CURVATURE PROPERTIES OF SOME CLASS OF HYPERSURFACES IN EUCLIDEAN SPACES

Katarzyna Sawicz

Dedicated to Professor Makoto Yawata on his seventy-second birthday

Abstract

We determine curvature properties of pseudosymmetry type of hypersurfaces in Euclidean spaces $\mathbb{E}^{n+1}, n \geqslant 5$, having three distinct nonzero principal curvatures λ_{1}, λ_{2} and λ_{3} of multiplicity $1, p$ and $n-p-1$, respectively. For some hypersurfaces having this property the sum of λ_{1}, λ_{2} and λ_{3} is equal to the trace of the shape operator of M. We present an example of such hypersurface.

1. Introduction

Let H be the second fundamental tensor of a hypersurface M immersed isometrically in a semi-Riemannian space of constant curvature $N_{s}^{n+1}(c)$, with signature $(s, n+1-s), n \geqslant 4$, where $c=\frac{\widetilde{\kappa}}{n(n+1)}$ and $\widetilde{\kappa}$ is the scalar curvature of the ambient space. For precise definitions of the symbols used we refer to Section 2 of this paper and Sections 2 and 3 of $\mathbf{1 6}$ (see also $\left[\mathbf{3}, \mathbf{5}, \mathbf{1 4}, \mathbf{3 4}, \mathbf{5 0}\right.$). Let $\mathcal{U}_{H} \subset M$ be the set of all points at which the tensor H^{2} is not a linear combination of H and the metric tensor g of M. Curvature conditions of pseudosymmetry type on hypersurfaces M in $N_{s}^{n+1}(c), n \geqslant 4$, satisfying on $\mathcal{U}_{H} \subset M$ the equation

$$
\begin{equation*}
H^{3}=\operatorname{tr}(H) H^{2}+\psi H \tag{1.1}
\end{equation*}
$$

where ψ is some function on \mathcal{U}_{H}, were investigated in several papers: $\mathbf{1}, \mathbf{7}, \mathbf{1 1}, 12$, $15,16,22,23,25,34,37$. For instance, the Cartan hypersurfaces satisfy (1.1) (see, e.g., 12, Theorem 4.3], 16, Example 5.1(iii)]). Examples of hypersurfaces in Euclidean spaces $\mathbb{E}^{n+1}, n \geqslant 5$, as well as in semi-Euclidean spaces \mathbb{E}_{s}^{n+1}, with signature $(s, n+1-s), n \geqslant 5$, satisfying (1.1) are given in 1 and 11, respectively. For further examples we refer to $[\mathbf{1 5}, 16,23,26,27,31,35]$.

[^0]Curvature conditions of pseudosymmetry type on hypersurfaces M in $N_{s}^{n+1}(c)$, $n \geqslant 4$, satisfying on $M \backslash \mathcal{U}_{H}$ the equation

$$
\begin{equation*}
H^{2}=\psi H+\rho g \tag{1.2}
\end{equation*}
$$

for some functions ψ and ρ on this set, were investigated among others in $\mathbf{2} \mathbf{7} \mathbf{9} \mathbf{1 8}$, [27, $33,35,45,47,54$. Examples of hypersurfaces in spaces of constant curvature satisfying (1.2) are given among others in [27, 35, 43, 56, 57. It is obvious that (1.1) is a special case of a more general equation

$$
\begin{equation*}
H^{3}=\phi H^{2}+\psi H+\rho g \tag{1.3}
\end{equation*}
$$

where ϕ, ψ and ρ are some functions on \mathcal{U}_{H}. Hypersurfaces M in $N_{s}^{n+1}(c), n \geqslant 4$, satisfying (1.3) on $\mathcal{U}_{H} \subset M$ were investigated for instance in [6, 21, 50. Here we investigate curvature conditions of pseudosymmetry type on hypersurfaces M in $\mathbb{E}_{s}^{n+1}, n \geqslant 5$, satisfying (1.3) on \mathcal{U}_{H}. We can also consider (1.3) with $\phi=\operatorname{tr}(H)$ on \mathcal{U}_{H}, i.e., the equation

$$
\begin{equation*}
H^{3}=\operatorname{tr}(H) H^{2}+\psi H+\rho g, \tag{1.4}
\end{equation*}
$$

where ψ and ρ are some functions on \mathcal{U}_{H}. Hypersurfaces M in $N_{s}^{n+1}(c), n \geqslant 4$, satisfying (1.4) on $\mathcal{U}_{H} \subset M$ were investigated in 4, 30,5153. In 30 , Proposition 2.1] it was proved that for every hypersurface M in $N_{s}^{5}(c)$ equation (1.4) reduces on $\mathcal{U}_{H} \subset M$ to (1.1). Evidently, $\rho=0$ on \mathcal{U}_{H}. The assumption that $\operatorname{dim} M=4$ is essential. In Section 5 we present an example of a hypersurface M in \mathbb{E}^{n+1}, $n \geqslant 5$, having at every point three distinct principal curvatures λ_{1}, λ_{2} and λ_{3} of multiplicity $1, p$ and q, respectively, where $n=1+p+q$, satisfying (1.4) with nonzero function ρ. In 50, Proposition 4.1] it was shown that the tensors $R \cdot C, C \cdot R$ and $C \cdot C$ of a hypersurface M in $N_{s}^{n+1}(c), n \geqslant 4$, satisfying (1.3) on $\mathcal{U}_{H} \subset M$ are expressed on this set by a linear combinations of the Tachibana tensors $Q(g, R)$, $Q(S, R), Q(S, G), Q(H, G)$ and $Q(S, g \wedge H)$, and the tensors $g \wedge Q\left(H, H^{2}\right)$ and $H \wedge Q\left(g, H^{2}\right)$. In Section 3 we present these formulas in the case when M is a hypersurface in $\mathbb{E}_{s}^{n+1}, n \geqslant 4$. Further, in the next section we present these formulas in the special case when M is a hypersurface in $\mathbb{E}^{n+1}, n \geqslant 5$, and at every point of the set \mathcal{U}_{H} of a hypersurface M there are three distinct principal curvatures of multiplicity $1, p$ and p, respectively, where $n=2 p+1$. In Section 5 we present an example of such hypersurface.

2. Preliminaries

Throughout the paper all manifolds are assumed to be connected paracompact manifolds of class C^{∞}. Let (M, g) be an n-dimensional, $n \geqslant 3$, semi-Riemannian manifold and let ∇ be its Levi-Civita connection and $\Xi(M)$ the Lie algebra of vector fields on M. We define on M the endomorphisms $X \wedge_{A} Y$ and $\mathcal{R}(X, Y)$ of $\Xi(M)$ by

$$
\begin{gathered}
\left(X \wedge_{A} Y\right) Z=A(Y, Z) X-A(X, Z) Y, \\
\mathcal{R}(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
\end{gathered}
$$

where A is a symmetric (0,2)-tensor on M and $X, Y, Z \in \Xi(M)$. The Ricci tensor S, the Ricci operator \mathcal{S}, the tensor S^{2} and the scalar curvature κ of (M, g) are defined by $S(X, Y)=\operatorname{tr}\{Z \rightarrow \mathcal{R}(Z, X) Y\}, g(\mathcal{S} X, Y)=S(X, Y), S^{2}(X, Y)=S(\mathcal{S} X, Y)$ and $\kappa=\operatorname{tr} \mathcal{S}$, respectively. The endomorphism $\mathcal{C}(X, Y)$ we define by

$$
\mathcal{C}(X, Y) Z=\mathcal{R}(X, Y) Z-\frac{1}{n-2}\left(X \wedge_{g} \mathcal{S} Y+\mathcal{S} X \wedge_{g} Y-\frac{\kappa}{n-1} X \wedge_{g} Y\right) Z
$$

