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QUASILINEAR VARIETIES OF GROUPOIDS

Petar Ðapić and Petar Marković

This paper is dedicated to Professor Jaroslav “Jarda” Ježek,

coauthor, mentor and friend, who passed away five years ago.

Abstract. We consider the quasilinear varieties of groupoids which were char-
acterized in [4] and find the residual character for all of them. Those varieties
which are residually small turn out to be residually finite. We compute the
residual bounds and find all subdirectly irreducible algebras in them.

1. Introduction

In this paper we complete the investigation of quasilinear varieties of groupoids
started in [3] and [4] by investigating the residual character of those varieties. We
have already determined the residual character of linear varieties in [3], so here we
deal with quasilinear varieties which are not linear.

Finding the residual bound of finitely generated varieties is related to the Re-
stricted Quackenbush Conjecture. The Restricted Quackenbush Conjecture claims
that no finitely generated variety in a finite language has residual bound exactly ω
(i.e. it is impossible for such varieties to contain only finite subdirectly irreducible
algebras, but of unbounded size). All quasilinear varieties were shown to be finitely
generated in [4]. Here we will prove that all quasilinear varieties have either a
finite residual bound or are residually large. Thus, we establish that there are no
counterexamples to the Restricted Quackenbush Conjecture among quasilinear va-
rieties of groupoids. For those quasilinear varieties which are residually finite we
find all subdirectly irreducible algebras that contain them, thus semantically de-
scribing them up to Horn formulae (rather than just identities). For the residually
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16 ÐAPIĆ AND MARKOVIĆ

large quasilinear varieties, we had to invent new constructions to prove residual
largeness, which may be useful in future research.

We introduce some of the definitions, notation and basic facts about universal
algebra which we will need in this paper. This is not comprehensive, the reader is
expected to know standard universal algebra (e.g. free algebras, varieties etc.) in
order to follow the arguments in our paper. Good textbooks are [2, 7, 1].

Let F be an algebraic language. We say that an F -term is linear if it is a
variable, or equal to f(x1, . . . , xn), where f is an operation symbol of arity n and
x1, . . . , xn are variables (thus constant symbols are also linear terms, being nullary
operation symbols).

In the previous papers [4] and [3] we introduced equational theories which are
represented on linear terms, as defined below.

Definition 1.1. An equational theory E is linear if any term is E-equivalent
to a unique linear term. E is quasilinear if it is idempotent and each term is E-
equivalent to a linear term (not necessarily unique). The variety of all models of a
linear (quasilinear) equational theory is called a linear (quasilinear) variety.

Note that we called these properties ∗-linear and ∗-quasilinear in [3] and [4].
This was because we needed to distinguish n-linear and n-quasilinear for the equa-
tional theories which have the above properties just for terms with up to n variables.
Now we don’t need these weaker properties and thus we simplify our terminology.

We recall some basic facts about simple and subdirectly irreducible algebras.
An algebra is simple if it has more than one element and only the two trivial
congruences, the equality and full relation. An algebra is subdirectly irreducible if
it has more than one element and the least congruence which is not the equality
relation. The least congruence different from the equality relation is called the
monolith of a subdirectly irreducible algebra. A class of algebras is residually
small if it has a cardinal bound on the size of subdirectly irreducible algebras in
the class. The class of algebras is residually large otherwise. The property of
residual smallness/largeness is called the residual character of the class of algebras
in question. The residual bound of a class of algebras K, denoted by resb(K) is the
least cardinal κ such that all subdirectly irreducible algebras in K are of size strictly
smaller than κ, if K is residually small, or resb(K) = ∞ if K is residually large.

Let A be an algebra. We use the standard notation Con A for the set of all
congruences and Con A for the lattice of all congruences of an algebra A. For
X ⊆ A × A, CgA(X) is the congruence of A generated by X . When X = {〈a, b〉},

we use CgA(a, b) as short notation for the principal congruence CgA(X).
Let A be an algebra. A basic translation is either the identity map idA or

the operation p(x) = fA(a1, . . . , ai−1, x, ai+1, . . . , an), where f ∈ F is an operation
symbol of arity n > 1, 1 6 i 6 n and aj ∈ A for all j. A translation is a composition
of basic translations. The set of all translations of A is denoted by Tr A. In the
case of a groupoid G = (G; ·), the basic translations are idG, the maps λa(x) = ax
and ρa(x) = xa for all a ∈ G.

In general, CgA(X) is the transitive closure of the set
{

〈u, v〉 ∈ A2 : (∃〈x, y〉 ∈ X)(∃p(x) ∈ Tr A)
(
{u, v} = {p(x), p(y)}

)}
.
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Some authors call this a Mal’cev chain, each pair of the form {p(x), p(y)} forming
a link in the chain.

For shorter notation, we will write x1x2x3 . . . xn instead of (((x1x2)x3) . . .)xn

(the parentheses are grouped to the left), x · yz instead of x(yz), etc. By a left-
associated term we mean a term x1x2 . . . xn where n > 1 and x1, . . . , xn are vari-
ables. We finish the section by introducing some more notation.

Let G be a nonvoid set, and κ a cardinal. For any a, b ∈ G and j ∈ κ, the
element aκ

j 7→b of Gκ is defined by

aκ
j 7→b(i) =

{

a, for all i ∈ κ r {j};

b, for i = j.

Let α ∈ Gκ and e, f ∈ G. Then the element αe7→f in Gκ is defined by

αe7→f (i) =

{

α(i), if α(i) 6= e;

f, if α(i) = e.

2. Our result, statement and easy cases

We recall the poset of all quasilinear varieties of groupoids, which was discov-
ered in [4].
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Figure 1. The poset of all ∗-quasilinear varieties.

