RESIDUAL CHARACTER OF QUASILINEAR VARIETIES OF GROUPOIDS

Petar Đapić and Petar Marković

This paper is dedicated to Professor Jaroslav "Jarda" Ježek, coauthor, mentor and friend, who passed away five years ago.

Abstract

We consider the quasilinear varieties of groupoids which were characterized in [4] and find the residual character for all of them. Those varieties which are residually small turn out to be residually finite. We compute the residual bounds and find all subdirectly irreducible algebras in them.

1. Introduction

In this paper we complete the investigation of quasilinear varieties of groupoids started in [3] and [4] by investigating the residual character of those varieties. We have already determined the residual character of linear varieties in [3], so here we deal with quasilinear varieties which are not linear.

Finding the residual bound of finitely generated varieties is related to the Restricted Quackenbush Conjecture. The Restricted Quackenbush Conjecture claims that no finitely generated variety in a finite language has residual bound exactly ω (i.e. it is impossible for such varieties to contain only finite subdirectly irreducible algebras, but of unbounded size). All quasilinear varieties were shown to be finitely generated in 4]. Here we will prove that all quasilinear varieties have either a finite residual bound or are residually large. Thus, we establish that there are no counterexamples to the Restricted Quackenbush Conjecture among quasilinear varieties of groupoids. For those quasilinear varieties which are residually finite we find all subdirectly irreducible algebras that contain them, thus semantically describing them up to Horn formulae (rather than just identities). For the residually

[^0]large quasilinear varieties, we had to invent new constructions to prove residual largeness, which may be useful in future research.

We introduce some of the definitions, notation and basic facts about universal algebra which we will need in this paper. This is not comprehensive, the reader is expected to know standard universal algebra (e.g. free algebras, varieties etc.) in order to follow the arguments in our paper. Good textbooks are [2, 7, $\mathbf{1}$.

Let \mathcal{F} be an algebraic language. We say that an \mathcal{F}-term is linear if it is a variable, or equal to $f\left(x_{1}, \ldots, x_{n}\right)$, where f is an operation symbol of arity n and x_{1}, \ldots, x_{n} are variables (thus constant symbols are also linear terms, being nullary operation symbols).

In the previous papers [4] and [3] we introduced equational theories which are represented on linear terms, as defined below.

Definition 1.1. An equational theory E is linear if any term is E-equivalent to a unique linear term. E is quasilinear if it is idempotent and each term is E equivalent to a linear term (not necessarily unique). The variety of all models of a linear (quasilinear) equational theory is called a linear (quasilinear) variety.

Note that we called these properties $*$-linear and $*$-quasilinear in 3 and 4 . This was because we needed to distinguish n-linear and n-quasilinear for the equational theories which have the above properties just for terms with up to n variables. Now we don't need these weaker properties and thus we simplify our terminology.

We recall some basic facts about simple and subdirectly irreducible algebras. An algebra is simple if it has more than one element and only the two trivial congruences, the equality and full relation. An algebra is subdirectly irreducible if it has more than one element and the least congruence which is not the equality relation. The least congruence different from the equality relation is called the monolith of a subdirectly irreducible algebra. A class of algebras is residually small if it has a cardinal bound on the size of subdirectly irreducible algebras in the class. The class of algebras is residually large otherwise. The property of residual smallness/largeness is called the residual character of the class of algebras in question. The residual bound of a class of algebras \mathcal{K}, denoted by $\operatorname{resb}(\mathcal{K})$ is the least cardinal κ such that all subdirectly irreducible algebras in \mathcal{K} are of size strictly smaller than κ, if \mathcal{K} is residually small, or $\operatorname{resb}(\mathcal{K})=\infty$ if \mathcal{K} is residually large.

Let \mathbf{A} be an algebra. We use the standard notation $\operatorname{Con} \mathbf{A}$ for the set of all congruences and Con \mathbf{A} for the lattice of all congruences of an algebra \mathbf{A}. For $X \subseteq A \times A, \mathrm{Cg}^{\mathbf{A}}(X)$ is the congruence of \mathbf{A} generated by X. When $X=\{\langle a, b\rangle\}$, we use $\mathrm{Cg}^{\mathbf{A}}(a, b)$ as short notation for the principal congruence $\mathrm{Cg}^{\mathbf{A}}(X)$.

Let \mathbf{A} be an algebra. A basic translation is either the identity map $i d_{A}$ or the operation $p(x)=f^{\mathbf{A}}\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right)$, where $f \in \mathcal{F}$ is an operation symbol of arity $n \geqslant 1,1 \leqslant i \leqslant n$ and $a_{j} \in A$ for all j. A translation is a composition of basic translations. The set of all translations of \mathbf{A} is denoted by $\operatorname{Tr} A$. In the case of a groupoid $\mathbf{G}=(G ; \cdot)$, the basic translations are $i d_{G}$, the maps $\lambda_{a}(x)=a x$ and $\rho_{a}(x)=x a$ for all $a \in G$.

In general, $\mathrm{Cg}^{\mathbf{A}}(X)$ is the transitive closure of the set

$$
\left\{\langle u, v\rangle \in A^{2}:(\exists\langle x, y\rangle \in X)(\exists p(x) \in \operatorname{Tr} A)(\{u, v\}=\{p(x), p(y)\})\right\}
$$

Some authors call this a Mal'cev chain, each pair of the form $\{p(x), p(y)\}$ forming a link in the chain.

For shorter notation, we will write $x_{1} x_{2} x_{3} \ldots x_{n}$ instead of $\left(\left(\left(x_{1} x_{2}\right) x_{3}\right) \ldots\right) x_{n}$ (the parentheses are grouped to the left), $x \cdot y z$ instead of $x(y z)$, etc. By a leftassociated term we mean a term $x_{1} x_{2} \ldots x_{n}$ where $n \geqslant 1$ and x_{1}, \ldots, x_{n} are variables. We finish the section by introducing some more notation.