Further, we define the (0,4)-tensor G, the Riemann-Christoffel curvature tensor R and the Weyl conformal curvature tensor C of (M, g) by

$$
\begin{aligned}
& G\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\left(X_{1} \wedge_{g} X_{2}\right) X_{3}, X_{4}\right) \\
& R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\mathcal{R}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right), \\
& C\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\mathcal{C}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right)
\end{aligned}
$$

respectively, where $X_{1}, X_{2}, \cdots \in \Xi(M)$.
Let $\mathcal{B}(X, Y)$ be a skew-symmetric endomorphism of $\Xi(M)$ and let B be a $(0,4)$-tensor associated with $\mathcal{B}(X, Y)$ by

$$
\begin{equation*}
B\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\mathcal{B}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right) \tag{2.1}
\end{equation*}
$$

The tensor B is said to be a generalized curvature tensor [44] if

$$
\begin{gathered}
B\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+B\left(X_{2}, X_{3}, X_{1}, X_{4}\right)+B\left(X_{3}, X_{1}, X_{2}, X_{4}\right)=0 \\
B\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=B\left(X_{3}, X_{4}, X_{1}, X_{2}\right)
\end{gathered}
$$

Let $\mathcal{B}(X, Y)$ be a skew-symmetric endomorphism of $\Xi(M)$ and let B be the tensor defined by (2.1). We extend $\mathcal{B}(X, Y)$ to a derivation $\mathcal{B}(X, Y)$. of the algebra of tensor fields on M, by assuming that it commutes with contractions and $\mathcal{B}(X, Y)$. $f=0$, for any smooth function f on M. Now for a $(0, k)$-tensor field $T, k \geqslant 1$, we can define the $(0, k+2)$-tensor $B \cdot T$ by

$$
\begin{aligned}
& (B \cdot T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=(\mathcal{B}(X, Y) \cdot T)\left(X_{1}, \ldots, X_{k} ; X, Y\right) \\
& \quad=-T\left(\mathcal{B}(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right)-\cdots-T\left(X_{1}, \ldots, X_{k-1}, \mathcal{B}(X, Y) X_{k}\right)
\end{aligned}
$$

If A is a symmetric $(0,2)$-tensor then we define the $(0, k+2)$-tensor $Q(A, T)$ by

$$
\begin{aligned}
& Q(A, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=\left(X \wedge_{A} Y \cdot T\right)\left(X_{1}, \ldots, X_{k} ; X, Y\right) \\
& \quad=-T\left(\left(X \wedge_{A} Y\right) X_{1}, X_{2}, \ldots, X_{k}\right)-\cdots-T\left(X_{1}, \ldots, X_{k-1},\left(X \wedge_{A} Y\right) X_{k}\right)
\end{aligned}
$$

In this manner we obtain the $(0,6)$-tensors $B \cdot B$ and $Q(A, B)$. Setting in the above formulas $\mathcal{B}=\mathcal{R}$ or $\mathcal{B}=\mathcal{C}, T=R$ or $T=C$ or $T=S, A=g$ or $A=S$, we get the tensors $R \cdot R, R \cdot C, C \cdot R, C \cdot C, R \cdot S, C \cdot S, Q(g, R), Q(S, R), Q(g, C)$ and $Q(g, S)$. Let A be a symmetric (0,2)-tensor and T a $(0, p)$-tensor, $p \geqslant 2$. According to [22], the tensor $Q(A, T)$ is called the Tachibana tensor of A and T, or the Tachibana tensor for short. We also remark that in some papers, the $(0,6)$-tensor $Q(g, R)$ is called the Tachibana tensor (see, e.g., 39 41,46,55). For symmetric (0,2)-tensors
E and F we define their Kulkarni-Nomizu product $E \wedge F$ by

$$
\begin{aligned}
(E \wedge F)\left(X_{1}, X_{2}, X_{3}, X_{4}\right)= & E\left(X_{1}, X_{4}\right) F\left(X_{2}, X_{3}\right)+E\left(X_{2}, X_{3}\right) F\left(X_{1}, X_{4}\right) \\
& -E\left(X_{1}, X_{3}\right) F\left(X_{2}, X_{4}\right)-E\left(X_{2}, X_{4}\right) F\left(X_{1}, X_{3}\right) .
\end{aligned}
$$

Clearly, the tensors R, C, G and $E \wedge F$ are generalized curvature tensors. For a symmetric (0,2)-tensor E we define the (0,4)-tensor \bar{E} by $\bar{E}=\frac{1}{2} E \wedge E$. We have $\bar{g}=G=\frac{1}{2} g \wedge g$. We note that the Weyl tensor C can be presented in the form

$$
\begin{equation*}
C=R-\frac{1}{n-2} g \wedge S+\frac{\kappa}{(n-2)(n-1)} G . \tag{2.2}
\end{equation*}
$$

We also have (see, e.g., [15, Section 3])

$$
\begin{equation*}
Q(E, E \wedge F)=-Q(F, \bar{E}) \tag{2.3}
\end{equation*}
$$

Now (2.2) and (2.3) yield $Q(g, C)=Q(g, R)+(1 /(n-2)) Q(S, G)$. For a symmetric $(0,2)$-tensor E and a $(0, k)$-tensor $T k \geqslant 2$, we define their Kulkarni-Nomizu product $E \wedge T$ by $\mathbf{1 2}$

$$
\begin{aligned}
& (E \wedge T)\left(X_{1}, X_{2}, X_{3}, X_{4} ; Y_{3}, \ldots, Y_{k}\right) \\
& \quad=E\left(X_{1}, X_{4}\right) T\left(X_{2}, X_{3}, Y_{3}, \ldots, Y_{k}\right)+E\left(X_{2}, X_{3}\right) T\left(X_{1}, X_{4}, Y_{3}, \ldots, Y_{k}\right) \\
& \quad \\
& \quad-E\left(X_{1}, X_{3}\right) T\left(X_{2}, X_{4}, Y_{3}, \ldots, Y_{k}\right)-E\left(X_{2}, X_{4}\right) T\left(X_{1}, X_{3}, Y_{3}, \ldots, Y_{k}\right)
\end{aligned}
$$

Using the above definitions we can prove
Lemma 2.1. [11,12] Let E_{1}, E_{2} and F be symmetric (0,2)-tensors at a point x of a semi-Riemannian manifold $(M, g), n \geqslant 3$. Then at x we have

$$
E_{1} \wedge Q\left(E_{2}, F\right)+E_{2} \wedge Q\left(E_{1}, F\right)=-Q\left(F, E_{1} \wedge E_{2}\right)
$$

If $E=E_{1}=E_{2}$, then

$$
\begin{equation*}
E \wedge Q(E, F)=-Q(F, \bar{E}) \tag{2.4}
\end{equation*}
$$