In this paper we prove that these varieties have the residual characters as
depicted in Table 1. First we get the easy cases out of the way.
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Table 1. Residual bounds of idempotent ∗-quasilinear varieties.

Variety Residual bound

S5 2

S3, S∂
3 , S4, R, 3

S2, S∂
2 , VC , V∂

C , D, 4

W , W∂ 5

L1, L2, L3, N1, N2, S1, VA, VB,
residually large

L∂
1 , L∂

2 , L∂
3 , N ∂

1 , N ∂
2 , S∂

1 , V∂
A, V∂

B,

If A = 〈A; ·〉 is a groupoid, then A∂ = 〈A; ∗〉 such that x ∗ y = y · x for all
x, y ∈ A, while V∂ stands for the variety {A∂ : A ∈ V}. Clearly, V and V∂ have
the same residual bounds. Recall that all subdirectly irreducible groupoids in the
variety S2 (the variety of idempotent semigroups which satisfy xyz ≈ xzy) were
described in [6]. Thus we know that resb(S2) = 4, and that its subvarieties S3 (the
left-zero semigroups, i.e. all models of xy ≈ x) and S4 (semilattices) have only
the two-element subdirectly irreducible algebras. Also, it is well known (and easy
to prove) that the variety of rectangular bands R has only the two-element left-
zero semigroup and the two-element right-zero semigroup as nontrivial subdirectly
irreducibles. Therefore, resb(S4) = resb(S3) = resb(R) = 3. The trivial variety S5

of one-element groupoids is conventionally given the residual bound 2.
We also know that the variety S1 of idempotent semigroups, which satisfy

xyx ≈ xy, contains subdirectly irreducible algebras of size at least κ where κ is any
cardinal (cf. Section 3 of [6], and replace the set of natural numbers with κ). Thus
all varieties which contain S1 are residually large, and those are N1, L1, L2 and
L3.

The variety D is the class of all models of the identities

(D1) xx ≈ x (D2) xy ≈ yx

(D3) x · xy ≈ y (D4) xy · zt ≈ xz · yt

It is proved in [4], Theorem 9.7, that the variety D is ∗-quasilinear and gener-
ated by the three-element groupoid G7.

G7 a b c
a a c b
b c b a
c b a c

Since the equational base of the variety D contains the identities (D1) xx ≈ x,
(D2) xy ≈ yx, (D3) x · xy ≈ y, it follows that D is a variety of Steiner quasigroups.
Actually it is the least such nontrivial variety. The subdirectly irreducible Steiner
quasigroups were investigated in the influential paper [9], but since the variety D
is not generated by the so-called planar ones, we would have to work through the
proofs given in [9] to realize that resb(D) = 4.
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The easier way is to realize that (D1) − (D4) are alternative axioms for the
subvariety denoted by V3 of the variety of SIE groupoids in the terminology of B.
Roszkowska-Lech. This V3 is a variety which is axiomatized by (D1), (D4) and

(D2′) x ≈ y · xy (D3′) xyy ≈ x

in place of (D2) and (D3). We only need to prove (D2′) and (D3′) in D, though
it can be proved that (D2) and (D3) hold in V3, too. (D3′) follows trivially from
commutativity and (D3), while x ≈(D3) y · yx ≈(D2) y · xy. Then we invoke [10],
where it is proved that all algebras in Vk for odd k are polynomially equivalent
to Abelian groups which additionally satisfy kx = 0. Thus the only subdirectly
irreducible algebra in D = V3 is the one polynomially equivalent to the three-
element Abelian group, and resb(D) = 4. The reader is referred to papers [11] and
[12] for more details, and to [5] for yet another approach to the same variety.

It remains to find the residual bounds of N2, VA, VB, VC and W , which we
will do in the following sections.

3. The varieties N 2, VA and VB are residually large

We first consider the variety N2, given by its equational base

(N1) xx ≈ x (N2) x · yx ≈ xy

(N3) x · xyz ≈ x · yz (N4) x · yz ≈ x · zy

Lemma 3.1. The variety N2 is generated by the subdirectly irreducible groupoid
GN2

GN2
a b c d

a a d c d
b b b b b
c c b c b
d d d d d

Proof. One can directly verify that the groupoid GN2
satisfies the identities

(1)–(4). The groupoid GN2
is subdirectly irreducible with the monolith equal to the

congruence CgGN2 (b, d). The groupoid GN2
is not a semigroup, since acb 6= a · cb.

Therefore, V(GN2
) 6⊆ S2, but V(GN2

) ⊆ N2. From the fact that the varieties
depicted in Figure 1 are a down-set (order ideal) in the lattice of all groupoid
varieties, we deduce that V(GN2

) can be only N2. �

Theorem 3.1. The variety N2 is residually large.

Proof. The groupoid GN2
generates N2, according to Lemma 3.1. Let κ be

a cardinal. Consider the groupoid G := (GN2
)κ and denote by bκ and dκ the

elements of the groupoid G such that bκ(i) = b and dκ(i) = d for all i ∈ κ. Define
the relation ρ on the groupoid Gκ

N2
by: x ρ y iff one of the following three conditions

hold:

(1) x = y,
(2) {x, y} = {bκ, dκ},
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(3) {x, y} ∩ {bκ, dκ} = ∅, d ∈ x(κ), d ∈ y(κ), x(κ) 6⊆ {a, d}, y(κ) 6⊆ {a, d}
and for each i ∈ κ, either {x(i), y(i)} = {b, d}, or x(i) = y(i).

The relation ρ defined above is an equivalence relation and has at least 2κ equiva-
lence classes. Next we are showing that ρ is a congruence of G. It suffices to show
that the following holds for all x, y, z ∈ G: If xρy, then xzρyz and zxρzy.