Let G be a nonvoid set, and κ a cardinal. For any $a, b \in G$ and $j \in \kappa$, the element $a_{j \mapsto b}^{\kappa}$ of G^{κ} is defined by

$$
a_{j \mapsto b}^{\kappa}(i)= \begin{cases}a, & \text { for all } i \in \kappa \backslash\{j\} \\ b, & \text { for } i=j\end{cases}
$$

Let $\alpha \in G^{\kappa}$ and $e, f \in G$. Then the element $\alpha_{e \mapsto f}$ in G^{κ} is defined by

$$
\alpha_{e \mapsto f}(i)= \begin{cases}\alpha(i), & \text { if } \alpha(i) \neq e \\ f, & \text { if } \alpha(i)=e\end{cases}
$$

2. Our result, statement and easy cases

We recall the poset of all quasilinear varieties of groupoids, which was discovered in 4.

Figure 1. The poset of all $*$-quasilinear varieties.
In this paper we prove that these varieties have the residual characters as depicted in Table 1 . First we get the easy cases out of the way.

Table 1. Residual bounds of idempotent $*$-quasilinear varieties.

Variety	Residual bound
\mathcal{S}_{5}	2
$\mathcal{S}_{3}, \mathcal{S}_{3}^{\partial}, \mathcal{S}_{4}, \mathcal{R}$,	3
$\mathcal{S}_{2}, \mathcal{S}_{2}^{\partial}, \mathcal{V}_{C}, \mathcal{V}_{C}^{\partial}, \mathcal{D}$,	4
$\mathcal{W}, \mathcal{W}^{\partial}$	5
$\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}, \mathcal{N}_{1}, \mathcal{N}_{2}, \mathcal{S}_{1}, \mathcal{V}_{A}, \mathcal{V}_{B}$,	residually large
$\mathcal{L}_{1}^{\partial}, \mathcal{L}_{2}^{\partial}, \mathcal{L}_{3}^{\partial}, \mathcal{N}_{1}^{\partial}, \mathcal{N}_{2}^{\partial}, \mathcal{S}_{1}^{\partial}, \mathcal{V}_{A}^{\partial}, \mathcal{V}_{B}^{\partial}$,	

If $\mathbf{A}=\langle A ; \cdot\rangle$ is a groupoid, then $\mathbf{A}^{\partial}=\langle A ; *\rangle$ such that $x * y=y \cdot x$ for all $x, y \in A$, while \mathcal{V}^{∂} stands for the variety $\left\{\mathbf{A}^{\partial}: \mathbf{A} \in \mathcal{V}\right\}$. Clearly, \mathcal{V} and \mathcal{V}^{∂} have the same residual bounds. Recall that all subdirectly irreducible groupoids in the variety \mathcal{S}_{2} (the variety of idempotent semigroups which satisfy $x y z \approx x z y$) were described in [6]. Thus we know that $\operatorname{resb}\left(\mathcal{S}_{2}\right)=4$, and that its subvarieties \mathcal{S}_{3} (the left-zero semigroups, i.e. all models of $x y \approx x$) and \mathcal{S}_{4} (semilattices) have only the two-element subdirectly irreducible algebras. Also, it is well known (and easy to prove) that the variety of rectangular bands \mathcal{R} has only the two-element leftzero semigroup and the two-element right-zero semigroup as nontrivial subdirectly irreducibles. Therefore, $\operatorname{resb}\left(\mathcal{S}_{4}\right)=\operatorname{resb}\left(\mathcal{S}_{3}\right)=\operatorname{resb}(\mathcal{R})=3$. The trivial variety \mathcal{S}_{5} of one-element groupoids is conventionally given the residual bound 2 .

We also know that the variety \mathcal{S}_{1} of idempotent semigroups, which satisfy $x y x \approx x y$, contains subdirectly irreducible algebras of size at least κ where κ is any cardinal (cf. Section 3 of [6], and replace the set of natural numbers with κ). Thus all varieties which contain \mathcal{S}_{1} are residually large, and those are $\mathcal{N}_{1}, \mathcal{L}_{1}, \mathcal{L}_{2}$ and \mathcal{L}_{3}.

The variety \mathcal{D} is the class of all models of the identities

$$
\begin{array}{ll}
\text { (D1) } x x \approx x & \text { (D2) } x y \approx y x \\
\text { (D3) } x \cdot x y \approx y & \text { (D4) } x y \cdot z t \approx x z \cdot y t
\end{array}
$$

It is proved in [4], Theorem 9.7, that the variety \mathcal{D} is $*$-quasilinear and generated by the three-element groupoid \mathbf{G}_{7}.

\mathbf{G}_{7}	a	b	c
a	a	c	b
b	c	b	a
c	b	a	c

Since the equational base of the variety \mathcal{D} contains the identities $(D 1) x x \approx x$, $(D 2) x y \approx y x,(D 3) x \cdot x y \approx y$, it follows that \mathcal{D} is a variety of Steiner quasigroups. Actually it is the least such nontrivial variety. The subdirectly irreducible Steiner quasigroups were investigated in the influential paper [9, but since the variety \mathcal{D} is not generated by the so-called planar ones, we would have to work through the proofs given in $\mathbf{9}$ to realize that $\operatorname{resb}(\mathcal{D})=4$.