3. Hypersurfaces in semi-Euclidean spaces

Let $M, n \geqslant 3$, be a connected hypersurface isometrically immersed in a semiRiemannian manifold $\left(N, g^{N}\right)$. We denote by g the metric tensor induced on M from g^{N}. Further, we denote by ∇ and ∇^{N} the Levi-Civita connections corresponding to the metric tensors g and g^{N}, respectively. Let ξ be a local unit normal vector field on M in N and let $\varepsilon=g^{N}(\xi, \xi)= \pm 1$. We can write the Gauss formula and the Weingarten formula of (M, g) in $\left(N, g^{N}\right)$ in the form: $\nabla_{X}^{N} Y=\nabla_{X} Y+\varepsilon H(X, Y) \xi$ and $\nabla_{X}^{N} \xi=-\mathcal{A} X$, respectively, where X, Y are vector fields tangent to M, H is the second fundamental tensor of (M, g) in $\left(N, g^{N}\right), \mathcal{A}$ is the shape operator and $H^{k}(X, Y)=g\left(\mathcal{A}^{k} X, Y\right), k \geqslant 1, H^{1}=H$ and $\mathcal{A}^{1}=\mathcal{A}$. We denote by R and R^{N} the Riemann-Christoffel curvature tensors of (M, g) and $\left(N, g^{N}\right)$, respectively. Let $x^{r}=x^{r}\left(y^{k}\right)$ be the local parametric expression of (M, g) in $\left(N, g^{N}\right)$, where y^{k} and x^{r} are local coordinates of M and N, respectively, and $h, i, j, k \in\{1,2, \ldots, n\}$ and $p, r, t, u \in\{1,2, \ldots, n+1\}$. The Gauss equation of (M, g) in $\left(N, g^{N}\right)$ has the form

$$
\begin{equation*}
R_{h i j k}=R_{p r t u}^{N} B_{h}^{p} B_{i}^{r} B_{j}^{t} B_{k}^{u}+\varepsilon\left(H_{h k} H_{i j}-H_{h j} H_{i k}\right), \quad B_{k}^{r}=\frac{\partial x^{r}}{\partial y^{k}} \tag{3.1}
\end{equation*}
$$

where $R_{p r t u}^{N}, R_{h i j k}$ and $H_{h k}$ are the local components of the tensors R^{N}, R and H, respectively. If $\left(N, g^{N}\right)$ is a conformally flat space then we have [23, Section 4]

$$
\begin{align*}
C_{h i j k} & =\mu G_{h i j k}+\varepsilon \bar{H}_{h i j k}+\frac{\varepsilon}{n-2}\left(g \wedge\left(H^{2}-\operatorname{tr}(H) H\right)\right)_{h i j k} \\
\mu & =\frac{1}{(n-2)(n-1)}\left(\kappa-2 \widetilde{S}_{r t} B_{h}^{r} B_{k}^{t} g^{h k}+\widetilde{\kappa}\right) \tag{3.2}
\end{align*}
$$

where $\widetilde{S}_{r t}$ are the local components of the Ricci tensor \widetilde{S} of the ambient space, $G_{h i j k}$ are the local components of the tensor G and $\widetilde{\kappa}$ and κ are the scalar curvatures of $\left(N, g^{N}\right)$ and (M, g), respectively.

Let now M be a hypersurface in $\mathbb{E}_{s}^{n+1}, n \geqslant 4$. Clearly, (3.1) and (3.2) read

$$
\begin{equation*}
R_{h i j k}=\varepsilon \bar{H}_{h i j k}, \quad \mu=\frac{\kappa}{(n-2)(n-1)} \tag{3.3}
\end{equation*}
$$

respectively. Contracting (3.3) with $g^{i j}$ and $g^{k h}$ we obtain

$$
\begin{equation*}
S_{h k}=\varepsilon\left(\operatorname{tr}(H) H_{h k}-H_{h k}^{2}\right), \quad \kappa=\varepsilon\left((\operatorname{tr}(H))^{2}-\operatorname{tr}\left(H^{2}\right)\right) \tag{3.4}
\end{equation*}
$$

respectively, where $\operatorname{tr}(H)=g^{h k} H_{h k}, \operatorname{tr}\left(H^{2}\right)=g^{h k} H_{h k}^{2}$ and $S_{h k}$ are the local components of the Ricci tensor S of M. We recall that on every hypersurface M in $\mathbb{E}_{s}^{n+1}, n \geqslant 3$, we have the following identity $R \cdot R=Q(S, R)$ 32. We prove now that on M in $\mathbb{E}_{s}^{n+1}, n \geqslant 3$, we also have

Proposition 3.1. On every hypersurface M in $\mathbb{E}_{s}^{n+1}, n \geqslant 3$, the following identities are satisfied

$$
\begin{align*}
g \wedge Q\left(H, H^{2}\right) & =\varepsilon g \wedge Q(S, H) \tag{3.5}\\
H \wedge Q\left(g, H^{2}\right) & =\varepsilon \operatorname{tr}(H) Q(g, R)-\varepsilon H \wedge Q(g, S) \tag{3.6}
\end{align*}
$$

Proof. From (3.4) we have

$$
\begin{equation*}
H^{2}=\operatorname{tr}(H) H-\varepsilon S \tag{3.7}
\end{equation*}
$$

and this yields

$$
g \wedge Q\left(H, H^{2}\right)=g \wedge Q(H, \operatorname{tr}(H) H-\varepsilon S)=\varepsilon g \wedge Q(S, H)
$$

Thus (3.5) is proved. Further, using (2.4), (3.3) and (3.7) we obtain

$$
\begin{aligned}
H \wedge Q\left(g, H^{2}\right) & =\operatorname{tr}(H) H \wedge Q(g, H)-\varepsilon H \wedge Q(g, S) \\
& =-\operatorname{tr}(H) H \wedge Q(H, g)-\varepsilon H \wedge Q(g, S) \\
& =\operatorname{tr}(H) Q(g, \bar{H})-\varepsilon H \wedge Q(g, S) \\
& =\varepsilon \operatorname{tr}(H) Q(g, R)-\varepsilon H \wedge Q(g, S) .
\end{aligned}
$$

Our proposition is thus proved.

Let now M be a hypersurface in $\mathbb{E}_{s}^{n+1}, n \geqslant 4$, satisfying (1.3) on $\mathcal{U}_{H} \subset M$. We set (cf. [50, eq. (34)])

$$
\begin{align*}
& \beta_{1}=\varepsilon(\phi-\operatorname{tr}(H)) \\
& \beta_{2}=-\frac{\varepsilon}{n-2}\left(\phi(2 \operatorname{tr}(H)-\phi)-(\operatorname{tr}(H))^{2}-\psi-(n-2) \varepsilon \mu\right), \\
& \beta_{3}=\varepsilon \mu \operatorname{tr}(H)+\frac{1}{n-2}(\psi(2 \operatorname{tr}(H)-\phi)+(n-3) \rho), \tag{3.8}\\
& \beta_{4}=\beta_{3}-\varepsilon \beta_{2} \operatorname{tr}(H) \\
& \beta_{5}=\frac{\kappa}{n-1}+\varepsilon \psi+\beta_{1} \operatorname{tr}(H), \\
& \beta_{6}=\beta_{2}
\end{align*}
$$

where the functions ϕ, ψ and ρ are defined by (1.3).
Proposition 3.2. If M is a hypersurface in $\mathbb{E}_{s}^{n+1}, n \geqslant 4$, satisfying (1.3) on $\mathcal{U}_{H} \subset M$, for some functions ϕ, ψ and ρ, then the following conditions are satisfied on this set