Let xρy and let z ∈ G be arbitrary. By the definition of the relation ρ, it
follows that {i ∈ κ : x(i) 6= y(i)} = {i ∈ κ : {x(i), y(i)} = {b, d}}. The fact that
ub = ud in GN2

for all u ∈ {a, b, c, d} implies that zx = zy.
Now we show 〈xz, yz〉 ∈ ρ. If x = bκ and y = dκ, then xz = x and yz = y, as b

and d are left zeros of the groupoid GN2
. Let x and y be distinct elements of G and

{x, y} ∩ {bκ, dκ} = ∅. Then d ∈ x(κ) ∩ y(κ) and since d is a left zero in GN2
, thus

d ∈ xz(κ) ∩ yz(κ). Since xρy, it follows that {b, c} ∩ x(κ) 6= ∅, but since {b, c} · G =
{b, c}, it follows that {b, c} ∩ xz(κ) 6= ∅, i.e. xz(κ) 6⊆ {a, d}. Analogously we show
that yz(κ) 6⊆ {a, d}. If x(i) 6= y(i), then {x(i), y(i)} = {b, d}, from which it follows
that {xz(i), yz(i)} = {b, d}. Therefore, {xz(i), yz(i)} ∈ {{a}, {b}, {c}, {d}, {b, d}},
for all i ∈ κ. This proves that ρ is a congruence of G.

Note: the set {b, d}κ is the union of two ρ-classes. One is {bκ, dκ}, and the
other one is all other elements of {b, d}κ. In other words, for all x, y ∈ G, if
x(κ) = y(κ) = {b, d}, then xρy.

Next we show that G�ρ is subdirectly irreducible. Let the congruence θ ∈
Con G be such that ρ ( θ.

We want to show that there exists p ∈ G which satisfies p(κ) = {b, d} such
antecedent that 〈bκ, p〉 ∈ θ. Considering the discussion on ρ restricted to {b, d}κ,
this would imply that every such θ has {b, d}κ in a single θ-class, and the congruence

(ρ ∨ CgG(bκ, p))�ρ (which is the same no matter which p is chosen) would be the
monolith of G�ρ.

Let x, y ∈ G be such that 〈x, y〉 ∈ θ r ρ. We consider all cases:

Case 1: There exists j ∈ κ such that {x(j), y(j)} ∈ P2({a, b, c, d}) r {b, d},
where P2(X) is the set of all subsets of X with exactly two elements. Then
bκ

j 7→ax(i) = bκ
j 7→ay(i) = b for all i ∈ κr{j} and {bκ

j 7→ax(j), bκ
j 7→ay(j)} ∈ P2({a, c, d}).

If c ∈ {bκ
j 7→ax(j), bκ

j 7→ay(j)}, then

{bκ
j 7→axdκ, bκ

j 7→aydκ} = {bκ, bκ
j 7→d},

therefore, 〈bκ, bκ
j 7→d〉 ∈ θ. If {bκ

j 7→ax(j), bκ
j 7→ay(j)} = {a, d}, then

{bκ
j 7→axcκdκ, bκ

j 7→aycκdκ} = {bκ, bκ
j 7→d},

and hence 〈bκ, bκ
j 7→d〉 ∈ θ. Thus, bκ

j 7→d can be chosen for p.

Case 2: For each i ∈ κ,

{x(i), y(i)} ∈ {{a}, {b}, {c}, {d}, {b, d}}.

Our assumptions about x and y imply that x 6= y, {x, y} 6= {bκ, dκ}.
If x = bκ, then y(κ) = {b, d}, so bκ = x θ y and y can be chosen for the element

p which we need. If x = dκ, then bκρ dκ = x θ y and y can be chosen for p, as ρ ⊆ θ.
Let {x, y} ∩ {bκ, dκ} = ∅. Suppose that d 6∈ x(κ) and d 6∈ y(κ). Assumptions

of Case 2 imply that x = y, a contradiction with 〈x, y〉 /∈ ρ. Let d ∈ x(κ) and
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d 6∈ y(κ). Then there exists some j ∈ κ such that x(j) = d and y(j) = b. Thus
bκ = yya7→cbκθ xya7→cbκ and since xya7→cbκ(κ) = {b, d}, we can take xya7→cbκ for p.
The case d 6∈ x(κ) and d ∈ y(κ) is analogous.

Now let {x, y} ∩ {bκ, dκ} = ∅ and d ∈ x(κ), d ∈ y(κ). Assume that x(κ) ⊆
{a, d}. Then bκρ dκ = xbκθ ybκ, and since ybκ(κ) = {b, d}, it follows that ybκ can
be taken for p. The case when y(κ) ⊆ {a, d} is analogous. All remaining cases for
〈x, y〉 are already in ρ.

Therefore, the groupoid G�ρ is subdirectly irreducible, and the congruence
CgG�ρ(bκ�ρ, bκ

j 7→d�ρ) is its monolith. �

We turn to the variety VA = HSP (A). According to [4], more precisely the
definition of VA and Theorem 7.15, it is the variety generated by

A a b c d e
a a a a a a
b b b b b b
c d e c c c
d d d d d d
e e e e e e

whose equational base is

(A1) xx ≈ x (A2) xyy ≈ xy

(A3) x · yz ≈ xy (A4) xyzy ≈ xyz

Theorem 3.2. The variety VA = HSP (A) is residually large.

