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Abstract. Let K be a nonempty closed convex subset of a real Banach space
X, T : K → K a nearly uniformly L-Lipschitzian (with sequence {rn}) asymp-
totically generalized Φ-hemicontractive mapping (with sequence kn ⊂ [1, ∞),
limn→∞ kn = 1) such that F (T ) = {ρ ∈ K : T ρ = ρ}. Let {αn}n>0, {βk

n}n>0

be real sequences in [0, 1] satisfying the conditions:
(i)

∑

n>0
αn = ∞

(ii) limn→∞ αn, βk
n = 0, k = 1, 2, . . . , p − 1.

For arbitrary x0 ∈ K, let {xn}n>0 be a multi-step sequence iteratively
defined by

xn+1 = (1 − αn)xn + αnT ny1
n, n > 0,

yk
n = (1 − βk

n)xn + βk
nT nyk+1

n , k = 1, 2, . . . , p − 2,

y
p−1
n = (1 − β

p−1
n )xn + β

p−1
n T nxn, n > 0, p > 2.(0.1)

Then, {xn}n>0 converges strongly to ρ ∈ F (T ). The result proved in this note
significantly improve the results of Kim et al. [2].

1. Introduction

Let X be a real Banach space and J the normalized duality mapping from X
into 2X∗

defined by J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, where X∗ denotes
the dual space of real Banach space X and 〈., .〉 denotes the generalized duality
pairing between elements of X and X∗. We first recall and define some concepts
as follows. Let K be a nonempty subset of real Banach space X .

Definitions 1. Let T : K → K be a mapping.
(1) T is said to be uniformly L-Lipschitzian [1, 5] if there exists a constant

L > 0 such that ‖T nx − T ny‖ 6 L‖x − y‖, for any x, y ∈ K and ∀n > 1.
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(2) T is said to be asymptotically generalized Φ-hemicontractive with sequence
{kn}n>0 if F (T ) 6= ∅ and for each n ∈ N and x ∈ K, x∗ ∈ F (T ), there exists
constant kn > 1 with limn→∞ kn = 1, strictly increasing function Φ : [0, ∞) →
[0, ∞) with Φ(0) = 0 such that

〈T nx − T nx∗, j(x − x∗)〉 6 kn‖x − x∗‖2 − Φ(‖x − x∗‖).

The class of asymptotically generalized Φ-hemicontractive mapping is the most
general among those defined in [5].

(3) A mapping T : K → X is called Lipschitzian if there exists a constant
L > 0 such that

‖T x − T y‖ 6 L‖x − y‖, for all x, y ∈ K

and is called generalized Lipschitzian if there exists a constant L > 0 such that

‖T x − T y‖ 6 L(‖x − y‖ + 1), for all x, y ∈ K.

It is obvious that the class of generalized Lipschitzian map includes the class of
Lipschitz map. Sahu [5] introduced the following new class of nonlinear mappings
which are more general than the class of generalized Lipschitzian mappings and the
class of uniformly L-Lipschitzian mappings. Fix a sequence {rn}n>0 in [0, ∞] with
rn → 0.

(4) A mapping T : K → K is called nearly Lipschitzian with respect to {rn} if
for each n ∈ N , there exists a constant kn > 0 such that

‖T nx − T ny‖ 6 kn(‖x − y‖ + rn), for all x, y ∈ K.

A nearly Lipschitzian mapping T with sequence {rn}n>0 is said to be nearly uni-
formly L-Lipschitzian if kn = L for all n ∈ N .

Observe that the class of nearly uniformly L-Lipschitzian mapping is more
general than the class of uniformly L-Lipschitzian mappings. We establish a strong
convergence theorem for a more general class of map in real Banach space. It is
worth noting that comparing [2, Theorem 2.1] our result have the following features:
(i) The modified Mann iterative process is replaced by Multi-step iterative process.
(ii) We removed the condition that {rn/αn} is bounded.
(iii) Our restriction imposed on αn is much weaker than those in [2, Theorem 2.1].

Furthermore, our result also improves and extends the corresponding results in
[1, 3]. For this, we need the following Lemmas.

Lemma 1.1. [1] Let X be real Banach Space and J : X → 2X∗

be the normalized
duality mapping. Then, for any x, y ∈ X

‖x + y‖2
6 ‖x‖2 + 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y).

Lemma 1.2. [4] Let Φ : [0, ∞) → [0, ∞) be an increasing function with Φ(x) = 0
⇔ x = 0 and let {bn}∞

n=0 be a positive real sequence satisfying

∞
∑

n=0

bn = +∞ and lim
n→∞

bn = 0.
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Suppose that {an}∞

n=0 is a nonnegative real sequence. If there exists an integer
N0 > 0 satisfying

a2
n+1 6 a2

n + o(bn) − bnΦ(an+1), ∀n > N0,

where limn→∞

o(bn)
bn

= 0, then limn→∞ an = 0.