$$
\begin{align*}
S^{2}= & \gamma_{2} S+\gamma_{1} H+\gamma_{0} g, \tag{3.9}\\
(n-2) R \cdot C= & (n-2) Q(S, R)+\rho Q(H, G)-\beta_{1} g \wedge Q(H, S), \tag{3.10}\\
(n-2) C \cdot R= & \left(\frac{\kappa}{n-1}+\varepsilon \psi+\beta_{1} \operatorname{tr}(H)\right) Q(g, R) \tag{3.11}\\
& +(n-3) Q(S, R)-\beta_{1} H \wedge Q(g, S), \\
(n-2) C \cdot C= & \beta_{1} Q(S, g \wedge H)+\beta_{4} Q(H, G) \tag{3.12}\\
& +(n-3) Q(S, R)+\beta_{5} Q(g, R)+\beta_{2} Q(S, G), \\
\gamma_{0}= & \rho(\phi-2 \operatorname{tr}(H)), \\
\gamma_{1}= & \psi(\phi-2 \operatorname{tr}(H))+\rho+\operatorname{tr}(H)\left(\phi^{2}+\psi+(\operatorname{tr}(H))^{2}\right), \tag{3.13}\\
\gamma_{2}= & -\left(\phi^{2}+\psi+\operatorname{tr}(H)(\operatorname{tr}(H)-2 \phi)\right) .
\end{align*}
$$

Proof. We denote by $S_{h k}^{2}$ the local components of the tensor S^{2}. Evidently, we have

$$
S_{h k}^{2}=g^{i j} S_{h i} S_{k j}=H_{h k}^{4}-2 \operatorname{tr}(H) H_{h k}^{3}+(\operatorname{tr}(H))^{2} H_{h k}^{2}
$$

Applying in this (1.3) we obtain

$$
\begin{aligned}
S^{2}= & \left(\phi^{2}+\psi+\operatorname{tr}(H)(\operatorname{tr}(H)-2 \phi)\right) H^{2} \\
& +\rho(\phi-2 \operatorname{tr}(H)) g+(\psi(\phi-2 \operatorname{tr}(H))+\rho) H
\end{aligned}
$$

The last relation, by making use of (3.7) and (3.13), turns into (3.9). Further, we also have on \mathcal{U}_{H} (cf. [50, Proposition 4.1]): (3.12) and
(3.14) $\quad(n-2) R \cdot C=(n-2) Q(S, R)+\rho Q(H, G)+(\phi-\operatorname{tr}(H)) g \wedge Q\left(H, H^{2}\right)$,

$$
\begin{align*}
(n-2) C \cdot R= & \left(\frac{\kappa}{n-1}+\varepsilon \psi\right) Q(g, R)+(n-3) Q(S, R) \tag{3.15}\\
& +(\phi-\operatorname{tr}(H)) H \wedge Q\left(g, H^{2}\right)
\end{align*}
$$

where $\beta_{1}, \ldots, \beta_{5}$ are defined by (3.8). Now (3.10) and (3.11) are an immediate consequence of (3.5), (3.6), (3.8), (3.14) and (3.15).

4. Hypersurfaces with three principal curvatures

In this section we consider hypersurfaces M in $\mathbb{E}^{n+1}, n \geqslant 5$, having at every point of the set $\mathcal{U}_{H} \subset M$ three distinct principal curvatures λ_{1}, λ_{2} and λ_{3}. First we note that from (1.3) it follows that

$$
\begin{equation*}
\phi=\lambda_{1}+\lambda_{2}+\lambda_{3}, \quad \psi=-\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right), \quad \rho=\lambda_{1} \lambda_{2} \lambda_{3} \tag{4.1}
\end{equation*}
$$

Moreover we assume that λ_{1}, λ_{2} and λ_{3} are of multiplicity $1, p$ and p, respectively. Evidently, $n=2 p+1$. Further, (3.3), (3.4) and (3.8) lead to

$$
\begin{gather*}
\operatorname{tr}(H)=\lambda_{1}+p\left(\lambda_{2}+\lambda_{3}\right), \quad \operatorname{tr}\left(H^{2}\right)=\lambda_{1}^{2}+p\left(\lambda_{2}^{2}+\lambda_{3}^{2}\right) \\
\beta_{1}=-\frac{n-3}{2}\left(\lambda_{2}+\lambda_{3}\right), \quad \beta_{2}=\frac{1}{n-3} \beta_{1}^{2}=\psi+\frac{\kappa}{n-1} \\
\beta_{3}=\frac{1}{n-2}\left(\operatorname{tr}(H) \beta_{2}-\psi \beta_{1}+(n-3) \rho\right) \tag{4.2}
\end{gather*}
$$

Using now (3.9) and (4.1) we find

$$
\begin{align*}
\gamma_{0}= & -\lambda_{1} \lambda_{2} \lambda_{3}\left(\lambda_{1}+(2 p-1)\left(\lambda_{2}+\lambda_{3}\right)\right) \\
\gamma_{1}= & p(p-1)^{2}\left(\lambda_{2}^{3}+\lambda_{3}^{3}\right)+p(p-1)\left(\lambda_{2}^{2}+\lambda_{3}^{2}\right) \lambda_{1} \\
& +\left(3 p^{2}(p-2)+4 p-1\right) \lambda_{2} \lambda_{3}\left(\lambda_{2}+\lambda_{3}\right)+\left(2 p^{2}-2 p+1\right) \lambda_{1} \lambda_{2} \lambda_{3}, \\
(4.3) \quad \gamma_{2}= & -(p-1)\left(\lambda_{2}^{2}+\lambda_{3}^{2}\right)-(p-2) \lambda_{1}\left(\lambda_{2}+\lambda_{3}\right)-(2 p-3) \lambda_{2} \lambda_{3} . \tag{4.3}
\end{align*}
$$

From (3.4) and (4.2) it follows immediately that the eigenvalues ρ_{1}, ρ_{2} and ρ_{3} of the Ricci tensor S of M are expressed on \mathcal{U}_{H} trought the following relations

$$
\begin{align*}
& \rho_{1}=\lambda_{1}\left(\operatorname{tr}(H)-\lambda_{1}\right)=p \lambda_{1}\left(\lambda_{2}+\lambda_{3}\right), \\
& \rho_{2}=\lambda_{2}\left(\operatorname{tr}(H)-\lambda_{2}\right)=\lambda_{2}\left(\lambda_{1}+(p-1) \lambda_{2}+p \lambda_{3}\right), \\
& \rho_{3}=\lambda_{3}\left(\operatorname{tr}(H)-\lambda_{3}\right)=\lambda_{3}\left(\lambda_{1}+p \lambda_{2}+(p-1) \lambda_{3}\right) . \tag{4.4}
\end{align*}
$$

Now (4.4) yields

$$
\begin{align*}
\left(\rho_{1}-\rho_{2}\right)\left(\rho_{1}-\rho_{3}\right)\left(\rho_{2}-\rho_{3}\right)=(& \left.\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{3}\right)\left((p-1) \lambda_{2}+p \lambda_{3}\right) \tag{4.5}\\
& \left(p \lambda_{2}+(p-1) \lambda_{3}\right)\left(\lambda_{1}+(p-1)\left(\lambda_{2}+\lambda_{3}\right)\right)
\end{align*}
$$