Proof. Let κ be any cardinal. Consider the groupoid Aκ and the set G =
{dκ

i7→u | u ∈ {a, b, c}, i ∈ κ} ∪ {d, e}κ. Then G is a subgroupoid of Aκ. Define the
relation ρ on the groupoid G by: x ρ y iff one of the conditions

(1) x = y, or
(2) {x, y} ∈ {d, e}κ r {dκ}.

is satisfied. The equivalence relation ρ has κ equivalence classes. Let us show that
ρ is a congruence of G. It suffices to prove for all x, y, z ∈ G, if xρy, then xzρyz
and zxρzy. Since d and e are left zeros and right neutral elements of A, it follows
that ρ is a congruence of G.

Next we show that G�ρ is subdirectly irreducible. Let θ ∈ Con G satisfy
ρ ( θ. We aim to show that there exists p ∈ {d, e}κ r {dκ} such that 〈dκ, p〉 ∈ θ.
Note that {dκ} and {d, e}κ r {dκ} are ρ-classes. If we show the claim, then it
will follow that the pair 〈{d, e}κ r {dκ}, {dκ}〉 is contained in any congruence of
G�ρ which is not the equality relation, i.e. it will follow that G�ρ is subdirectly
irreducible.

Let 〈x, y〉 ∈ θ r ρ. We consider the following cases for 〈x, y〉:

Case 1: There exists j ∈ κ such that 〈x(j), y(j)〉 ∈ {a}×{b, c, d, e}∪{b, c, d, e}×
{a}. Then {dκ

j→cx, dκ
j→cy} = {dκ, dκ

j→c} or {dκ
j→cx, dκ

j→cy} = {dκ, dκ
j→e}. Hence,

〈(dκ
j 7→cx)dκ

j 7→b, (dκ
j 7→cy)dκ

j 7→b〉 ∈ {〈dκ, dκ
j 7→e〉, 〈dκ

j 7→e, dκ〉},
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and thus 〈dκ, dκ
j 7→e〉 ∈ CgG(x, y) ⊆ θ, so we take p = dκ

j 7→e.

Case 2: There exists j ∈ κ such that 〈x(j), y(j)〉 ∈ {b}×{c, d, e}∪{c, d, e}×{b}.
Then {dκ

j→cx, dκ
j→cy} = {dκ

j→e, dκ
j→c}. Hence,

〈(dκ
j 7→cx)dκ

j 7→a, (dκ
j 7→cy)dκ

j 7→a〉 ∈ {〈dκ, dκ
j 7→e〉, 〈dκ

j 7→e, dκ〉}.

Therefore, 〈dκ, dκ
j 7→e〉 ∈ CgG(x, y) ⊆ θ, so we take p = dκ

j 7→e.

Case 3: There exists j ∈ κ such that {x, y} = {dκ
j 7→c, p} for some p ∈ {d, e}κ r

{dκ}. Without loss of generality, let y = p. Then 〈dκ, p〉 = 〈xdκ
j 7→a, ydκ

j 7→a〉 ∈

CgG(x, y) ⊆ θ, and since p ∈ {d, e}κ r {dκ}, the case is done.

Case 4: There exist j, l ∈ κ so that {x, y} = {dκ
j→c, dκ

l→c}. Then {xdκ
l→b, ydκ

l→b}

= {dκ
j→c, dκ

l→e}, and since 〈xdκ
l→b, ydκ

l→b〉 ∈ CgG(x, y) ⊆ θ, θ is also in Case 3.

Case 5: There exists j ∈ κ such that x = dκ
j 7→c and y = dκ (or vice versa, but

it is analogous). Then 〈dκ
j 7→e, dκ〉 = 〈xdκ

j 7→b, ydκ
j 7→b〉 ∈ CgG(x, y) ⊆ θ, so we take

p = dκ
j 7→e. �

We turn our attention to the variety VB = HSP (B). According to [4], more
precisely the definition of VB and Theorem 7.15, it is the variety generated by

B a b c d e
a a a a a a
b b b b b b
c d c c c c
d d e d d d
e d e e e e

(actually, it is also generated by the subalgebra with universe {a, b, d, e}). The
equational base of VB is

(B1) xx ≈ x (B2) xyy ≈ xy

(B3) x · yz ≈ xy (B4) xyzy ≈ xzy

Theorem 3.3. The variety VB is residually large.

Proof. Let κ be any cardinal. For any x ∈ κ, x′ and x′′ are short notation
for 〈0, x〉 and 〈1, x〉, respectively. Consider the groupoid G = ({0, 1} × κ, ·) where
the operation · is defined like this:

x · y =







1′′, if x = 0′′, y = 0′;

0′′, if x = k′′, y = l′, l 6= 0 and k 6 l;

x, else.

The operation is given in Table 2. Notice that the elements of {0}×κ are left zeros,
while the elements of {1} × κ are right neutral. Besides, we note that 1′′y = 0′′y
for all y ∈ {0} × κ.

We show that G ∈ VB, by showing G satisfies (B1)–(B4).

Identity (B1): G is idempotent since it consists of left zeros and right units.
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Table 2. The Cayley table of the subdirectly irreducible groupoid
in the variety VB of size 2κ.

0′ 1′ 2′ 3′ 4′ . . . 4′′ 3′′ 2′′ 1′′ 0′′

0′ 0′ 0′ 0′ 0′ 0′ . . . 0′ 0′ 0′ 0′ 0′

1′ 1′ 1′ 1′ 1′ 1′ . . . 1′ 1′ 1′ 1′ 1′

2′ 2′ 2′ 2′ 2′ 2′ . . . 2′ 2′ 2′ 2′ 2′

3′ 3′ 3′ 3′ 3′ 3′ . . . 3′ 3′ 3′ 3′ 3′

4′ 4′ 4′ 4′ 4′ 4′ . . . 4′ 4′ 4′ 4′ 4′

...
...

...
...

...
...

...
...

...
...