2. Main results

Theorem 2.1. Let K be a nonempty closed convex subset of a real Banach
space X, T : K → K a nearly uniformly L-Lipschitzian (with sequence {rn}n>0)
asymptotically generalized Φ−hemicontractive map (with sequence kn ⊂ [1, ∞),
limn→∞ kn = 1) such that F (T ) = {ρ ∈ K : T ρ = ρ}. Let {αn}n>0, {βk

n}n>0

be real sequences in [0, 1] satisfying the following conditions:
(i)

∑

n>0 αn = ∞

(ii) limn→∞ αn = 0 = βk
n, k = 1, 2, . . . , p − 1.

For arbitrary x0 ∈ K, let {xn}n>0 be iteratively defined by (0.1). Then, {xn}n>0

converges strongly to ρ ∈ F (T ).

Proof. Since T : K → K is an asymptotically generalized Φ-hemicontractive
mapping, there exists a strictly increasing continuous function Φ : [0, ∞) → [0, ∞)
with Φ(0) = 0 such that

(2.1) 〈T nx − T nρ, j(x − ρ)〉 6 kn‖x − ρ‖2 − Φ(‖x − ρ‖),

for x ∈ K, ρ ∈ F (T ), that is

(2.2) 〈(T n − knI)x − (T n − knI)ρ, j(x − ρ)〉 6 −Φ(‖x − ρ‖).

Choose an x0 ∈ K and x0 6= T x0 such that ‖x0−T nx0‖‖x0−ρ‖+(kn−1)‖x0−ρ‖2 ∈
R(Φ) and denote a0 = ‖x0 − T nx0‖‖x0 − ρ‖ + (kn − 1)‖x0 − ρ‖2. Indeed, if Φ(a) →
+∞ as a → ∞, then a0 ∈ R(Φ); if sup{Φ(a) : a ∈ [0, ∞]} = a1 < +∞ with a1 < a0

Then for ρ ∈ K, there exists a sequence {un} in K such that un → ρ as n → ∞
with un 6= ρ. Clearly, T un → T ρ as n → ∞ thus {un−T un} is a bounded sequence.
Therefore, there exists an n0 such that ‖un−T nun‖‖un−ρ‖+(kn−1)‖un−ρ‖2 < a1

2
for n > n0. Then we redefine x0 = un0

and ‖x0−T nx0‖‖x0−ρ‖+(kn−1)‖x0−ρ‖2 ∈
R(Φ). This is to ensure that Φ−1(a0) is well defined.

We first show that {xn}∞

n=0 is a bounded sequence.
Set R = Φ−1(a0); then from (2.2), we obtain that ‖xn − ρ‖ 6 R. Denote

B1 = {x ∈ K : ‖x − ρ‖ 6 R}, B2 = {x ∈ K : ‖x − ρ‖ 6 2R}.

Now, we want to prove that xn ∈ B1. If n = 0, then x0 ∈ B1. Now assume
that it holds for some n, that is, xn ∈ B1. Suppose that, it is not the case, then
‖xn+1 − ρ‖ > R > R

2 .
Since {rn} ∈ [0, ∞] with rn → 0. Let M = sup{rn : n ∈ N} and denote

τ0 = min
{

1,
Φ(R/2)

24R2 ,
Φ(R/2)

12R[(2R + M)L + R]
,

Φ(R/2)

12R[2((2R + M)L + R) + M ]L

}

.
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Since limn→∞ αn = 0 = βk
n, for k = 1, 2, . . . , p − 1 and limn→∞ kn = 1. Without

loss of generality, let 0 6 αn, βk
n, kn − 1 6 τ0 for any n > 0. Then, we have the

following estimates from (2.1) for k = 1, 2, . . . , p − 1.

‖yp−1
n − ρ‖ 6 (1 − βp−1

n )‖xn − ρ‖ + βp−1
n ‖T nxn − ρ‖ 6 R + τ0L(R + M) 6 2R,

then yp−1 ∈ B2. Similarly,

‖yp−2
n − ρ‖ 6 (1 − βp−2

n )‖xn − ρ‖ + βp−2
n ‖T nyp−1

n − ρ‖ 6 R + τ0L(2R + M) 6 2R,

then yp−2 ∈ B2 . . ., we have

‖y1
n − ρ‖ 6 (1 − β1

n)‖xn − ρ‖ + β1
n‖T ny2

n − ρ‖ 6 R + τ0L(2R + M) 6 2R,

then y1 ∈ B2. Therefore, we get

‖xn+1 − ρ‖ 6 (1 − αn)‖xn − ρ‖ + αn‖T ny1
n − ρ‖ 6 R + τ0L(2R + M) 6 2R.