Proposition 4.1. Let M be a hypersurface in \mathbb{E}^{n+1}, $n=2 p+1 \geqslant 5$, having at every point of $\mathcal{U}_{H} \subset M$ three distinct principal curvatures λ_{1}, λ_{2} and λ_{3} of multiplicity $1, p$ and p, respectively. We have
(i) The Ricci tensor S of M has at a point $x \in \mathcal{U}_{H}$ three distinct eigenvalues ρ_{1}, ρ_{2} and ρ_{3} if and only if at this point we have

$$
\left((p-1) \lambda_{2}+p \lambda_{3}\right)\left(p \lambda_{2}+(p-1) \lambda_{3}\right)\left(\lambda_{1}+(p-1)\left(\lambda_{2}+\lambda_{3}\right)\right) \neq 0
$$

(ii) If the Ricci tensor S of M has at a point $x \in \mathcal{U}_{H}$ three distinct eigenvalues ρ_{1}, ρ_{2} and ρ_{3}, then γ_{1}, defined by (3.13), is nonzero at this point, and in a consequence $H=\gamma_{1}^{-1}\left(S^{2}-\gamma_{2} S-\gamma_{0} g\right)$.

Proof. (i) follows immediately from (4.5).
(ii) Suppose that $\gamma_{1}=0$ at x. Then from (3.9) it follows that S has at x only two distinct eigenvalues, a contradiction.

The above results, together with (3.3), Lemma 2.1 and Proposition 3.2, imply
Theorem 4.1. Let M be a hypersurface in \mathbb{E}^{n+1}, $n=2 p+1 \geqslant 5$, having at every point of $\mathcal{U}_{H} \subset M$ three distinct principal curvatures λ_{1}, λ_{2} and λ_{3} of multiplicity $1, p$ and p, respectively. Let $\mathcal{U} \subset \mathcal{U}_{H}$ be the set of all points at which Ricci tensor S of M has three distinct eigenvalues ρ_{1}, ρ_{2} and ρ_{3}. Then on this set we have

$$
\begin{align*}
R= & \frac{1}{2} \gamma_{1}^{-2}\left(S^{2}-\gamma_{2} S-\gamma_{0} g\right) \wedge\left(S^{2}-\gamma_{2} S-\gamma_{0} g\right) \tag{4.6}\\
(n-2) R \cdot C= & (n-2) Q(S, R)+\frac{\rho}{\gamma_{1}} Q\left(S^{2}, G\right) \\
& +\left(\beta_{1}-\frac{\rho \gamma_{2}}{\gamma_{1}}\right) Q(S, G)+\frac{\beta_{1}}{\gamma_{1}} g \wedge Q\left(S, S^{2}\right) \tag{4.7}\\
(n-2) C \cdot R= & (n-3) Q(S, R)+\left(\frac{\kappa}{n-1}+\varepsilon \psi+\beta_{1} \operatorname{tr}(H)\right) Q(g, R) \\
& +\frac{\beta_{1} \gamma_{0}}{\gamma_{1}} Q(S, G)-\frac{\beta_{1} \gamma_{2}}{\gamma_{1}} Q\left(g, \frac{1}{2} S \wedge S\right)-\frac{\beta_{1}}{\gamma_{1}} S^{2} \wedge Q(g, S), \tag{4.8}\\
(n-2) C \cdot C= & (n-3) Q(S, R)+\beta_{5} Q(g, R) \\
& +\left(\beta_{2}-\frac{2 \beta_{1} \gamma_{0}+\beta_{4} \gamma_{2}}{\gamma_{1}}\right) Q(S, G) \\
& +\frac{\beta_{1} \gamma_{2}}{\gamma_{1}} Q\left(g, \frac{1}{2} S \wedge S\right)+\frac{\beta_{1}}{\gamma_{1}} Q\left(S, g \wedge S^{2}\right)+\frac{\beta_{4}}{\gamma_{1}} Q\left(S^{2}, G\right) .
\end{align*}
$$

Remark 4.1. Let M be the hypersurface considered in Theorem 4.1. By making use of (4.6) we state that the curvature tensor R of M is expressed on $\mathcal{U}_{H} \subset M$ by a linear combination of the Tachibana tensors:

$$
G=\frac{1}{2} g \wedge g, \quad g \wedge S, \quad g \wedge S^{2}, \quad S \wedge S^{2}, \quad \bar{S}=\frac{1}{2} S \wedge S, \quad \bar{S}^{2}=\frac{1}{2} S^{2} \wedge S^{2}
$$

Results on hypersurfaces in $N_{s}^{n+1}(c), n \geqslant 4$, with the curvature tensor R having the above property are given in [21] and 52]. Hypersurfaces in $N_{s}^{n+1}(c), n \geqslant 4$, with the curvature tensor R which is expressed by a linear combination of the tensors $g \wedge g, g \wedge S$ and $S \wedge S$ were investigated in 35. For instance, the Clifford torus $S^{p}(\sqrt{p / n}) \times S^{n-p}(\sqrt{(n-p) / n}), 2 \leqslant p \leqslant n-2, n \neq 2 p$, has this property [35, Corollary 3.1]. We also mention that semi-Riemannian manifolds with the curvature tensor R expressed by a linear combination of the tensors $g \wedge g, g \wedge S$ and $S \wedge S$ were introduced and investigated in [10. For further results on this class of manifolds we refer to $13,17,19,20,24,27,29,31,36,42$.

5. Example

Example 5.1. (i)(cf. 48, Section 2], 49, Section 2]) Let $\alpha_{1}=\alpha_{1}(t)$ and $\alpha_{2}=\alpha_{2}(t)$ be positive smooth functions defined on an interval $I=\left(0 ; t_{0}\right) \subset \mathbb{R}$, $t_{0}>0$, such that $\alpha_{1}^{\prime} \neq 0$ and $\alpha_{2}^{\prime} \neq 0$ for every $t \in I$, where $\alpha_{1}^{\prime}=\frac{d \alpha_{1}}{d t}$ and $\alpha_{2}^{\prime}=\frac{d \alpha_{2}}{d t}$. Let $x=x\left(t, u^{1}, \ldots, u^{p}, v^{1}, \ldots, v^{q}\right)$ be a parametric expression of a subset M of an $(n+1)$-dimensional Euclidean space $\mathbb{E}^{n+1}, n=p+q+1, p \geqslant 2, q \geqslant 2$, defined by

$$
\begin{equation*}
x=\alpha_{1} F_{1}+\alpha_{2} F_{2}, \tag{5.1}
\end{equation*}
$$

$$
\begin{aligned}
& F_{1}=\left(\cos u^{1}, \sin u^{1} \cos u^{1}, \ldots, \sin u^{1} \ldots \sin u^{p-1} \cos u^{p}, \sin u^{1} \ldots \sin u^{p}, 0, \ldots, 0\right), \\
& F_{2}=\left(0, \ldots, 0, \cos v^{1}, \sin v^{1} \cos v^{1}, \ldots, \sin v^{1} \ldots \sin v^{q-1} \cos v^{q}, \sin v^{1} \ldots \sin v^{q}\right)
\end{aligned}
$$

where $u^{1}, \ldots, u^{p}, v^{1}, \ldots, v^{q} \in\left(0, \frac{\pi}{2}\right)$ and 0 occurs $(q+1)$-and ($p+1$)-times, respectively. We set

$$
\begin{equation*}
\xi=\beta\left(-\alpha_{2}^{\prime} F_{1}+\alpha_{1}^{\prime} F_{2}\right), \quad \beta^{-1}=\sqrt{\alpha_{1}^{\prime 2}+{\alpha_{2}^{\prime}}_{2}^{2}} \tag{5.2}
\end{equation*}
$$