...
4′′ 4′′ 4′′ 4′′ 4′′ 4′′ . . . 4′′ 4′′ 4′′ 4′′ 4′′

3′′ 3′′ 3′′ 3′′ 3′′ 3′′ . . . 3′′ 3′′ 3′′ 3′′ 3′′

2′′ 2′′ 2′′ 2′′ 2′′ 2′′ . . . 2′′ 2′′ 2′′ 2′′ 2′′

1′′ 1′′ 1′′ 1′′ 1′′ 1′′ . . . 1′′ 1′′ 1′′ 1′′ 1′′

0′′ 0′′ 0′′ 0′′ 0′′ 0′′ . . . 0′′ 0′′ 0′′ 0′′ 0′′

Identity (B2): If x = k′ is a left zero or y a right unit, (B2) holds trivially.
Assume that x = k′′ and y = l′. In the case x = 0′′ and y = 0′ we verify (B2)
directly, since both sides equal 1′′. If l 6= 0 and k 6 l, then xyy = 0′′y = 0′′ = xy.
If k > l, then xy = x and xyy = xy (= x).

Identity (B3): If x is a left zero, y a left zero, or z a right unit, the equality
trivially holds. Assume that x = k′′, y = l′′ and z = m′. Then yz ∈ {1} × κ, say
yz = s′′, and hence x · yz = k′′s′′ = k′′ = k′′l′′ = xy.

Identity (B4): If x is a left zero, or y a right unit, (B4) trivially holds. If z is
a right unit, (B4) reduces to (B2). So we assume that x = k′′, y = l′ and z = m′.

Case x = 0′′: If y = 0′, then xyzy = 1′′zy = 0′′zy = xzy, and if y 6= 0′, then
xy = x, so xyzy = xzy.

Case k > 0: Then xy, xz ∈ {x, 0′′}. If xy = x, then xyzy = xzy. If xy = 0′′

and xz = x, then xyzy = 0′′zy ∈ {0′′y, 1′′y} = {1′′y} since 0′′y = 1′′y. Thus
xyzy = 1′′y = xyy =(B2) xy = xzy. Finally, if xy = xz = 0′′, then xyzy = 0′′zy =
xzzy =(B2) xzy.

To complete the proof, we are proving that G is subdirectly irreducible with the
monolith CgG(0′′, 1′′). Let x, y ∈ G be distinct. We want to prove that 〈0′′, 1′′〉 ∈
CgG(x, y).

Case x = k′′, y = l′′: Without loss of generality, assume k < l. Then

〈0′′, y〉 = 〈xk′, yk′〉 ∈ CgG(x, y),

〈1′′, y〉 = 〈0′′0′, y0′〉 ∈ CgG(x, y),

so transitivity implies that 〈0′′, 1′′〉 ∈ CgG(x, y).

Case x = k′, y = l′: Without loss of generality, assume k < l. Then

〈l′′, 0′′〉 = 〈l′′x, l′′y〉 ∈ CgG(x, y).

From the previous case we obtain 〈0′′, 1′′〉 ∈ CgG(0′′, l′′, y) ⊆ CgG(x, y).
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Case x = k′, y = l′′: If k = 0, then 〈1′′, 0′′〉 = 〈0′′x, 0′′y〉 ∈ CgG(x, y). If k 6= 0,

then 〈0′′, 1′′〉 = 〈1′′x, 1′′y〉 ∈ CgG(x, y). �

4. Residual bound of VC

We turn to the variety VC . According to [4], more precisely the definition of
VC and Lemma 7.12, VC is the variety generated by

G5 x y xy yx
x x xy x xy
y yx y yx y

xy xy xy xy xy
yx yx yx yx yx

which is also its 2-generated free groupoid. The equational base of VC is

(C1) xx ≈ x (C2) xyy ≈ xy

(C3) x · yz ≈ xy (C4) xyz ≈ xzy

Lemma 4.1. Let G ∈ VC , and assume that ab = b for some a, b ∈ G. Then
a = b.

Proof. a = aa =(C3) a · ab = ab = b. �

Let G be an n-element groupoid in VC , and define for any a ∈ G the set Ca as

Ca = a · G ∪ a · G · G ∪ · · · ∪ a · G · . . . · G
︸ ︷︷ ︸

n−1

.

Here, a · G · . . . · G
︸ ︷︷ ︸

n−1

= {ag1g2 . . . gn−1 : (∀i < n)gi ∈ G}. Note that a · G · . . . · G
︸ ︷︷ ︸

k−1

⊆

a · G · . . . · G
︸ ︷︷ ︸

k

by idempotence. Also, note that the left-associated products need

only go as far as n = |G| terms since any repetition is cancelled by applying (C4)
several times, and then (C1) or (C2). It follows that Ca · G = Ca. The relation ρa

on G is defined by:
b ρa c iff b = c or b, c ∈ Ca.

Lemma 4.2. Let G ∈ VC and |G| = n. Then ρa is a congruence on G.

Proof. Let b ρa c for distinct elements b, c and let d ∈ G. Then there exist
i, j 6 n such that b ∈ a · G · . . . · G

︸ ︷︷ ︸

i

and c ∈ a · G · . . . · G
︸ ︷︷ ︸

j

. According to (C3) and

transitivity of equality, it follows that da = db and da = dc. Therefore, 〈db, dc〉 ∈ ρa.
On the other hand, bd, cd ∈ Ca, hence 〈bd, cd〉 ∈ ρa. �

Corollary 4.1. Let G ∈ VC be a finite groupoid, and let a ∈ G. Then for all
b, c ∈ Ca, and all x ∈ G, we have xb = xc.

Proof. By a repeated use of the identity (C3), we obtain xa = xd for any
d ∈ Ca and any x ∈ G. �

Let b ∈ G, G ∈ VC . Denote by Fb = {g ∈ G : bg = b}.