The easier way is to realize that $(D 1)-(D 4)$ are alternative axioms for the subvariety denoted by \mathcal{V}_{3} of the variety of SIE groupoids in the terminology of B. Roszkowska-Lech. This \mathcal{V}_{3} is a variety which is axiomatized by $(D 1),(D 4)$ and

$$
\left(\mathrm{D} 2^{\prime}\right) x \approx y \cdot x y \quad\left(\mathrm{D} 3^{\prime}\right) x y y \approx x
$$

in place of $(D 2)$ and $(D 3)$. We only need to prove $\left(D 2^{\prime}\right)$ and $\left(D 3^{\prime}\right)$ in \mathcal{D}, though it can be proved that $(D 2)$ and $(D 3)$ hold in \mathcal{V}_{3}, too. ($D 3^{\prime}$) follows trivially from commutativity and $(D 3)$, while $x \approx_{(D 3)} y \cdot y x \approx_{(D 2)} y \cdot x y$. Then we invoke 10], where it is proved that all algebras in \mathcal{V}_{k} for odd k are polynomially equivalent to Abelian groups which additionally satisfy $k x=0$. Thus the only subdirectly irreducible algebra in $\mathcal{D}=\mathcal{V}_{3}$ is the one polynomially equivalent to the threeelement Abelian group, and $\operatorname{resb}(\mathcal{D})=4$. The reader is referred to papers [11] and 12 for more details, and to 5 for yet another approach to the same variety.

It remains to find the residual bounds of $\mathcal{N}_{2}, \mathcal{V}_{A}, \mathcal{V}_{B}, \mathcal{V}_{C}$ and \mathcal{W}, which we will do in the following sections.

3. The varieties $\mathcal{N}_{2}, \mathcal{V}_{A}$ and \mathcal{V}_{B} are residually large

We first consider the variety \mathcal{N}_{2}, given by its equational base

$$
\begin{array}{ll}
\text { (N1) } x x \approx x & \text { (N2) } x \cdot y x \approx x y \\
\text { (N3) } x \cdot x y z \approx x \cdot y z & \text { (N4) } x \cdot y z \approx x \cdot z y
\end{array}
$$

Lemma 3.1. The variety \mathcal{N}_{2} is generated by the subdirectly irreducible groupoid $\mathbf{G}_{\mathcal{N}_{2}}$

$\mathbf{G}_{\mathcal{N}_{2}}$	a	b	c	d
a	a	d	c	d
b	b	b	b	b
c	c	b	c	b
d	d	d	d	d

Proof. One can directly verify that the groupoid $\mathbf{G}_{\mathcal{N}_{2}}$ satisfies the identities (1)-(4). The groupoid $\mathbf{G}_{\mathcal{N}_{2}}$ is subdirectly irreducible with the monolith equal to the congruence $\mathrm{Cg}^{\mathbf{G}_{\mathcal{N}_{2}}}(b, d)$. The groupoid $\mathbf{G}_{\mathcal{N}_{2}}$ is not a semigroup, since $a c b \neq a \cdot c b$. Therefore, $\mathcal{V}\left(\mathbf{G}_{\mathcal{N}_{2}}\right) \nsubseteq \mathcal{S}_{2}$, but $\mathcal{V}\left(\mathbf{G}_{\mathcal{N}_{2}}\right) \subseteq \mathcal{N}_{2}$. From the fact that the varieties depicted in Figure 1 are a down-set (order ideal) in the lattice of all groupoid varieties, we deduce that $\mathcal{V}\left(\mathbf{G}_{\mathcal{N}_{2}}\right)$ can be only \mathcal{N}_{2}.

Theorem 3.1. The variety \mathcal{N}_{2} is residually large.
Proof. The groupoid $\mathbf{G}_{\mathcal{N}_{2}}$ generates \mathcal{N}_{2}, according to Lemma 3.1. Let κ be a cardinal. Consider the groupoid $\mathbf{G}:=\left(\mathbf{G}_{\mathcal{N}_{2}}\right)^{\kappa}$ and denote by b^{κ} and d^{κ} the elements of the groupoid \mathbf{G} such that $b^{\kappa}(i)=b$ and $d^{\kappa}(i)=d$ for all $i \in \kappa$. Define the relation ρ on the groupoid $\mathbf{G}_{\mathcal{N}_{2}}^{\kappa}$ by: $x \rho y$ iff one of the following three conditions hold:
(1) $x=y$,
(2) $\{x, y\}=\left\{b^{\kappa}, d^{\kappa}\right\}$,
(3) $\{x, y\} \cap\left\{b^{\kappa}, d^{\kappa}\right\}=\emptyset, \quad d \in x(\kappa), d \in y(\kappa), \quad x(\kappa) \nsubseteq\{a, d\}, y(\kappa) \nsubseteq\{a, d\}$ and for each $i \in \kappa$, either $\{x(i), y(i)\}=\{b, d\}$, or $x(i)=y(i)$.
The relation ρ defined above is an equivalence relation and has at least 2^{κ} equivalence classes. Next we are showing that ρ is a congruence of \mathbf{G}. It suffices to show that the following holds for all $x, y, z \in G$: If $x \rho y$, then $x z \rho y z$ and $z x \rho z y$.

Let $x \rho y$ and let $z \in G$ be arbitrary. By the definition of the relation ρ, it follows that $\{i \in \kappa: x(i) \neq y(i)\}=\{i \in \kappa:\{x(i), y(i)\}=\{b, d\}\}$. The fact that $u b=u d$ in $\mathbf{G}_{\mathcal{N}_{2}}$ for all $u \in\{a, b, c, d\}$ implies that $z x=z y$.