Further, we have $\left\langle F_{1}, F_{1}\right\rangle=\left\langle F_{2}, F_{2}\right\rangle=\langle\xi, \xi\rangle=1$, where $\langle\cdot, \cdot\rangle$ denotes the standard scalar product of \mathbb{E}^{n+1}. Differentiating (5.1) we obtain

$$
\begin{gather*}
x_{t}^{\prime}=\frac{\partial x}{\partial t}=\alpha_{1}^{\prime} F_{1}+\alpha_{2}^{\prime} F_{2} \\
x_{k}^{\prime}=\frac{\partial x}{\partial u^{k}}=\alpha_{1} \frac{\partial F_{1}}{\partial u^{k}}=\alpha_{1} F_{1 k}^{\prime}, \quad x_{l}^{\prime}=\frac{\partial x}{\partial v^{l}}=\alpha_{2} \frac{\partial F_{2}}{\partial v^{l}}=\alpha_{2} F_{2 l}^{\prime} \tag{5.3}
\end{gather*}
$$

where $k \in\{1, \ldots, p\}$ and $l \in\{p+1, \ldots, p+q\}$. Using (5.2) and (5.3) we can easy check that

$$
\begin{equation*}
\left\langle\xi, x_{t}^{\prime}\right\rangle=\left\langle\xi, x_{k}^{\prime}\right\rangle=\left\langle\xi, x_{l}^{\prime}\right\rangle=0 \tag{5.4}
\end{equation*}
$$

We assume that at x we have

$$
\mu_{0} x_{t}^{\prime}+\mu_{1} x_{1}^{\prime}+\cdots+\mu_{p} x_{p}^{\prime}+\mu_{p+1} x_{p+1}^{\prime}+\cdots+\mu_{p+q} x_{p+q}^{\prime}=0
$$

where $\mu_{0}, \ldots, \mu_{p+q} \in \mathbb{R}$. The last relation, by (5.3), turns into

$$
\begin{aligned}
& \alpha_{1}\left(\frac{\alpha_{1}^{\prime} \mu_{0}}{\alpha_{1}} F_{1}+\mu_{1} F_{11}^{\prime}+\cdots+\mu_{p} F_{1 p}^{\prime}\right) \\
& +\alpha_{2}\left(\frac{\alpha_{2}^{\prime} \mu_{0}}{\alpha_{2}} F_{2}+\mu_{p+1} F_{2 p+1}^{\prime}+\cdots+\mu_{p+q} F_{2 p+q}^{\prime}\right)=0
\end{aligned}
$$

This and the definitions of F_{1} and F_{2} lead to

$$
\begin{aligned}
& \frac{\alpha_{1}^{\prime} \mu_{0}}{\alpha_{1}} F_{1}+\mu_{1} F_{11}^{\prime}+\cdots+\mu_{p} F_{1 p}^{\prime}=0, \\
& \frac{\alpha_{2}^{\prime} \mu_{0}}{\alpha_{2}} F_{2}+\mu_{p+1} F_{2 p+1}^{\prime}+\cdots+\mu_{p+q} F_{2 p+q}^{\prime}=0 .
\end{aligned}
$$

Since the vectors $F_{1}, F_{11}^{\prime}, \ldots, F_{1 p}^{\prime}$, resp. $F_{2}, F_{2 p+1}^{\prime}, \ldots, F_{2 p+q}^{\prime}$ are linearly independent vectors (see, e.g., [38, Example 2, pp.329-331]) at x we have

$$
\frac{\alpha_{1}^{\prime} \mu_{0}}{\alpha_{1}}=\mu_{1}=\cdots=\mu_{p}=0, \quad \frac{\alpha_{2}^{\prime} \mu_{0}}{\alpha_{2}}=\mu_{p+1}=\cdots=\mu_{p+q}=0
$$

Thus the vectors $x_{t}^{\prime}, x_{1}^{\prime}, \ldots, x_{p}^{\prime}, x_{p+1}^{\prime}, \ldots, x_{p+q}^{\prime}$ are linearly independent at every point of M. Therefore we can state that M is immersed isometrically in \mathbb{E}^{n+1}. In addition, from (5.4) it follows that ξ is the unit normal vector field of M. Further, differentiating (5.2) we obtain

$$
\begin{gather*}
\xi_{t}^{\prime}=\frac{\partial \xi}{\partial t}=-\left(\alpha_{2}^{\prime} \beta\right)^{\prime} F_{1}+\left(\alpha_{1}^{\prime} \beta\right)^{\prime} F_{2} \\
\xi_{k}^{\prime}=\frac{\partial \xi}{\partial u^{k}}=-\alpha_{2}^{\prime} \beta F_{1 k}, \quad \xi_{l}^{\prime}=\frac{\partial \xi}{\partial v^{l}}=\alpha_{1}^{\prime} \beta F_{2 l} \tag{5.5}
\end{gather*}
$$

where $\alpha_{1}^{\prime \prime}=\frac{d \alpha_{1}^{\prime}}{d t}$ and $\alpha_{2}^{\prime \prime}=\frac{d \alpha_{2}^{\prime}}{d t}$. From (5.3) and (5.5) we obtain the Weingarten formula for M

$$
\begin{gathered}
\xi_{t}^{\prime}=\left(\alpha_{1}^{\prime \prime} \alpha_{2}^{\prime}-\alpha_{1}^{\prime} \alpha_{2}^{\prime \prime}\right) \beta^{3} x_{t}^{\prime}=\frac{\alpha_{1}^{\prime \prime} \alpha_{2}^{\prime}-\alpha_{1}^{\prime} \alpha_{2}^{\prime \prime}}{\alpha_{1}^{\prime 2}+\alpha_{2}^{\prime 2}} \beta x_{t}^{\prime} \\
\xi_{k}^{\prime}=-\alpha_{1}^{-1} \alpha_{2}^{\prime} \beta x_{k}^{\prime}, \quad \xi_{l}^{\prime}=\alpha_{2}^{-1} \alpha_{1}^{\prime} \beta x_{l}^{\prime} .
\end{gathered}
$$

Thus we have

$$
\lambda_{1}=\left(\alpha_{1}^{\prime} \alpha_{2}^{\prime \prime}-\alpha_{1}^{\prime \prime} \alpha_{2}^{\prime}\right) \beta^{3}, \quad \lambda_{2}=\alpha_{1}^{-1} \alpha_{2}^{\prime} \beta, \quad \lambda_{3}=-\alpha_{2}^{-1} \alpha_{1}^{\prime} \beta
$$

(ii) It is easy to see that if at every point of M we have

$$
\begin{equation*}
(p-1) \lambda_{2}=-(q-1) \lambda_{3} \tag{5.6}
\end{equation*}
$$

then the second fundamental tensor H of M satisfies (1.4) on $\mathcal{U}_{H} \subset M$. Evidently, (5.6) yields $(p-1) \alpha_{2} \alpha_{2}^{\prime}=(q-1) \alpha_{1} \alpha_{1}^{\prime}$, which is equivalent to

$$
\alpha_{2}=\sqrt{c+\frac{q-1}{p-1} \alpha_{1}^{2}},
$$

where c is a constant. Note that from (4.1) and (5.6) we get easily

$$
\begin{aligned}
\operatorname{tr}(H) & =\lambda_{1}+p \lambda_{2}+q \lambda_{3} \\
& =\lambda_{1}+\lambda_{2}+\lambda_{3}+(p-1) \lambda_{2}+(q-1) \lambda_{3}=\lambda_{1}+\lambda_{2}+\lambda_{3}=\phi
\end{aligned}
$$