RESIDUAL CHARACTER OF QUASILINEAR VARIETIES OF GROUPOIDS 25

Lemma 4.3. Let G ∈ VC be a finite groupoid, and let a ∈ G, b ∈ a · G, b 6= a.
For all c ∈ G we have

(ac = a) ∨ (ac = b) ⇒ bc = b.

Consequently, |Fb| > |Fa| and Cb ⊆ Ca.

Proof. From b ∈ a · G we know that there exists d ∈ G such that ad = b.
Moreover, bc = adc =(C4) acd = ad = b if ac = a, or bc = acc =(C2) ac = b if
ac = b. From the first part we get Fa ⊆ Fb, but we also know that ad = b 6= a and
bd = b. Finally, b · G · . . . · G

︸ ︷︷ ︸

i

⊆ a · G · . . . · G
︸ ︷︷ ︸

i+1

since b ∈ a · G, hence Cb ⊆ Ca. �

Lemma 4.4. Let G ∈ VC be a finite groupoid, |G| = n, c ∈ Ca so that c =
ab1 . . . bi for some i < n and b1, . . . , bi ∈ G. If c · G = c (c is a left zero), then for
every d ∈ Ca, db1 . . . bi = c.

Proof. Let d = ab′
1 . . . b′

j for some j 6 n and b′
1, . . . , b′

j ∈ G. Then

db1 . . . bi = ab′
1 . . . b′

jb1 . . . bi =(C4) . . . =(C4) ab1 . . . bib
′
1 . . . b′

j = cb′
1 . . . b′

j = c. �

Lemma 4.5. Let G ∈ VC be a finite groupoid, |G| = n, and let a ∈ G. Then
there exists a unique c ∈ Ca such that c · G = c.

Proof. Assume the opposite. Let b ∈ Ca be such that |Fb| is maximal. Since
{b} 6= b · G, then there exists c ∈ b · G, c 6= b, so by Lemma 4.3 we get |Fc| > |Fb|.
Moreover, the conditions c ∈ b · G and b ∈ Ca mean that we can select some i < n
and b1, . . . , bi, d ∈ G such that b = ab1b2 . . . bi and c = bd. Thus c ∈ Ca, which
contradicts the choice of b. Uniqueness of c in Ca follows from Lemma 4.4. �

Lemma 4.6. Let G ∈ VC be a finite groupoid, a ∈ G, and let |Ca| = 3. Then
G is not subdirectly irreducible.

Proof. Assume that Ca = {a, b, c} and according to Lemma 4.5, one of b, c is
a left zero, say c · G = c.

First we show that Ca = a · G. We know that {a} ⊆ a · G ⊆ a · G · G ⊆ . . ., and
that once this sequence stabilizes, it stays constant and equal to Ca. Therefore,
either a · G = {a, b, c} = Ca, or {a} ( a · G ( a · G · G = {a, b, c}. If a · G = {a, c},
then {a, b, c} = a ·G·G = a ·G∪c ·G = {a, c}∪{c}, a contradiction. If a ·G = {a, b},
then ade = c for some d, e ∈ G. We know ad ∈ a · G = {a, b}. If ad = a, then
c = ade = ae ∈ a · G. So, we may assume that ad = b. According to (C4),
c = ade = aed, so an analogous argument proves that we may assume ae = b.
However, from Lemma 4.3 it follows that be = b, and this leads to a contradiction:
c = ade = be = b.

Let ad = c. According to Lemma 4.4 we have {a, b, c} · d = c. Lemma 4.3
implies that b · G ⊆ {b, c}, and Lemma 4.4 implies c ∈ b · G, while (C1) implies
b ∈ b · G, so b · G = {b, c}. Thus Cb = {b, c}, as c is a left zero. Lemma 4.2
implies that α = ∆G ∪ {〈b, c〉, 〈c, b〉} is a congruence of G. Let us show that
β = ∆G ∪ {〈a, b〉, 〈b, a〉} is a congruence of G. Let ae = b. If g ∈ G, then
gb = g ·ae =(C3) ga. On the other hand, we know {ag, bg} ⊆ {a, b, c}. If ag ∈ {a, b},
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Lemma 4.3 implies bg = b. If ag = c, then Lemma 4.4 implies bg = c. So,
α, β ∈ Con Gr {∆G}, but α ∩ β = ∆G, hence G is not subdirectly irreducible. �

Lemma 4.7. Let G ∈ VC be a finite groupoid, a, b ∈ G, and let |Ca| = |Cb| = 2.
Then G is not subdirectly irreducible.

Proof. Lemma 4.2 implies that ρa, ρb are atoms in Con G. Assume that they
are equal. Then from a ∈ Ca and b ∈ Cb we get Ca = Cb = {a, b}. According to
Lemma 4.5, one of a, b must be a left zero, but this contradicts the assumption
that |Ca| = |Cb| = 2. Thus ρa and ρb are distinct atoms in Con G, so G is not
subdirectly irreducible. �

Theorem 4.1. resb(VC) 6 4.

Proof. Let G ∈ VC be a subdirectly irreducible groupoid with at least 4
elements. VC is finitely generated, thus it is locally finite. Recall the Quackenbush
Lemma from [8]: if a locally finite variety has an infinite subdirectly irreducible
algebra, it has no bound on sizes of finite subdirectly irreducibles. So we may
assume that G is finite.