Now we show $\langle x z, y z\rangle \in \rho$. If $x=b^{\kappa}$ and $y=d^{\kappa}$, then $x z=x$ and $y z=y$, as b and d are left zeros of the groupoid $\mathbf{G}_{\mathcal{N}_{2}}$. Let x and y be distinct elements of G and $\{x, y\} \cap\left\{b^{\kappa}, d^{\kappa}\right\}=\emptyset$. Then $d \in x(\kappa) \cap y(\kappa)$ and since d is a left zero in $\mathbf{G}_{\mathcal{N}_{2}}$, thus $d \in x z(\kappa) \cap y z(\kappa)$. Since $x \rho y$, it follows that $\{b, c\} \cap x(\kappa) \neq \emptyset$, but since $\{b, c\} \cdot G=$ $\{b, c\}$, it follows that $\{b, c\} \cap x z(\kappa) \neq \emptyset$, i.e. $x z(\kappa) \nsubseteq\{a, d\}$. Analogously we show that $y z(\kappa) \nsubseteq\{a, d\}$. If $x(i) \neq y(i)$, then $\{x(i), y(i)\}=\{b, d\}$, from which it follows that $\{x z(i), y z(i)\}=\{b, d\}$. Therefore, $\{x z(i), y z(i)\} \in\{\{a\},\{b\},\{c\},\{d\},\{b, d\}\}$, for all $i \in \kappa$. This proves that ρ is a congruence of \mathbf{G}.

Note: the set $\{b, d\}^{\kappa}$ is the union of two ρ-classes. One is $\left\{b^{\kappa}, d^{\kappa}\right\}$, and the other one is all other elements of $\{b, d\}^{\kappa}$. In other words, for all $x, y \in G$, if $x(\kappa)=y(\kappa)=\{b, d\}$, then $x \rho y$.

Next we show that \mathbf{G} / ρ is subdirectly irreducible. Let the congruence $\theta \in$ Con \mathbf{G} be such that $\rho \subsetneq \theta$.

We want to show that there exists $p \in G$ which satisfies $p(\kappa)=\{b, d\}$ such antecedent that $\left\langle b^{\kappa}, p\right\rangle \in \theta$. Considering the discussion on ρ restricted to $\{b, d\}^{\kappa}$, this would imply that every such θ has $\{b, d\}^{\kappa}$ in a single θ-class, and the congruence $\left(\rho \vee \mathrm{Cg}^{\mathbf{G}}\left(b^{\kappa}, p\right)\right) / \rho$ (which is the same no matter which p is chosen) would be the monolith of \mathbf{G} / ρ.

Let $x, y \in G$ be such that $\langle x, y\rangle \in \theta \backslash \rho$. We consider all cases:
Case 1: There exists $j \in \kappa$ such that $\{x(j), y(j)\} \in P_{2}(\{a, b, c, d\}) \backslash\{b, d\}$, where $P_{2}(X)$ is the set of all subsets of X with exactly two elements. Then $b_{j \mapsto a}^{\kappa} x(i)=b_{j \mapsto a}^{\kappa} y(i)=b$ for all $i \in \kappa \backslash\{j\}$ and $\left\{b_{j \mapsto a}^{\kappa} x(j), b_{j \mapsto a}^{\kappa} y(j)\right\} \in P_{2}(\{a, c, d\})$. If $c \in\left\{b_{j \mapsto a}^{\kappa} x(j), b_{j \mapsto a}^{\kappa} y(j)\right\}$, then

$$
\left\{b_{j \mapsto a}^{\kappa} x d^{\kappa}, b_{j \mapsto a}^{\kappa} y d^{\kappa}\right\}=\left\{b^{\kappa}, b_{j \mapsto d}^{\kappa}\right\}
$$

therefore, $\left\langle b^{\kappa}, b_{j \mapsto d}^{\kappa}\right\rangle \in \theta$. If $\left\{b_{j \mapsto a}^{\kappa} x(j), b_{j \mapsto a}^{\kappa} y(j)\right\}=\{a, d\}$, then

$$
\left\{b_{j \mapsto a}^{\kappa} x c^{\kappa} d^{\kappa}, b_{j \mapsto a}^{\kappa} y c^{\kappa} d^{\kappa}\right\}=\left\{b^{\kappa}, b_{j \mapsto d}^{\kappa}\right\}
$$

and hence $\left\langle b^{\kappa}, b_{j \mapsto d}^{\kappa}\right\rangle \in \theta$. Thus, $b_{j \mapsto d}^{\kappa}$ can be chosen for p.
Case 2: For each $i \in \kappa$,

$$
\{x(i), y(i)\} \in\{\{a\},\{b\},\{c\},\{d\},\{b, d\}\}
$$

Our assumptions about x and y imply that $x \neq y,\{x, y\} \neq\left\{b^{\kappa}, d^{\kappa}\right\}$.
If $x=b^{\kappa}$, then $y(\kappa)=\{b, d\}$, so $b^{\kappa}=x \theta y$ and y can be chosen for the element p which we need. If $x=d^{\kappa}$, then $b^{\kappa} \rho d^{\kappa}=x \theta y$ and y can be chosen for p, as $\rho \subseteq \theta$.

Let $\{x, y\} \cap\left\{b^{\kappa}, d^{\kappa}\right\}=\emptyset$. Suppose that $d \notin x(\kappa)$ and $d \notin y(\kappa)$. Assumptions of Case 2 imply that $x=y$, a contradiction with $\langle x, y\rangle \notin \rho$. Let $d \in x(\kappa)$ and
$d \notin y(\kappa)$. Then there exists some $j \in \kappa$ such that $x(j)=d$ and $y(j)=b$. Thus $b^{\kappa}=y y_{a \mapsto c} b^{\kappa} \theta x y_{a \mapsto c} b^{\kappa}$ and since $x y_{a \mapsto c} b^{\kappa}(\kappa)=\{b, d\}$, we can take $x y_{a \mapsto c} b^{\kappa}$ for p. The case $d \notin x(\kappa)$ and $d \in y(\kappa)$ is analogous.

