
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 98(112) (2015), 243–249 DOI: 10.2298/PIM150129019H

ON THE GENERALIZED SUPERSTABILITY OF

nth ORDER LINEAR DIFFERENTIAL EQUATIONS

WITH INITIAL CONDITIONS

Jinghao Huang, Qusuay H. Alqifiary, and Yongjin Li

Abstract. We establish the generalized superstability of differential equa-
tions of nth-order with initial conditions and investigate the generalized su-
perstability of differential equations of second order in the form of y′′(x) +
p(x)y′(x) + q(x)y(x) = 0 and the superstability of linear differential equations
with constant coefficients with initial conditions.

1. Introduction

In 1940, Ulam [28] posed a problem concerning the stability of functional equa-
tions: “Give conditions in order for a linear function near an approximately linear
function to exist.”

A year later, Hyers [7] gave an answer to the problem of Ulam for additive
functions defined on Banach spaces: Let X1 and X2 be real Banach spaces and
ε > 0. Then for every function f : X1 → X2 satisfying

‖f(x + y) − f(x) − f(y)‖ 6 ε (x, y ∈ X1),

there exists a unique additive function A : X1 → X2 with the property

‖f(x) − A(x)‖ 6 ε (x ∈ X1).

A generalized solution to Ulam’s problem for approximately linear mappings was
proved by Rassias in 1978 [22]. He considered a mapping f : E1 → E2 such that
t 7→ f(tx) is continuous in t for each fixed x. Assume that there exists θ > 0 and
0 6 p < 1 such that

‖f(x + y) − f(x) − f(y)‖ 6 θ(‖x‖p + ‖y‖p)

for any x, y ∈ E1. After Hyers’s result, many mathematicians have extended Ulam’s
problem to other functional equations and generalized Hyers’s result in various
directions [4,8,12]. A generalization of Ulam’s problem was recently proposed by
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replacing functional equations with differential equations: The differential equation
ϕ

(

f, y, y′, . . . , y(n)
)

= 0 has the Hyers–Ulam stability if for given ε > 0 and a

function y such that
∣

∣ϕ(f, y, y′, . . . , y(n))
∣

∣ 6 ε, there exists a solution y0 of the
differential equation such that |y(t) − y0(t)| 6 K(ε) and limε→0 K(ε) = 0.

Obłoza seems to be the first author who has investigated the Hyers–Ulam sta-
bility of linear differential equations [18,19]. Thereafter, Alsina and Ger published
their paper [1], which handles the Hyers–Ulam stability of the linear differential
equation y′(t) = y(t): If a differentiable function y(t) is a solution of the inequal-
ity |y′(t) − y(t)| 6 ε for any t ∈ (a, ∞), then there exists a constant c such that
|y(t) − cet| 6 3ε for all t ∈ (a, ∞).

Those previous results were extended to the Hyers–Ulam stability of linear
differential equations of the first and higher orders with constant coefficients in
[16,26,27] and in [17], respectively. Furthermore, Jung has also proved the Hyers–
Ulam stability of linear differential equations [9–11]. Rus investigated the Hyers–
Ulam stability of differential and integral equations using the Gronwall lemma
and the technique of weakly Picard operators [24, 25]. Recently, the Hyers–Ulam
stability problems of linear differential equations of the first and second orders with
constant coefficients were studied by using the method of integral factors [15,29].
The results given in [10,15,16] have been generalized by Cimpean and Popa [3] and
by Popa and Raşa [20, 21] for the linear differential equations of nth order with
constant coefficients. Furthermore, the Laplace transform method was recently
applied to the proof of the Hyers–Ulam stability of linear differential equations [23].

In 1979, Baker, Lawrence and Zorzitto [2] proved a new type of stability of the
exponential equation f(x + y) = f(x)f(y). More precisely, they proved that if a
complex-valued mapping f defined on a normed vector space satisfies the inequality
|f(x + y) − f(x)f(y)| 6 δ for some given δ > 0 and for all x, y, then either f is
bounded or f is exponential. Such a phenomenon is called the superstability of
the exponential equation, which is a special kind of Hyers–Ulam stability. It seems
that the results of Gǎvruţa, Jung and Li [5] are the earliest one concerning the
superstability of differential equations.