According to Lemma 4.6, for all a ∈ G, |Ca| 6= 3. Assume that a ∈ G is such
that |Ca| > 3. Lemma 4.5 implies that there exists a unique c ∈ Ca such that
c · G = c. Lemma 4.4 implies that for all d ∈ Ca, c ∈ Cd. Let b ∈ Ca r {c} be
such that Cb is minimal, and such that |Fb| is maximal among |Fd| which satisfy
d ∈ Car{c} and Cd = Cb. If Cb 6= {b, c}, then b·G 6= {b, c} (otherwise we would get
b ·G ·G = b ·G∪c ·G = {b, c}). Let d ∈ b ·Gr{b, c}. Then d ∈ Cb and b ∈ Ca imply
d ∈ Ca. Moreover, Lemma 4.3 implies that Cd ⊆ Cb and |Fb| < |Fd|, contradicting
the choice of b. Therefore, Cb = {c, b}. Next we select d ∈ Car{b, c} such that Cd is
minimal, and such that |Fd| is maximal among |Fe| which satisfy e ∈ Car{b, c} and
Ce = Cd. The analogous argument proves that either Cd = {c, d}, or Cd = {b, c, d}.
But this is a contradiction with Lemma 4.7, or with Lemma 4.6.

Assume now that |Ca| 6 2 for all a ∈ G. Lemma 4.7 implies that at most one
a ∈ G is such that |Ca| = 2. If |Ca| = 1 for all a ∈ G, then G is a left zero semigroup,
and the only subdirectly irreducible left zero semigroup has two elements. Let a ∈ G
be the only element such that |Ca| = 2, say Ca = {a, b}, and all other elements of
G are left zeros. Since |G| > 4, then there exist left zeros u, v ∈ G r {a} such that
au = av (since G contains at least three left zeros, and a · G = {a, b}). But then

CgG(a, b) = ρa = {a, b}2 ∪ ∆G and CgG(u, v) = {u, v}2 ∪ ∆G are distinct atoms in
Con G, which is a contradiction. �

Theorem 4.2. All subdirectly irreducible members of VC are depicted in Ta-
ble 3. Thus, resb(VC) = 4.

Proof. Let G ∈ VC be subdirectly irreducible. By Theorem 4.1, |G| < 4.
emphCase |G| = 3: Let G = {a, b, c}. G is not a left zero semigroup, since the

three-element left zero semigroup is not subdirectly irreducible. From Lemma 4.1
it follows that we may assume ab = c, from Lemmas 4.6 and 4.7 it follows that
there is at most one element of G which is not a left zero, and it must be a, so b
and c are left zeros. Finally, ac = a since ac ∈ Ca = {a, c} and ac = c would imply
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Table 3. Cayley tables of subdirectly irreducible groupoids in VC .

a b c a b
a a c a a a a
b b b b b b b
c c c c

a = c by Lemma 4.1. This means that G is the left-hand side groupoid depicted in
Table 3, which is subdirectly irreducible with the monolith Cgg(a, c).

Case |G| = 2: Let G = {a, b}. We know that at least one of {a, b} is a left zero.
If a is not a left zero, then idempotence implies that ab = b, but from Lemma 4.1
it follows that a = b. So G is a left zero semigroup. �

5. Residual bound of W

We turn to the variety W . According to [4], more precisely Lemma 6.1 and
Theorem 6.3, W is the variety generated by

G4 x y xy yx
x x xy x xy
y yx y yx y

xy xy xy xy xy
yx yx yx yx yx

which is also its 2-generated free groupoid. The equational base of W is

(W1) xx ≈ x, (W2) xyy ≈ x,

(W3) x · yz ≈ xy, (W4) xyz ≈ xzy,

Lemma 5.1. Let G ∈ W. The groupoid G is right cancellative, i.e. for all
a, b, c ∈ G, ba = ca ⇒ b = c. If a, b ∈ G are distinct, then ab 6= b.

Proof. The proof follows from (W 2) and idempotence (W 1). �

Lemma 5.2. Let G ∈ W and assume a, b, c ∈ G are pairwise distinct elements
which satisfy ab = c. Then for every pair 〈d, e〉 ∈ CgG(a, c) and all z ∈ G, zd = ze.

The congruence α = CgG(a, c) is an atom in the lattice Con G and all α-classes
have at most two elements.

Proof. From (W 1)–(W 4) we get that ac = a · ab = aa = a, ca = aba = aab =
ab = c, cb = abb = a, i.e. the following equalities hold in G:

G a b c . . .
a a c a . . .
b . b . . . .
c c a c . . .
...

...
...

...
. . .

Recall that the congruences are generated by Mal’cev chains, so it suffices to prove
that for any z ∈ G and translation p(x) ∈ Tr G, zp(a) = zp(c). We prove this by an
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induction on the complexity of the shortest composition of basic translations equal
to p(x). Since a = cb, it follows that for all z ∈ G, za = zc (za = z(cb) =(W 3) zc),
which proves the inductive base. Assume that the shortest composition of basic
translations which equals p(x) uses any left translation λu, so p(x) = (r◦λu ◦q)(x),
where r, q ∈ Tr G, then (λu ◦ q)(a) = uq(a) = uq(c) = (λu ◦ q)(c) by the inductive
assumption on q(x). Therefore, p(a) = p(c), and also zp(a) = zp(c). The only case
we need to consider is when p is a composition of right translations.

For each z ∈ G we have

z · ad1 . . . dn =(W 3) z · ad1 . . . dn−1 =(W 3) · · · =(W 3) za = zc

=(W 3) z · cd1 =(W 3) · · · =(W 3) z · cd1 . . . dn.

We obtain that all translations we need to consider for generating links in the
Mal’cev chains in CgG(a, c) are of the form p(x) = xd1 . . . dn. Moreover,

ad1 . . . dnb =(W 4) ad1 . . . bdn =(W 4) · · · =(W 4) abd1 . . . dn = cd1 . . . dn,

and equivalently, cd1 . . . dnb = ad1 . . . dn, since cb = a can replace ab = c and then
the proof is analogous to above derivation. We have proved for any u, v ∈ G that
there exists a translation p(x) such that u = p(a) and v = p(c) iff there exists a
translation q(x) such that u = q(c) and v = q(a).