Now let $\{x, y\} \cap\left\{b^{\kappa}, d^{\kappa}\right\}=\emptyset$ and $d \in x(\kappa), d \in y(\kappa)$. Assume that $x(\kappa) \subseteq$ $\{a, d\}$. Then $b^{\kappa} \rho d^{\kappa}=x b^{\kappa} \theta y b^{\kappa}$, and since $y b^{\kappa}(\kappa)=\{b, d\}$, it follows that $y b^{\kappa}$ can be taken for p. The case when $y(\kappa) \subseteq\{a, d\}$ is analogous. All remaining cases for $\langle x, y\rangle$ are already in ρ.

Therefore, the groupoid \mathbf{G} / ρ is subdirectly irreducible, and the congruence $\mathrm{Cg}^{\mathbf{G} / \rho}\left(b^{\kappa} / \rho, b_{j \rightarrow d}^{\kappa} / \rho\right)$ is its monolith.

We turn to the variety $\mathcal{V}_{A}=H S P(\mathbf{A})$. According to [4, more precisely the definition of \mathcal{V}_{A} and Theorem 7.15 , it is the variety generated by

\mathbf{A}	a	b	c	d	e
a	a	a	a	a	a
b	b	b	b	b	b
c	d	e	c	c	c
d	d	d	d	d	d
e	e	e	e	e	e

whose equational base is
(A1) $x x \approx x$
(A2) $x y y \approx x y$
(A3) $x \cdot y z \approx x y$
(A4) $x y z y \approx x y z$

Theorem 3.2. The variety $\mathcal{V}_{A}=H S P(\mathbf{A})$ is residually large.
Proof. Let κ be any cardinal. Consider the groupoid \mathbf{A}^{κ} and the set $G=$ $\left\{d_{i \mapsto u}^{\kappa} \mid u \in\{a, b, c\}, i \in \kappa\right\} \cup\{d, e\}^{\kappa}$. Then \mathbf{G} is a subgroupoid of \mathbf{A}^{κ}. Define the relation ρ on the groupoid \mathbf{G} by: $x \rho y$ iff one of the conditions
(1) $x=y$, or
(2) $\{x, y\} \in\{d, e\}^{\kappa} \backslash\left\{d^{\kappa}\right\}$.
is satisfied. The equivalence relation ρ has κ equivalence classes. Let us show that ρ is a congruence of \mathbf{G}. It suffices to prove for all $x, y, z \in G$, if $x \rho y$, then $x z \rho y z$ and $z x \rho z y$. Since d and e are left zeros and right neutral elements of \mathbf{A}, it follows that ρ is a congruence of \mathbf{G}.

Next we show that \mathbf{G} / ρ is subdirectly irreducible. Let $\theta \in \operatorname{Con} \mathbf{G}$ satisfy $\rho \subsetneq \theta$. We aim to show that there exists $p \in\{d, e\}^{\kappa} \backslash\left\{d^{\kappa}\right\}$ such that $\left\langle d^{\kappa}, p\right\rangle \in \theta$. Note that $\left\{d^{\kappa}\right\}$ and $\{d, e\}^{\kappa} \backslash\left\{d^{\kappa}\right\}$ are ρ-classes. If we show the claim, then it will follow that the pair $\left\langle\{d, e\}^{\kappa} \backslash\left\{d^{\kappa}\right\},\left\{d^{\kappa}\right\}\right\rangle$ is contained in any congruence of \mathbf{G} / ρ which is not the equality relation, i.e. it will follow that \mathbf{G} / ρ is subdirectly irreducible.

Let $\langle x, y\rangle \in \theta \backslash \rho$. We consider the following cases for $\langle x, y\rangle$:
Case 1: There exists $j \in \kappa$ such that $\langle x(j), y(j)\rangle \in\{a\} \times\{b, c, d, e\} \cup\{b, c, d, e\} \times$ $\{a\}$. Then $\left\{d_{j \rightarrow c}^{\kappa} x, d_{j \rightarrow c}^{\kappa} y\right\}=\left\{d^{\kappa}, d_{j \rightarrow c}^{\kappa}\right\}$ or $\left\{d_{j \rightarrow c}^{\kappa} x, d_{j \rightarrow c}^{\kappa} y\right\}=\left\{d^{\kappa}, d_{j \rightarrow e}^{\kappa}\right\}$. Hence,

$$
\left\langle\left(d_{j \mapsto c}^{\kappa} x\right) d_{j \mapsto b}^{\kappa},\left(d_{j \mapsto c}^{\kappa} y\right) d_{j \mapsto b}^{\kappa}\right\rangle \in\left\{\left\langle d^{\kappa}, d_{j \mapsto e}^{\kappa}\right\rangle,\left\langle d_{j \mapsto e}^{\kappa}, d^{\kappa}\right\rangle\right\},
$$

and thus $\left\langle d^{\kappa}, d_{j \mapsto e}^{\kappa}\right\rangle \in \mathrm{Cg}^{\mathbf{G}}(x, y) \subseteq \theta$, so we take $p=d_{j \mapsto e}^{\kappa}$.
Case 2: There exists $j \in \kappa$ such that $\langle x(j), y(j)\rangle \in\{b\} \times\{c, d, e\} \cup\{c, d, e\} \times\{b\}$. Then $\left\{d_{j \rightarrow c}^{\kappa} x, d_{j \rightarrow c}^{\kappa} y\right\}=\left\{d_{j \rightarrow e}^{\kappa}, d_{j \rightarrow c}^{\kappa}\right\}$. Hence,

$$
\left\langle\left(d_{j \mapsto c}^{\kappa} x\right) d_{j \mapsto a}^{\kappa},\left(d_{j \mapsto c}^{\kappa} y\right) d_{j \mapsto a}^{\kappa}\right\rangle \in\left\{\left\langle d^{\kappa}, d_{j \mapsto e}^{\kappa}\right\rangle,\left\langle d_{j \mapsto e}^{\kappa}, d^{\kappa}\right\rangle\right\} .
$$