Thus (1.3) turns into (1.4).
(iii) We consider the case: $p=q \geqslant 2$. Now (5.6) gives $\lambda_{2}=-\lambda_{3}$. Thus (4.1) - (4.4) and (3.4) yield

$$
\begin{gathered}
\phi=\lambda_{1}, \quad \psi=\lambda_{2}^{2}, \quad \rho=-\lambda_{1} \lambda_{2}^{2}, \\
\operatorname{tr}(H)=\lambda_{1}, \quad \operatorname{tr}\left(H^{2}\right)=\lambda_{1}^{2}+(n-1) \lambda_{2}^{2}, \\
\beta_{1}=\beta_{2}=\beta_{5}=0, \quad \beta_{3}=\beta_{4}=\frac{n-3}{n-2} \rho, \\
\gamma_{0}=\lambda_{1}^{2} \lambda_{2}^{2}, \quad \gamma_{1}=-\lambda_{1} \lambda_{2}^{2}, \quad \gamma_{2}=-\lambda_{2}^{2}, \\
\rho_{1}=0, \quad \rho_{2}=\lambda_{2}\left(\lambda_{1}-\lambda_{2}\right), \quad \rho_{3}=-\lambda_{2}\left(\lambda_{1}+\lambda_{2}\right), \\
\kappa=\operatorname{tr}(H))^{2}-\operatorname{tr}\left(H^{2}\right)=-(n-1) \lambda_{2}^{2}=-(n-1) \psi .
\end{gathered}
$$

We also have

$$
\begin{gathered}
S^{3}=\frac{2 \kappa}{n-1} S^{2}-\frac{\kappa}{n-1}\left(\frac{\kappa}{n-1}+(\operatorname{tr}(H))^{2}\right) S \\
(\operatorname{tr}(H))^{2}=-\frac{(n-1) \operatorname{tr}\left(S^{3}\right)}{\kappa^{2}}+\frac{2 \operatorname{tr}\left(S^{2}\right)}{\kappa}-\frac{\kappa}{n-1} .
\end{gathered}
$$

Conditions (4.7)-(4.9), by making use of the above presented formulas, turn into

$$
\begin{align*}
R \cdot C & =Q(S, R)+\frac{1}{n-2} Q\left(S^{2}-\frac{\kappa}{n-1} S, G\right) \tag{5.7}\\
C \cdot R & =\frac{n-3}{n-2} Q(S, R) \tag{5.8}\\
C \cdot C & =\frac{n-3}{n-2}\left(Q(S, R)+\frac{1}{n-2} Q\left(S^{2}-\frac{\kappa}{n-1} S, G\right)\right), \tag{5.9}
\end{align*}
$$

respectively. From (5.7) and (5.8) we get immediately

$$
\begin{equation*}
(n-2)(R \cdot C-C \cdot R)=Q(S, R)+\frac{1}{n-2} Q\left(S^{2}-\frac{\kappa}{n-1} S, G\right) \tag{5.10}
\end{equation*}
$$

Thus the difference tensor $R \cdot C-C \cdot R$ is expressed by a linear combination of some Tachibana tensors. We mention that hypersurfaces in spaces of of constant curvature with the tensor $R \cdot C-C \cdot R$ expressed by a linear combination of certain Tachibana tensors were investigated among others in [16, 22, 26, 28, 51, We also note that (5.9) and (5.10) yield $(n-3)(R \cdot C-C \cdot R)=C \cdot C$. Thus the difference tensor $R \cdot C-C \cdot R$ of M is a conformal invariant.