Let d1, . . . , dn, e1, . . . , em ∈ G be parameters such that ad1 . . . dn 6= cd1 . . . dn

and ae1 . . . em 6= ce1 . . . em. We claim that

|{ad1 . . . dn, cd1 . . . dn} ∩ {ae1 . . . em, ce1 . . . em}| 6= 1.

Assume the opposite. By the above considerations, it suffices to consider the
case when ad1 . . . dn = ae1 . . . em and cd1 . . . dn 6= ce1 . . . em and also the case
when ad1 . . . dn 6= ae1 . . . em, cd1 . . . dn = ce1 . . . em. The two cases are symmetric,
thus we may assume without loss of generality that ad1 . . . dn = ae1 . . . em and
cd1 . . . dn 6= ce1 . . . em. We get

cd1 . . . dn = ad1 . . . dnb = ae1 . . . emb = ce1 . . . em 6= cd1 . . . dn,

a contradiction (the third equality was proved above). We conclude that all classes

of the congruence CgG(a, c) have at most two elements. Since the identity (W 2)
implies that

CgG(a, c) = CgG(ad1 . . . dn, cd1 . . . dn),

it follows that CgG(a, c) is an atom in the lattice Con G. �

Lemma 5.3. Let G ∈ W be subdirectly irreducible and for three distinct ele-
ments a, b, c ∈ G let ab = c hold. Then {a, c} · G = {a, c} and all elements in
G r {a, c} are left zeros.

Proof. The table in the proof of Lemma 5.2 proves that {a, c} · {a, b, c} =
{a, c}.

Assume that there exists an element d ∈ G r {a, b, c} such that ad 6∈ {a, c}.

Then ad 6= d by Lemma 5.1, so ad /∈ {a, d} and Lemma 5.2 proves that CgG(a, ad)

is an atom in the lattice Con G, which is incomparable with CgG(a, c). This
contradicts the assumption that G is subdirectly irreducible. The proof that cd ∈
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Table 4. Cayley tables of all subdirectly irreducible groupoids in W .

a b c d a b c a b
a a c a a a a c a a a a
b b b b b b b b b b b b
c c a c c c c a c
d d d d d

{a, c} is analogous, obtained by interchanging a and c above. Therefore, {a, c}·G =

{a, c}. Thus CgG(a, c) = ∆G ∪ {a, c}2, according to Lemma 5.2.
Assume that there exist d ∈ Gr{a, c} and e ∈ Gr{d} such that d 6= de. Then

de 6= e by Lemma 5.1, so de /∈ {d, e}. The argument from the preceding paragraph

proves that CgG(d, de) = ∆G ∪ {d, de}2 and CgG(a, c) ∩ CgG(d, de) = ∆G, which
is impossible since G is subdirectly irreducible. Thus all d ∈ G r {a, c} are left
zeros. �

Theorem 5.1. resb(W) 6 5.

Proof. Assume the opposite, i.e. let G ∈ W be a subdirectly irreducible
groupoid with |G| > 5. G can not be a left zero semigroup, since the only subdi-
rectly irreducible left zero semigroup has two elements. From Lemma 5.1 and idem-
potence it follows that there exist a, b, c ∈ G such that ab = c. Lemma 5.2 proves
that CgG(a, c) is an atom in the congruence lattice Con G and CgG(a, c) 6= ∇G

since |G| > 5 and all equivalence classes of CgG(a, c) have at most two elements.
Lemma 5.3 implies that {a, c} · G = {a, c} and all elements of G r {a, c} are

left zeros. Since |G| > 5, there exist elements d, e ∈ G r {a, c} such that ad = ae.
Thus for each z ∈ Gr{c} we have zd = ze, for z ∈ Gr{a, c} are left zeros. On the
other hand, if z = c, we get cd = abd =(W 4) adb = aeb =(W 4) abe = ce. Therefore,

CgG(d, e) = ∆G ∪ {d, e}2, and CgG(a, c) ∩ CgG(d, e) = ∆G, a contradiction. �

Theorem 5.2. resb(W) = 5 and all subdirectly irreducible groupoids in W are
given in Table 4.

Proof. Let G ∈ W be a subdirectly irreducible groupoid. From Theorem 5.1
we know that |G| < 5.

Case |G| = 4: Let G = {a, b, c, d} and we may assume that ab = c since G can’t
be a left zero semigroup and ab 6= b by Lemma 5.1. In the proof of Lemma 5.2 we
showed that ac = cb = a and ab = ca = c in this case. From Lemma 5.3 it follows
that b and d are left zeros and that {a, c} · G = {a, c}. If ab = ad, it would follow
that cd = ab·d = ad·b = ab·b = cb, and ∆G ∪{b, d}2 would have been a congruence,
a contradiction. Similarly we conclude cb 6= cd, so ad 6= ab = c forces ad = a, and
we also get cd = c. This is the leftmost groupoid in Table 4 for which we verify
that it is subdirectly irreducible and in W by checking directly the identities and
the congruence lattice.

Case |G| = 3: Let G = {a, b, c}. We may assume that ab = c like in the
previous case, and the proofs that b is a left zero, that ac = cb = a and ab = ca = c
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are also just as above. Thus we obtain the middle groupoid in 4 which is subdirectly
irreducible with the monolith Cgg(a, c).

Case |G| = 2: Let G = {a, b}. By idempotence and Lemma 5.1 we get that G

is the left zero semigroup. �
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