Therefore, $\left\langle d^{\kappa}, d_{j \mapsto e}^{\kappa}\right\rangle \in \operatorname{Cg}^{\mathbf{G}}(x, y) \subseteq \theta$, so we take $p=d_{j \mapsto e}^{\kappa}$.
Case 3: There exists $j \in \kappa$ such that $\{x, y\}=\left\{d_{j \mapsto c}^{\kappa}, p\right\}$ for some $p \in\{d, e\}^{\kappa} \backslash$ $\left\{d^{\kappa}\right\}$. Without loss of generality, let $y=p$. Then $\left\langle d^{\kappa}, p\right\rangle=\left\langle x d_{j \mapsto a}^{\kappa}, y d_{j \mapsto a}^{\kappa}\right\rangle \in$ $\mathrm{Cg}^{\mathbf{G}}(x, y) \subseteq \theta$, and since $p \in\{d, e\}^{\kappa} \backslash\left\{d^{\kappa}\right\}$, the case is done.

Case 4: There exist $j, l \in \kappa$ so that $\{x, y\}=\left\{d_{j \rightarrow c}^{\kappa}, d_{l \rightarrow c}^{\kappa}\right\}$. Then $\left\{x d_{l \rightarrow b}^{\kappa}, y d_{l \rightarrow b}^{\kappa}\right\}$ $=\left\{d_{j \rightarrow c}^{\kappa}, d_{l \rightarrow e}^{\kappa}\right\}$, and since $\left\langle x d_{l \rightarrow b}^{\kappa}, y d_{l \rightarrow b}^{\kappa}\right\rangle \in \mathrm{Cg}^{\mathbf{G}}(x, y) \subseteq \theta, \theta$ is also in Case 3.

Case 5: There exists $j \in \kappa$ such that $x=d_{j \mapsto c}^{\kappa}$ and $y=d^{\kappa}$ (or vice versa, but it is analogous). Then $\left\langle d_{j \mapsto e}^{\kappa}, d^{\kappa}\right\rangle=\left\langle x d_{j \mapsto b}^{\kappa}, y d_{j \mapsto b}^{\kappa}\right\rangle \in \mathrm{Cg}^{\mathbf{G}}(x, y) \subseteq \theta$, so we take $p=d_{j \mapsto e}^{\kappa}$.

We turn our attention to the variety $\mathcal{V}_{B}=\operatorname{HSP}(\mathbf{B})$. According to 4, more precisely the definition of \mathcal{V}_{B} and Theorem 7.15 , it is the variety generated by

\mathbf{B}	a	b	c	d	e
a	a	a	a	a	a
b	b	b	b	b	b
c	d	c	c	c	c
d	d	e	d	d	d
e	d	e	e	e	e

(actually, it is also generated by the subalgebra with universe $\{a, b, d, e\}$). The equational base of \mathcal{V}_{B} is
(B1) $x x \approx x$
(B2) $x y y \approx x y$
(B3) $x \cdot y z \approx x y$
(B4) $x y z y \approx x z y$

Theorem 3.3. The variety \mathcal{V}_{B} is residually large.

Proof. Let κ be any cardinal. For any $x \in \kappa, x^{\prime}$ and $x^{\prime \prime}$ are short notation for $\langle 0, x\rangle$ and $\langle 1, x\rangle$, respectively. Consider the groupoid $\mathbf{G}=(\{0,1\} \times \kappa, \cdot)$ where the operation \cdot is defined like this:

$$
x \cdot y= \begin{cases}1^{\prime \prime}, & \text { if } x=0^{\prime \prime}, y=0^{\prime} \\ 0^{\prime \prime}, & \text { if } x=k^{\prime \prime}, y=l^{\prime}, l \neq 0 \text { and } k \leqslant l \\ x, & \text { else }\end{cases}
$$

The operation is given in Table 2, Notice that the elements of $\{0\} \times \kappa$ are left zeros, while the elements of $\{1\} \times \kappa$ are right neutral. Besides, we note that $1^{\prime \prime} y=0^{\prime \prime} y$ for all $y \in\{0\} \times \kappa$.

We show that $\mathbf{G} \in \mathcal{V}_{B}$, by showing \mathbf{G} satisfies (B1)-(B4).
Identity (B1): G is idempotent since it consists of left zeros and right units.

Table 2. The Cayley table of the subdirectly irreducible groupoid in the variety \mathcal{V}_{B} of size 2κ.

