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A TRANSCENDENCE CRITERION FOR

CONTINUED FRACTION EXPANSIONS

IN POSITIVE CHARACTERISTIC

Basma Ammous, Sana Driss, and Mohamed Hbaib

Abstract. We exhibit a family of transcendental continued fractions of formal
power series over a finite field through some specific irregularities of its partial
quotients.

1. Introduction

A well-known open question in diophantine approximation suggested by Khint-
chine in [5] asks whether an irrational algebraic number x of degree > 2 has a con-
tinued fraction expansion whose sequence of partial quotients is unbounded. The
answer to this conjecture remains a hard matter. Several transcendence criteria
for continued fractions that have been established recently gave a partial solu-
tion to this question. In [2] Baker proved that if x = [a0, a1, a2, . . . ] such that
an = an+1 = · · · = an+λ(n)−1, for infinitely many positive integers n where λ(n)
is a sequence of integers verifying certain increasing properties, then x is transcen-
dental. The proof of this result is based on Liouville’s and Roth’s theorems.

Recently and based on the Schmidt Subspace Theorem, Adamczewski and
Bugeaud [1] improved the result of Baker.

In 1967, Schmidt [12] demonstrated that any positive irrational number which
is very well approximated by quadratic numbers is either quadratic or transcenden-
tal. This result has been used in several works.

However, for formal power series over a finite field, we have some examples of
algebraic formal series of degree > 3 whose sequence of the degrees of the partial
quotients is bounded, as well as examples whose partial quotients take an infinity
of values.

In 1976, Baum and Sweet [3] gave the first example of algebraic formal series of
degree 3 in F2((X−1)) whose partial quotients have only a finite number of values.
This work was pursued in [7] by Mills and Robbins who provided an example
of algebraic formal series over F2((X−1)) whose sequence of partial quotients is
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unbounded. Moreover, Robbins gave a family of cubic formal power series with
bounded partial quotients [11].

In 2004, Mkaouar [9] gave a new transcendence criteria of formal power series
over a finite field that is based on the degree of its partial quotients.

Theorem 1.1. [9] Let f ∈ Fq((X−1)) be an irrational formal series which is

not quadratic such that

f = [

n1

︷ ︸︸ ︷
a1, . . . , a1,

n2

︷ ︸︸ ︷
a2, . . . , a2,

n3

︷ ︸︸ ︷
a3, . . . , a3, . . .],

where ai are blocks of consecutive partial quotients. Let ri be the sum of degrees of

partial quotients of block ai. If

lim
∞

niri

ni−1ri−1
= lim sup ni = +∞,

then f is transcendental.

In [4], Hbaib, Mkaouar and Tounsi constructed a family of transcendental
continued fractions over Fq((X−1)) from an algebraic formal power series of degree
more than 2.

Theorem 1.2. [4] Let g be an algebraic formal power series such that deg(g)>0
and f = [B1, B2, . . .] where Bi are finite blocks of partial quotients whose the first

ni-terms are those of the continued fraction expansion of g. Let di denote the sum

of degrees of Bi and δi the sum of degrees of the first ni-terms of Bi. If

lim inf
s→+∞

1

δs

s−1∑

j=1

dj = 0,

then f is transcendental or quadratic.

Our main purpose here is twofold: to improve the last results and to give a new
transcendence criteria depending only on the length of specific blocks appearing in
the sequence of partial quotients. The present paper is organized as follows: in
Section 2, we define the field of formal series and the continued fraction expansions
over this field. In Section 3, we state the main transcendence criterion and we
present some lemmas that we will use to prove our result. We close this section
with the proof of our main theorem (see Theorem 3.1) and an example to illustrate
the limit of our result.

2. Field of formal series Fq((X−1))

Let Fq be a field with q > 1 elements of characteristic p > 0, Fq[X ] the ring
of polynomials with coefficient in Fq and Fq(X) the field of rational functions. Let
Fq((X−1)) = {f =

∑

n>n0
bnX−n | bn ∈ Fq, n0 ∈ Z} be the field of formal power

series. Define the absolute value

|f | =

{

qdeg f for f 6= 0,

0 for f = 0.
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Thus, | · | is not an archimedean absolute value over Fq((X−1)), that is |f + g| 6
max(|f |, |g|) and |f + g| = max(|f |, |g|) if |f | 6= |g|. By analogy with the real
case, we have a chain-fraction algorithm in Fq((X−1)). A formal power series
f =

∑

n>n0
bnX−n has a unique decomposition as f = [f ] + {f} with [f ] ∈ Fq[X ]

and |{f}| < 1. The polynomial [f ] is called the polynomial part of f and {f} is
called the fractional part of f . We can write for any f ∈ Fq((X−1))

f = a0 +
1

a1 +
1

a2 +
1

.. .