Here we investigate the generalized superstability of linear differential equation
of the nth order in the form

(1.1) y(n)(x) + β(x)y(x) = 0,

with initial conditions

(1.2) y(a) = y′(a) = · · · = y(n−1)(a) = 0,

where n ∈ N+, y ∈ Cn[a, b], β ∈ C0[a, b], −∞ < a < b < +∞.
In addition to that we investigate the generalized superstability of differential

equations of the second order in the form of y′′(x) + p(x)y′(x) + q(x)y(x) = 0 and
the superstability of linear differential equations with constant coefficients.

First of all, we give the definition of superstability and generalized superstabil-
ity with initial and boundary conditions.
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Definition 1.1. Assume that for any function y ∈ Cn[a, b], if y satisfies the
differential inequality

∣

∣ϕ(f, y, y′, . . . , y(n))
∣

∣ 6 ǫ

for all x ∈ [a, b] and for some ǫ > 0 with initial (or boundary) conditions, then
either y is a solution of the differential equation

(1.3) ϕ(f, y, y′, . . . , y(n)) = 0

or |y(x)| 6 Kǫ for any x ∈ [a, b], where K is a constant not depending on y
explicitly. Then, we say that (1.3) has superstability with initial (or boundary)
conditions.

Definition 1.2. Assume that for any function y ∈ Cn[a, b], if y satisfies the
differential inequality

∣

∣ϕ(f, y, y′, . . . , y(n))
∣

∣ 6 ϕ(x)

for all x ∈ [a, b] and for some function ϕ : [a, b] → [0, ∞) with initial(or boundary)
conditions, then either y is a solution of the differential equation (1.3) or |y(x)| 6
Φ(x) for any x ∈ [a, b], where Φ : I → [0, ∞) is a function not depending on y
explicitly. Then, we say that (1.3) has generalized superstability with initial (or
boundary) conditions.

2. Main results

In this section, given the closed interval I = [a, b], we assume that ϕ : I →
[0, ∞) and let M(p(x)) denote maxτ∈[a,x] |p(τ)| for every p ∈ C(I,R).

Theorem 2.1. If |β(x)| < n!/(b−a)n for every x ∈ I, then (1.1) has generalized

superstability with initial conditions (1.2).

Proof. Suppose that a function y ∈ Cn(I,R) satisfies the inequality
∣

∣y(n)(x) + β(x)y(x)
∣

∣ 6 ϕ(x),

for all x ∈ I,
By the Taylor formula, we have

y(x) = y(a) + y′(a)(x − a) + · · · +
y(n−1)(a)

(n − 1)!
(x − a)n−1 +

y(n)(ξ)

n!
(x − a)n.

Therefore,

|y(x)| =

∣

∣

∣

∣

y(n)(ξ)

n!
(x − a)n

∣

∣

∣

∣

6 M(y(n)(x))
(x − a)n

n!

for every x ∈ [a, b]. Then,

M(y(x)) 6 M
(

M(y(n)(x))
(x − a)n

n!

)

6 M
(

M(y(n)(x))
)

M
((x − a)n

n!

)

= M(y(n)(x))
(x − a)n

n!
.
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Thus

M(y(x)) 6 M(y(n)(x))
(x − a)n

n!

6
(x − a)n

n!
M

(

y(n)(x) + β(x)y(x)
)

+
(x − a)n

n!
M|β(x)|M(y(x))

6
(x − a)n

n!
M(ϕ(x)) +

(b − a)n

n!
max |β(x)|M(y(x)).

Let C1 = 1 − (b−a)n

n! max |β(x)|. It is easy to see that

M(y(x)) 6
(x − a)n

n!C1
M(ϕ(x)).

Moreover, |y(x)| 6 M(y(x)), which completes the proof of our theorem. �

In the following theorem, we investigate the generalized superstability of the
differential equation

(2.1) y′′(x) + p(x)y′(x) + q(x)y(x) = 0

with initial conditions

(2.2) y(a) = 0 = y′(a),

where y ∈ C2[a, b], p ∈ C[a, b], q ∈ C0[a, b], −∞ < a < b < +∞.

Theorem 2.2. If max
{

q(x) − 1
2 p′(x) − p2(x)

4

}

< 2/(b − a)2, then (2.1) has

generalized superstability with initial conditions (2.2).

Proof. Suppose that y ∈ C2[a, b] satisfies the inequality

(2.3)
∣

∣y′′(x) + p(x)y′(x) + q(x)y(x)
∣

∣ 6 ϕ(x).

Let

(2.4) u(x) = y′′(x) + p(x)y′(x) + q(x)y(x),

for all x ∈ [a, b], and define z(x) by

(2.5) y(x) = z(x) exp

(

−
1

2

∫ x

a

p(τ)dτ

)

.