	0^{\prime}	1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}	\ldots	$4^{\prime \prime}$	$3^{\prime \prime}$	$2^{\prime \prime}$	$1^{\prime \prime}$	$0^{\prime \prime}$
0^{\prime}	0^{\prime}	0^{\prime}	0^{\prime}	0^{\prime}	0^{\prime}	\ldots	0^{\prime}	0^{\prime}	0^{\prime}	0^{\prime}	0^{\prime}
1^{\prime}	1^{\prime}	1^{\prime}	1^{\prime}	1^{\prime}	1^{\prime}	\ldots	1^{\prime}	1^{\prime}	1^{\prime}	1^{\prime}	1^{\prime}
2^{\prime}	2^{\prime}	2^{\prime}	2^{\prime}	2^{\prime}	2^{\prime}	\ldots	2^{\prime}	2^{\prime}	2^{\prime}	2^{\prime}	2^{\prime}
3^{\prime}	3^{\prime}	3^{\prime}	3^{\prime}	3^{\prime}	3^{\prime}	\ldots	3^{\prime}	3^{\prime}	3^{\prime}	3^{\prime}	3^{\prime}
4^{\prime}	4^{\prime}	4^{\prime}	4^{\prime}	4^{\prime}	4^{\prime}	\ldots	4^{\prime}	4^{\prime}	4^{\prime}	4^{\prime}	4^{\prime}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots		\vdots	\vdots	\vdots	\vdots	\vdots
$4^{\prime \prime}$	\ldots	$4^{\prime \prime}$									
$3^{\prime \prime}$	\ldots	$3^{\prime \prime}$									
$2^{\prime \prime}$	\ldots	$2^{\prime \prime}$									
$1^{\prime \prime}$	\ldots	$1^{\prime \prime}$									
$0^{\prime \prime}$	\ldots	$0^{\prime \prime}$									

Identity (B2): If $x=k^{\prime}$ is a left zero or y a right unit, (B2) holds trivially. Assume that $x=k^{\prime \prime}$ and $y=l^{\prime}$. In the case $x=0^{\prime \prime}$ and $y=0^{\prime}$ we verify (B2) directly, since both sides equal $1^{\prime \prime}$. If $l \neq 0$ and $k \leqslant l$, then $x y y=0^{\prime \prime} y=0^{\prime \prime}=x y$. If $k>l$, then $x y=x$ and $x y y=x y(=x)$.

Identity (B3): If x is a left zero, y a left zero, or z a right unit, the equality trivially holds. Assume that $x=k^{\prime \prime}, y=l^{\prime \prime}$ and $z=m^{\prime}$. Then $y z \in\{1\} \times \kappa$, say $y z=s^{\prime \prime}$, and hence $x \cdot y z=k^{\prime \prime} s^{\prime \prime}=k^{\prime \prime}=k^{\prime \prime} l^{\prime \prime}=x y$.

Identity (B4): If x is a left zero, or y a right unit, (B4) trivially holds. If z is a right unit, (B4) reduces to (B2). So we assume that $x=k^{\prime \prime}, y=l^{\prime}$ and $z=m^{\prime}$.

Case $x=0^{\prime \prime}$: If $y=0^{\prime}$, then $x y z y=1^{\prime \prime} z y=0^{\prime \prime} z y=x z y$, and if $y \neq 0^{\prime}$, then $x y=x$, so $x y z y=x z y$.

Case $k>0$: Then $x y, x z \in\left\{x, 0^{\prime \prime}\right\}$. If $x y=x$, then $x y z y=x z y$. If $x y=0^{\prime \prime}$ and $x z=x$, then $x y z y=0^{\prime \prime} z y \in\left\{0^{\prime \prime} y, 1^{\prime \prime} y\right\}=\left\{1^{\prime \prime} y\right\}$ since $0^{\prime \prime} y=1^{\prime \prime} y$. Thus $x y z y=1^{\prime \prime} y=x y y={ }_{(B 2)} x y=x z y$. Finally, if $x y=x z=0^{\prime \prime}$, then $x y z y=0^{\prime \prime} z y=$ $x z z y={ }_{(B 2)} x z y$.

To complete the proof, we are proving that \mathbf{G} is subdirectly irreducible with the monolith $\mathrm{Cg}^{\mathbf{G}}\left(0^{\prime \prime}, 1^{\prime \prime}\right)$. Let $x, y \in G$ be distinct. We want to prove that $\left\langle 0^{\prime \prime}, 1^{\prime \prime}\right\rangle \in$ $\mathrm{Cg}^{\mathbf{G}}(x, y)$.

Case $x=k^{\prime \prime}, y=l^{\prime \prime}$: Without loss of generality, assume $k<l$. Then

$$
\begin{aligned}
& \left\langle 0^{\prime \prime}, y\right\rangle=\left\langle x k^{\prime}, y k^{\prime}\right\rangle \in \operatorname{Cg}^{\mathbf{G}}(x, y) \\
& \left\langle 1^{\prime \prime}, y\right\rangle=\left\langle 0^{\prime \prime} 0^{\prime}, y 0^{\prime}\right\rangle \in \operatorname{Cg}^{\mathbf{G}}(x, y)
\end{aligned}
$$

so transitivity implies that $\left\langle 0^{\prime \prime}, 1^{\prime \prime}\right\rangle \in \mathrm{Cg}^{\mathbf{G}}(x, y)$.
Case $x=k^{\prime}, y=l^{\prime}$: Without loss of generality, assume $k<l$. Then

$$
\left\langle l^{\prime \prime}, 0^{\prime \prime}\right\rangle=\left\langle l^{\prime \prime} x, l^{\prime \prime} y\right\rangle \in \operatorname{Cg}^{\mathbf{G}}(x, y) .
$$

From the previous case we obtain $\left\langle 0^{\prime \prime}, 1^{\prime \prime}\right\rangle \in \operatorname{Cg}^{\mathbf{G}}\left(0^{\prime \prime}, l^{\prime \prime}, y\right) \subseteq \operatorname{Cg}^{\mathbf{G}}(x, y)$.

Case $x=k^{\prime}, y=l^{\prime \prime}$: If $k=0$, then $\left\langle 1^{\prime \prime}, 0^{\prime \prime}\right\rangle=\left\langle 0^{\prime \prime} x, 0^{\prime \prime} y\right\rangle \in \operatorname{Cg}^{\mathbf{G}}(x, y)$. If $k \neq 0$, then $\left\langle 0^{\prime \prime}, 1^{\prime \prime}\right\rangle=\left\langle 1^{\prime \prime} x, 1^{\prime \prime} y\right\rangle \in \operatorname{Cg}^{\mathbf{G}}(x, y)$.