= [a0, a1, a2, . . .],

where a0 = [f ] and ai = [fi] ∈ Fq[X ] with deg(ai) > 1 for any i > 1 and fi =
1/{fi−1}. The sequence (ai)i>0 is called the partial quotients of f and we denote
by fn = [an, an+1, . . .] the n-th complete quotient of f .

Remarks. 1) If (deg(ai))i>0 is bounded, then f is said to have a bounded
continued fraction expansion.

2) The expansion is finite if and only if f ∈ Fq(X).
3) The sequence of partial quotients of f is ultimately periodic if and only if f

is quadratic over Fq(X).

Now, we define two sequences of polynomials (Pn)n>0 and (Qn)n>0 by

P0 = a0, Q0 = 1, P1 = a0a1 + 1, Q1 = a1

Pn = anPn−1 + Pn−2, Qn = anQn−1 + Qn−2, for n > 2.

We easily check that

PnQn−1 − Pn−1Qn = (−1)n−1, for n > 1,

Pn

Qn

= [a0, a1, a2, . . . , an], for n > 0.

Pn/Qn is called the nthconvergent of f and it satisfies

lim
n→∞

Pn

Qn

= f = [a0, a1, . . . , an, . . .].

With the nonarchimedean absolute value, we find the following important equality
∣
∣
∣f −

Pn

Qn

∣
∣
∣ =

∣
∣
∣
Pn+1

Qn+1
−

Pn

Qn

∣
∣
∣ = |QnQn+1|−1 = |an+1|−1|Qn|−2.

Let f be an algebraic formal power series of minimal polynomial P (Y ) = AmY m +
Am−1Y m−1 + · · · + A0 where Ai ∈ Fq[X ]. Set H(f) = max06i6m |Ai| and σ(f) =
Am.

Recall from [8] that a polynomial P ∈ Fq[X ][Y ] is said to be reduced if
deg(Am−1) > deg(Ai) for any i 6= m − 1, and an algebraic formal power series
is reduced if its minimal polynomial is reduced and [f ] 6= 0.

In [4], the authors gave the following lemma which identifies the reduced formal
power series.
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Lemma 2.1. Let f be an algebraic formal power series of degree d and P its

minimal polynomial. We denote by f1, . . . , fd−1 the conjugates of f in the algebraic

closure of Fq((X−1)). Then f is reduced if and only if |f | > 1 and |fi| < 1, for all

i ∈ {1, . . . , d − 1}.

3. Results

Before giving the main result, we need to introduce some notation. If Kn =
uα0

uα2
. . . uαn

is a finite block formed by n + 1 polynomials, we denote by |Kn|
its length and by ϕ(Kn) the maximal degree which appears in the terms of Kn,
which means that ϕ(Kn) = max06i6n(deg(uαi

)). If Un, Vn are two finite blocks of
polynomials, we write UnVn for the block resulting by concatenation of them.

Theorem 3.1. Let f ∈ Fq((X−1)) such that f = [U0V0U1V1 . . . UnVn . . .] where

(Un)n>0 and (Vn)n>0 are two sequences of finite blocks of polynomials such that

1) Ui = PiP
q
i P q2

i . . . P qλi−1

i , for any i > 0, with Pi ∈ Fq[X ] of degree > 1.

2) The sequence (|Vn|/|Un|)n>0 is bounded.

3) (λi)i>0 is an increasing sequence of positive integers.

4) (deg(Pi))i>0 is bounded.

5) ϕ(Vn) 6 ϕ(Un), for all n > 0.

If f satisfies

lim sup
n→∞

qλn−λn−1

nλn−1
= +∞,

then f is transcendental.

The proof of this theorem breaks into four lemmas.

Lemma 3.1. [4] Let f be an algebraic formal power series of degree d such that

f = [a1, a2, . . . , at, h] where a1, . . . , at ∈ Fq[X ], h ∈ Fq((X−1)). If |f | > 1 and

|h| > 1, then h is algebraic of degree d and

H(h) 6 H(f)

∣
∣
∣
∣

t∏

i=1

ai

∣
∣
∣
∣

d−2

.