References

1. B. E. Abdalla, F. Dillen, A Ricci-semi-symmetric hypersurface of the Euclidean space which is not semi-symmetric, Proc. Amer. Math. Soc. 130 (2002), 1805-1808.
2. N. Abe, N. Koike, S. Yamaguchi, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987) 123-136.
3. K. Arslan, R. Deszcz, R. Ezentas, C. Murathan, C. Özgür, On pseudosymmetry type hypersurfaces of semi-Euclidean spaces I, Acta Math. Scientia 22B (2002), 346-358.
4. \qquad , On some pseudosymmetry type hypersurfaces of semi-Euclidean spaces, Demonstratio Math. 36 (2003), 971-984.
5. M. Belkhelfa, R. Deszcz, M. Głogowska, M. Hotloś, D. Kowalczyk, L. Verstraelen, On some type of curvature conditions, in:Banach Center Publications 57, Inst. Math., Polish Acad. Sci., 2002, 179-194.
6. T. E. Cecil, G. R. Jensen, Dupin hypersurfaces with three principal curvatures, Invent. Math. 132 (1998), 121-178.
7. F. Defever, R. Deszcz, P. Dhooghe, L. Verstraelen, Ṣ. Yaprak, On Ricci-pseudosymmetric hypersurfaces in spaces of constant curvature, Results Math. 27 (1995), 227-236.
8. F. Defever, R. Deszcz, Z. Șentürk, L. Verstraelen, Ṣ. Yaprak, P.J. Ryan's problem in semiRiemannian space forms, Glasgow Math. J. 41 (1999), 271-281.
9. R. Deszcz, Pseudosymmetric hypersurfaces in spaces of constant curvature, Tensor (N.S.) 58 (1997), 253-269.
10. _, On some Akivis-Goldberg type metrics, Publ. Inst. Math., Nouv. Sér. 74(88) (2003), 71-83.
11. R. Deszcz, M. Głogowska, Examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces, Colloq. Math. 94 (2002), 87-101.
12. \qquad , Some nonsemisymmetric Ricci-semisymmetric warped product hypersurfaces, Publ. Inst. Math., Nouv. Sér. 72 (86) (2002), 81-93.
13. R. Deszcz, M. Głogowska, M. Hotloś, H. Hashiguchi, M. Yawata, On semi-Riemannian manifolds satisfying some conformally invariant curvature conditions, Colloq. Math. 131 (2013), 149-170.
14. R. Deszcz, M. Głogowska, M. Hotloś, K. Sawicz, A Survey on Generalized Einstein Metric Conditions, in: M. Plaue, A. D. Rendall, M. Scherfner (eds.), Advances in Lorentzian Geometry: Proceedings of the Lorentzian Geometry Conf. Berlin, AMS/IP Stud. Adv. Math. 49, 2011, 27-46.
15. R. Deszcz, M. Głogowska, M. Hotloś, Z. Șentürk, On certain quasi-Einstein semisymmetric hypersurfaces, Annales Univ. Sci. Budapest. Eötvös Sect. Math. 41 (1998), 151-164.
16. R. Deszcz, M. Głogowska, M. Hotloś, L. Verstraelen, On some generalized Einstein metric conditions on hypersurfaces in semi-Riemannian space forms, Colloq. Math. 96 (2003), 149166.
17. R. Deszcz, M. Głogowska, M. Hotloś, G. Zafindratafa, On some curvature conditions of pseudosymmetry type, Period. Math. Hungar. 70 (2015), 153-170.
18. \qquad , Hypersurfaces in space forms satisfying some curvature conditions, to appear.
19. R. Deszcz, M. Głogowska, J. Jełowicki, M. Petrović-Torgašev, G. Zafindratafa, On Riemann and Weyl compatible tensors, Publ. Inst. Math., Nouv. Sér. 94 (108) (2013), 111-124.
20. R. Deszcz, M. Głogowska, M. Petrović-Torgašev, L. Verstraelen, On the Roter type of Chen ideal submanifolds, Results in Math. 59 (2011), 401-413.
21. \qquad , Curvature properties of some class of minimal hypersurfaces in Euclidean spaces, Filomat 29 (2015), 479-492.
22. R. Deszcz, M. Głogowska, M. Plaue, K. Sawicz, M. Scherfner, On hypersurfaces in space forms satisfying particular curvature conditions of Tachibana type, Kragujevac J. Math. 35 (2011), 223-247.
23. R. Deszcz, M. Hotloś, On hypersurfaces with type number two in spaces of constant curvature, Annales Univ. Sci. Budapest. Eötvös Sect. Math. 46 (2003), 19-34.
24. R. Deszcz, M. Hotloś, J. Jełowicki, H. Kundu, A. A. Shaikh, Curvature properties of Gödel metric, Int J. Geom. Meth. Modern Phys. 11 (2014), 1450025 (20 pages).
25. R. Deszcz, M. Hotloś, Z. Șentürk, On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow Math. 27 (2001), 375-389.
26. , On curvature properties of certain quasi-Einstein hypersurfaces, Int. J. Math. 23 (2012), 1250073, (17 pages).
27. R. Deszcz, D. Kowalczyk, On some class of pseudosymmetric warped products, Colloq. Math. 97 (2003), 7-22.
28. R. Deszcz, M. Petrović-Torgašev, L. Verstraelen, G. Zafindratafa, On Chen ideal submanifolds satisfying some conditions of pseudo-symmetry type, Bull. Malaysian Math. Sci. Soc., DOI 10.1007/s40840-015-0164-7 (29 pages), to appear .
29. R. Deszcz, M. Plaue, M. Scherfner, On a particular class of generalized static spacetimes, J. Geom. Phys. 69 (2013), 1-11.
30. R. Deszcz, K. Sawicz, On some class of hypersurfaces in Euclidean spaces, Annales Univ. Sci. Budapest. Eötvös Sect. Math. 48 (2005), 87-98.
31. R. Deszcz, M. Scherfner, On a particular class of warped products with fibres locally isometric to generalized Cartan hypersurfaces, Colloq. Math. 109 (2007), 13-29.
32. R. Deszcz, L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, World Sci., River Edge, NJ, 1991, 131-147.
33. R. Deszcz, L. Verstraelen, S.. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica 22 (1994), 167-179.
34. M. Głogowska, On a curvature characterization of Ricci-pseudosymmetric hypersurfaces, Acta Math. Sci. 24B (2004), 361-375.
35. \qquad _, Curvature conditions on hypersurfaces with two distinct principal curvatures, in:Banach Center Publ. 69, Inst. Math., Polish Acad. Sci., 2005, 133-143.
36. \qquad , On Roter-type identities, in: Pure and Applied Differential Geometry-PADGE 2007, Berichte aus der Mathematik, Shaker Verlag, Aachen, 2007, 114-122.
37. \qquad , On quasi-Einstein Cartan type hypersurfaces, J. Geom. Phys. 58 (2008), 599-614.
38. S. Gołab, Tensor Calculus, PWN, Warszawa, 1974.
39. S. Haesen, L. Verstraelen, Properties of a scalar curvature invariant depending on two planes, Manuscripta Math. 122 (2007), 59-72.
40. B. Jahanara, S. Haesen, M. Petrović-Torgašev, L. Verstraelen, On the Weyl curvature of Deszcz, Publ. Math. Debrecen 74 (2009), 417-431.
41. B. Jahanara, S. Haesen, Z. Șentürk, L. Verstraelen, On the parallel transport of the Ricci curvatures, J. Geom. Phys. 57 (2007), 1771-1777.
42. D. Kowalczyk, On the Reissner-Nordström-de Sitter type spacetimes, Tsukuba J. Math. 30 (2006), 363-381.
43. M. A. Magid, Indefinite Einstein hypersurfaces with imaginary principal curvatures, Houston J. Math. 10 (1984), 57-61.
44. K. Nomizu, On the decomposition of generalized curvature tensor fields, in: Differential geometry in honor of K. Yano, Kinokuniya, Tokyo, 1972, 335-345.
45. T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145-173.
46. M. Petrović-Torgašev, L. Verstraelen, On Deszcz symmetries of Wintgen ideal submanifolds, Arch. Math. (Brno) 44 (2008), 57-68.
47. P. J. Ryan, Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971) 251-259.
48. J. Sato, Stability of $O(p+1) \times O(p+1)$-invariant hypersurfaces with zero scalar curvature in Euclidean space, Ann. Global Anal. Geom. 22 (2002), 135-153.
49. J. Sato, V.F. de Souza Neto, Complete and stable $O(p+1) \times O(q+1)$-invariant hypersurfaces with zero scalar curvature in Euclidean space \mathbb{R}^{p+q+2}, Ann. Global Anal. Geom. 29 (2006), 221-240.
50. K. Sawicz, Hypersurfaces in spaces of constant curvature satisfying some Ricci-type equations, Colloq. Math. 101 (2004), 183-201.
51. \qquad , On some class of hypersurfaces with three principal curvatures, in: Banach Center Publ. 69, Inst. Math., Polish Acad. Sci., 2005, 145-156.
52. \qquad , On curvature characterization of some hypersurfaces in spaces of constant curvature, Publ. Inst. Math., Nouv. Sér. 79 (93) (2006), 95-107.
53. _, Curvature identities on hypersurfaces in semi-Riemannian space forms, in:Pure and Applied Differential Geometry-PADGE 2007, Berichte aus der Mathematik, Shaker Verlag, Aachen, 2007, 252-260.
54. S. Shu, S. Liu, Hypersurfaces with two distinct principal curvatures in a real space form, Monatsh. Math. 164 (2011), 225-236.
55. L. Verstraelen, Philosophiae Naturalis Principia Geometrica I, Radu Rosca in memoriam, Bull. Transilvania Univ. Brasov, ser. B, Suplement, 14 (49) (2007), 335-348.
56. B. Y. Wu, On hypersurfaces with two distinct pricipal curvatures in space forms, Proc. Indian Acad. Sci. (Math. Sci.) 121 (2011), 435-446.
57. D. Yang, Y. Fu, The classification of golden shaped hypersurfaces in Lorentz space forms, J. Math. Anal. Appl. 412 (2014), 1135-1139.

Department of Applied Mathematics
(Received 0503 2014)
Karol Adamiecki University of Economics in Katowice
Pułaskiego 25, 40-276 Katowice
Poland
katarzyna.sawicz@ue.katowice.pl

[^0]: 2010 Mathematics Subject Classification: Primary 53B20, 53B25; Secondary 53C25.
 Key words and phrases: Tachibana tensor, pseudosymmetry type curvature condition, hypersurface, principal curvature.

 Communicated by Michael Kunzinger.