By a substitution (2.5) in (2.4), we obtain

z′′(x) +

(

q(x) −
1

2
p′(x) −

p2(x)

4

)

z(x) = u(x) exp

(

1

2

∫ x

a

p(τ)dτ

)

.

Then it follows from inequality (2.3) that

∣

∣

∣
z′′(x) +

(

q(x) −
1

2
p′(x) −

p2(x)

4

)

z(x)
∣

∣

∣
=

∣

∣u(x)
∣

∣ exp

(

1

2

∫ x

a

p(τ)dτ

)

6 ϕ(x) exp

(

1

2

∫ x

a

p(τ)dτ

)

.
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From (2.2) and (2.5) we have z(a) = 0 = z(b). It follows from Theorem 2.1 that
there exists a constant C1 > 0 such that

|z(x)| 6
(x − a)n

n! C1
M

(

ϕ(x) exp

(

1

2

∫ x

a

p(τ)dτ

))

.

From (2.5) we have

|y(x)| 6
(x − a)n

n! C1
M

(

ϕ(x) exp

(

1

2

∫ x

a

p(τ)dτ

))

exp

(

−
1

2

∫ x

a

p(τ)dτ

)

.

Thus (2.1) has generalized superstability with initial conditions (2.2). �

In the following theorems, we investigate the superstability of the differential
equation

(2.6) y(n)(x) + an−1y(n−1)(x) + · · · + a1y′(x) + a0y(x) = 0

with initial conditions

(2.7) y(a) = y′(a) = · · · = y(n−1)(a) = 0,

where y ∈ Cn(I,C), ai ∈ R (i = 0, 1, . . . , n − 1), I = [a, b], −∞ < a < b < +∞.

Lemma 2.1. Assume that y ∈ C1(I,C) and C ∈
{

z ∈ C | |z| < 1
b−a

}

. If

|y′(x) − Cy(x)| 6 ε

with y(a) = 0, then there exists a constant K > 0 such that |y(x)| 6 Kε.

Proof. Let y(x) = A(x)+iB(x), where i is the imaginary unit and A(x), B(x)
∈ C1(I,R). Since y(a) = 0, we have A(a) = 0 and B(a) = 0; so, similar to
Theorem 2.1, we obtain

max |A(x)| 6 (b − a) max |A′(x) − CA(x)| + |C| · (b − a) max |A(x)|

6 (b − a) max |y′(x) − Cy(x)| + |C| · (b − a) max |A(x)|

6 (b − a)ε + |C| · (b − a) max |A(x)|

max |B(x)| 6 (b − a)ε + |C| · (b − a) max |B(x)|.

Since C ∈
{

z ∈ C | |z| < 1
b−a

}

, there exists a constant K such that

max |y(x)| 6
√

max |A(x)|2 + max |B(x)|2 6 Kε. �

Theorem 2.3. If all the roots of the characteristic equation are in the disc
{

z ∈ C | |z| < 1
b−a

}

, then (2.6) has superstability with initial conditions (2.7).

Proof. Assume that λ1, λ2, . . . , λn are the roots of the characteristic equation

λn + an−1λn−1 + · · · + a1λ + a0 = 0.

Define g1(x) = y′(x) − λ1y(x) and gi(x) = g′

i−1(x) − λigi−1(x) (i = 2, 3, · · · , n − 1),
thus
∣

∣g′

n−1(x) − λngn−1(x)
∣

∣ =
∣

∣y(n)(x) + an−1y(n−1)(x) + · · · + a1y′(x) + a0y(x)
∣

∣ 6 ε,

and gi(a) = 0 for every i = 1, 2, . . . , n − 1.
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Since the absolute value of λn < 1
b−a

and gn−1(a) = 0, it follows from Lemma

2.1 that there exists a K1 > 0 such that |gn−1(x)| 6 K1ε. Recall gn−1(x) =
g′

n−2(x) − λn−1gn−2(x), we have
∣

∣g′

n−2(x) − λn−1gn−2(x)
∣

∣ 6 K1ε. By an argument
similar to the above and by induction, we can show that there exists a constant
K > 0 such that |y(x)| 6 Kε. �

Remark 2.1. In the present paper, we have discussed the case that the solution
f of a differential inequality is bounded. In fact, the case that f is the exact solution
of the corresponding differential equation (f(x) = 0 6 0ε) is also included in it.
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