Also we have the following relations,

‖xn+1 − xn‖ 6 αn‖T ny1
n − xn‖ 6 αn(‖T ny1

n − ρ‖ + ‖xn − ρ‖)

6 τ0(L(2R + M) + R).

‖y1
n − xn+1‖ 6 βn‖T ny2

n − xn‖ + αn‖T ny1
n − xn‖

6 βn(‖T ny2
n − ρ‖ + ‖xn − ρ‖) + αn(‖T ny1

n − ρ‖ + ‖xn − ρ‖)

6 2τ0(L(2R + M) + R).

Using Lemma 1.1 and the above relations, we have

‖xn+1 − ρ‖2
6 ‖xn − ρ‖2 + 2αn〈T ny1

n − xn, j(xn+1 − ρ)〉(2.3)

= ‖xn − ρ‖2 + 2αn〈T nxn+1 − xn+1, j(xn+1 − ρ)〉

+ 〈xn+1 − xn, j(xn+1 − ρ)〉

+ 〈T ny1
n − T nxn+1, j(xn+1 − ρ)〉

6 ‖xn − ρ‖2 + 2αn(kn‖xn+1 − ρ‖2 − Φ(‖xn+1 − ρ‖))

− 2αn‖xn+1 − ρ‖2 + 2αnL(‖y1
n − xn+1‖)‖xn+1 − ρ‖

+ 2αn‖xn+1 − xn‖‖xn+1 − ρ‖

6 ‖xn − ρ‖2 + 2αn(kn − 1)‖xn+1 − ρ‖2

− 2αnΦ(‖xn+1 − ρ‖))

+ 2αnL(‖y1
n − xn+1‖)‖xn+1 − ρ‖

+ 2αn‖xn+1 − xn‖‖xn+1 − ρ‖

6 ‖xn − ρ‖2 − 2αnΦ(R/2) + 2αn

Φ(R/2)

6

+ 2αn

Φ(R/2)

12R
2R + 2αn

Φ(R/2)

12R
2R

6 ‖xn − ρ‖2 − αnΦ(R/2) 6 R2.

which is a contradiction. Hence {xn}∞

n=0 is a bounded sequence.
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We next prove that ‖xn − ρ‖ → 0 as n → ∞.
Since limn→∞ αn = 0 = βk

n, limn→∞ kn = 1 and {xn} is bounded. Clearly,

lim
n→∞

‖xn+1 − xn‖ = 0, lim
n→∞

L‖y1
n − xn+1‖ = 0.

Thus from (2.3), we have

‖xn+1 − ρ‖2 6 ‖xn − ρ‖2 + 2αn〈T ny1
n − xn, j(xn+1 − ρ)〉

= ‖xn − ρ‖2 + 2αn〈T nxn+1 − xn+1, j(xn+1 − ρ)〉

+ 〈xn+1 − xn, j(xn+1 − ρ)〉

+ 〈T ny1
n − T nxn+1, j(xn+1 − ρ)〉

6 ‖xn − ρ‖2 + 2αn(kn‖xn+1 − ρ‖2 − Φ(‖xn+1 − ρ‖))

− 2αn‖xn+1 − ρ‖2 + 2αnL(‖y1
n − xn+1‖)‖xn+1 − ρ‖

+ 2αn‖xn+1 − xn‖‖xn+1 − ρ‖

6 ‖xn − ρ‖2 + 2αn(kn − 1)‖xn+1 − ρ‖2

− 2αnΦ(‖xn+1 − ρ‖)) + 2αnL(‖y1
n − xn+1‖)‖xn+1 − ρ‖

+ 2αn‖xn+1 − xn‖‖xn+1 − ρ‖

= ‖xn − ρ‖2 − 2αnΦ(‖xn+1 − ρ‖) + o(αn),

where

2αn(kn − 1)‖xn+1 − ρ‖2 + 2αnL(‖y1
n − xn+1‖)‖xn+1 − ρ‖

+2αn‖xn+1 − xn‖‖xn+1 − ρ‖ = o(αn).

By Lemma 1.2, we obtain limn→∞ ‖xn − ρ‖ = 0. �

Remark 2.1. If we set p = 0 and β1
n = 0, then the modified version of the

result of [2] holds as a special case of our theorem.
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