that formulas (10.9), (10.10) define the solution of (10.4)
in the space of the variables x, y and coincide with formulas (10.7), (10.8).

If k = 0, then, in this interesting particular case, system of equations (10.1)
takes the form

∆xyψ =
j0

x2 + y2

ψ
√

ψ2 − a2 − 1
,

∆xya =
j0

x2 + y2

a
√

ψ2 − a2 − 1
,

and possesses the following exact solutions

ψ1(x, y) =
γ2

0 + j2
0

8γ0
σ(x, y) +

2
γ0σ(x, y)

, a1(x, y) =
γ2

0 − j2
0

8γ0
σ(x, y) − 2

γ0σ(x, y)
,

ψ2(x, y) =
γ2

0 + j2
0

8γ0
σ(x, y) +

2γ0

j2
0σ(x, y)

, a2(x, y) =
γ2

0 − j2
0

8γ0
σ(x, y) +

2γ0

j2
0σ(x, y)

,

where the following notation is accepted

σ(x, y) =
1
4

ln2(x2 + y2) + arctan2 y

x
.

11. On exact solutions of the boundary value problems

in annular domain

We consider the boundary value problem for the system of two nonlinear differ-
ential equations of the second order with partial derivatives (2.5) in annular domain
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Θ =
{

(x, y) : 0 < ρ2
1 6 x2 + y2 6 ρ2

2 < +∞
}

ψ(x, y) = ψ̄1, a(x, y) = ā1 for x2 + y2 = ρ2
1,(11.1)

ψ(x, y) = ψ̄2, a(x, y) = ā2 for x2 + y2 = ρ2
2,(11.2)

where ρ1, ψ̄1, ā1, ρ2, ψ̄2, ā2 are some given positive numbers 0 < ρ1 < ρ2 < +∞.
Using the presented exact solutions in Section 9, one can specify the conditions to
the numbers ρ1, ψ̄1, ā1, ρ2, ψ̄2, and ā2, under which there is a value j > 0 such
that boundary value problem (2.5), (11.1), (11.2) has a radial-symmetric solution
in the annular domain Θ given by the explicit formulas.

Theorem 11.1. If the conditions

ψ̄2
i − ā2

i − 1 > 0, (i = 1, 2),

ρ2
2(ψ̄1 + ā1) = ρ2

1(ψ̄2 + ā2),

ρ4
2(ψ̄2

1 − ā2
1 − 1) = ρ4

1(ψ̄2
2 − ā2

2 − 1)

are satisfied, then the boundary value problem (2.5), (11.1), (11.2) has a solution

for j =
4
ρ2

1

√

ψ̄2
1 − ā2

1 − 1

ψ(x, y) =
k2 + j2

8k
(x2 + y2) +

2
k(x2 + y2)

,(11.3)

a(x, y) =
k2 − j2

8k
(x2 + y2) − 2

k(x2 + y2)
,(11.4)

where k = 4
ρ2

1

(ψ̄1 + ā1).

Proof. According to Theorem 9.1, system (2.5) has an exact solution of
(11.3), (11.4). Consider equalities (11.3), (11.4) on the circle x2 + y2 = ρ2

1. Adding
them we get k = 4

ρ2

1

(ψ̄1 + ā1). Substituting this value into any of equalities (11.3),

(11.4), we obtain j2 = 16
ρ4

1

(ψ̄2
1 − ā2

1 −1). Likewise, for the second circle x2 +y2 = ρ2
2,

one can obtain k = 4
ρ2

2

(ψ̄2 + ā2) and j2 = 16
ρ4

2

(ψ̄2
2 − ā2

2 − 1). Since the values of the
parameters k, j must be the same for both circles, we come to the theorem and the
proof is complete. �

In the same way we prove the following theorem.

Theorem 11.2. If the conditions

ψ̄2
i − ā2

i − 1 > 0, (i = 1, 2),

ρ2
2

(

ψ̄1 + ā1 − 1

ψ̄1 − ā1

)

= ρ2
1

(

ψ̄2 + ā2 − 1

ψ̄2 − ā2

)

,

ρ4
2(ψ̄2

1 − ā2
1 − 1) = ρ4

1(ψ̄2
2 − ā2

2 − 1)
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are satisfied, then boundary value problem (2.5), (11.1), (11.2) for

j =
4
ρ2

1

√

ψ̄2
1 − ā2

1 − 1 has the solution of the form

ψ(x, y) =
k2 + j2

8k
(x2 + y2) +

2k
j2(x2 + y2)

,

a(x, y) =
k2 − j2

8k
(x2 + y2) − 2k

j2(x2 + y2)
,

where k = 4
ρ2

1

(

ψ̄1 + ā1 − 1
ψ̄1−ā1

)

.

Thus, if the conditions of at least one of Theorems 11.1 or 11.2 are satisfied,
the current density can be assigned to a uniform and, thus, the solution of the
boundary value problem (2.5), (11.1), (11.2) is written explicitly.

12. Conclusion

Proposed in [9], the limit model of magnetic insulation was a quite interesting
object for study, with a rich set of features. In this paper, we examined some
mathematical generalizations of the limit problem described by a quasi potential
multi-dimensional ODE system and a PDE system with two-dimensional Laplace
operator. The results (the first integrals constructed in explicit form, and the
exact solutions) may be useful not only for the problems of magnetic insulation
and plasma physics but also in mechanics, fluid dynamics, and other areas.
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