Lemma 3.2. Let P (Y ) = AnY n +An−1Y n−1 + · · ·+A0 be a reduced polynomial

with Ai ∈ Fq[X ]. If A0 6= 0, then P is irreducible.

Proof. Let f be the unique root of P such that |f | > 1 and assume that P (Y )
is reducible; then P (Y ) = P1(Y )P2(Y ) with P1, P2 ∈ Fq[X ][Y ]. We suppose that
P1(f) = 0; then from Lemma 2.1, all the roots of P2 have absolute values < 1, so
the constant coefficient in P2 is equal to 0, which is absurd because 0 is not a root
of P . �

Lemma 3.3. [10] Let f = [a0, a1, . . .] and g = [b0, b1, . . .] be two formal series

having the same first n + 1 partial quotients. Then

|f − g| 6
1

|Qn|2
.
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Lemma 3.4. [4] Let f and g be two algebraic formal power series of degrees d
and m respectively. If g is reduced and f 6= g, then

|f − g| >
1

H(f)m|g|d−2|σ(g)|max(m−1,m(d−m+2)−1)
.

Proof. Assume contrary that f is algebraic of degree d > 2. Let us use the

notation: λn = |Un|, sn = |Vn|, for all n > 0 and αn =
∑n−1

i=0 (λi +si), for all n > 1.

Let gn denote the continued fraction [Pn, P q
n , P q2

n , P q3

n , . . .]. An easy calculation
ensures that gn verifies the following equation

gq+1
n − Pngq

n − 1 = 0.

Hence Lemma 3.2 guarantees that gn is algebraic of degree q + 1. Let fαn
=

[UnVnUn+1Vn+1 . . .] denote the αth
n complete quotient of f . Since (deg(Pi))i>0 is

bounded, then for sufficiently large n, gn 6= fαn
. On the other hand, it follows from

Lemma 3.1 that fαn
is algebraic of degree d > 2. Therefore, according to Lemma

3.4, we infer that

|fαn
− gn| > H(fαn

)−q−1|gn|2−d.

Moreover, by using again Lemma 3.1, we can check, for sufficiently large n that

(3.1) |fαn
− gn| > H(f)−q−1|Pn|2−d

∣
∣
∣
∣

αn−1∏

i=0

ai

∣
∣
∣
∣

(d−2)(−q−1)

,

where (ai)i>0 is the sequence of partial quotients of f .
Furthermore, fαn

and gn have the same first λn partial quotients, hence Lemma
3.3 implies that

(3.2) |fαn
− gn| 6 |PnP q

nP q2

n . . . Pn
qλn−1

|−2.

Combining (3.1) and (3.2), we get

|PnP q
nP q2

n . . . P qλn−1

n |2 6 H(f)q+1|Pn|d−2

∣
∣
∣
∣

αn−1∏

i=0

ai

∣
∣
∣
∣

(d−2)(q+1)

whence

2 deg(Pn)
(qλn − 1

q − 1

)

6 (q+1) logq H(f)+(q+1)(d−2)

αn−1∑

i=0

deg(ai)+(d−2) deg(Pn).

The fact that (deg(Pi))i>0 is bounded yields the inequality

lim sup
n→∞

qλn

∑αn−1
i=0 deg(ai)

6 C, with C = (q2 − 1)(d − 2).

Set h = supi>0(deg(Pi)). As ϕ(Vi) 6 ϕ(Ui) for all i > 0, we get deg(ai) 6 qλn−1−1h,
for all 0 6 i 6 αn. Therefore

lim sup
n→∞

qλn

qλn−1−1hαn

6 C.
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Since the sequence (|Vi|/|Ui|)i>0 is bounded, there exists c > 0 such that si < cλi

for all i > 0. Thus, αn < (c + 1)nλn−1. Hence, we conclude that

lim sup
n→∞

qλn−λn−1

nλn−1
< ∞, the desired contradiction.

�

We close the paper with the following example.

Example. Let f ∈ F2((X−1)) such that f = [U0V0U1V1 . . . UnVn . . .] where

Ui = [Pi, P 2
i , P 4

i , . . . , P 2λi−1

i ], with Pi = X + i and Vi = [X, X2, X, X2, . . . , X, X2]
of length λi = (i + 1)2, for all i > 0. Then f is transcendental because

lim sup
n→∞

22n+1

n3 = +∞.
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