4. Residual bound of \mathcal{V}_{C}

We turn to the variety \mathcal{V}_{C}. According to [4] more precisely the definition of \mathcal{V}_{C} and Lemma $7.12, \mathcal{V}_{C}$ is the variety generated by

\mathbf{G}_{5}	x	y	$x y$	$y x$
x	x	$x y$	x	$x y$
y	$y x$	y	$y x$	y
$x y$				
$y x$				

which is also its 2-generated free groupoid. The equational base of \mathcal{V}_{C} is
(C1) $x x \approx x$
(C2) $x y y \approx x y$
(C3) $x \cdot y z \approx x y$
(C4) $x y z \approx x z y$

Lemma 4.1. Let $\mathbf{G} \in \mathcal{V}_{C}$, and assume that $a b=b$ for some $a, b \in G$. Then $a=b$.

Proof. $a=a a={ }_{(C 3)} a \cdot a b=a b=b$.
Let \mathbf{G} be an n-element groupoid in \mathcal{V}_{C}, and define for any $a \in G$ the set C_{a} as

$$
C_{a}=a \cdot G \cup a \cdot G \cdot G \cup \cdots \cup a \cdot \underbrace{G \cdot \ldots \cdot G}_{n-1} .
$$

Here, $a \cdot \underbrace{G \cdot \ldots \cdot G}_{n-1}=\left\{a g_{1} g_{2} \ldots g_{n-1}:(\forall i<n) g_{i} \in G\right\}$. Note that $a \cdot \underbrace{G \cdot \ldots \cdot G}_{k-1} \subseteq$ $a \cdot \underbrace{G \cdot \ldots \cdot G}_{k}$ by idempotence. Also, note that the left-associated products need only go as far as $n=|G|$ terms since any repetition is cancelled by applying ($C 4$) several times, and then $(C 1)$ or $(C 2)$. It follows that $C_{a} \cdot G=C_{a}$. The relation ρ_{a} on G is defined by:

$$
b \rho_{a} c \text { iff } b=c \text { or } b, c \in C_{a} .
$$

Lemma 4.2. Let $\mathbf{G} \in \mathcal{V}_{C}$ and $|G|=n$. Then ρ_{a} is a congruence on \mathbf{G}.
Proof. Let $b \rho_{a} c$ for distinct elements b, c and let $d \in G$. Then there exist $i, j \leqslant n$ such that $b \in a \cdot \underbrace{G \cdot \ldots \cdot G}_{i}$ and $c \in a \cdot \underbrace{G \cdot \ldots \cdot G}_{j}$. According to (C3) and transitivity of equality, it follows that $d a=d b$ and $d a=d c$. Therefore, $\langle d b, d c\rangle \in \rho_{a}$. On the other hand, $b d, c d \in C_{a}$, hence $\langle b d, c d\rangle \in \rho_{a}$.

Corollary 4.1. Let $\mathbf{G} \in \mathcal{V}_{C}$ be a finite groupoid, and let $a \in G$. Then for all $b, c \in C_{a}$, and all $x \in G$, we have $x b=x c$.

Proof. By a repeated use of the identity ($C 3$), we obtain $x a=x d$ for any $d \in C_{a}$ and any $x \in G$.

Let $b \in G, \mathbf{G} \in \mathcal{V}_{C}$. Denote by $F_{b}=\{g \in G: b g=b\}$.

Lemma 4.3. Let $\mathbf{G} \in \mathcal{V}_{C}$ be a finite groupoid, and let $a \in G, b \in a \cdot G, b \neq a$. For all $c \in G$ we have

$$
(a c=a) \vee(a c=b) \Rightarrow b c=b
$$

Consequently, $\left|F_{b}\right|>\left|F_{a}\right|$ and $C_{b} \subseteq C_{a}$.
Proof. From $b \in a \cdot G$ we know that there exists $d \in G$ such that $a d=b$. Moreover, $b c=a d c={ }_{(C 4)} a c d=a d=b$ if $a c=a$, or $b c=a c c=_{(C 2)} a c=b$ if $a c=b$. From the first part we get $F_{a} \subseteq F_{b}$, but we also know that $a d=b \neq a$ and $b d=b$. Finally, $b \cdot \underbrace{G \cdot \ldots \cdot G}_{i} \subseteq a \cdot \underbrace{G \cdot \ldots \cdot G}_{i+1}$ since $b \in a \cdot G$, hence $C_{b} \subseteq C_{a}$.

Lemma 4.4. Let $\mathbf{G} \in \mathcal{V}_{C}$ be a finite groupoid, $|G|=n, c \in C_{a}$ so that $c=$ $a b_{1} \ldots b_{i}$ for some $i<n$ and $b_{1}, \ldots, b_{i} \in G$. If $c \cdot G=c$ (c is a left zero), then for every $d \in C_{a}, d b_{1} \ldots b_{i}=c$.

Proof. Let $d=a b_{1}^{\prime} \ldots b_{j}^{\prime}$ for some $j \leqslant n$ and $b_{1}^{\prime}, \ldots, b_{j}^{\prime} \in G$. Then
$d b_{1} \ldots b_{i}=a b_{1}^{\prime} \ldots b_{j}^{\prime} b_{1} \ldots b_{i}={ }_{(C 4)} \ldots={ }_{(C 4)} a b_{1} \ldots b_{i} b_{1}^{\prime} \ldots b_{j}^{\prime}=c b_{1}^{\prime} \ldots b_{j}^{\prime}=c$.
Lemma 4.5. Let $\mathbf{G} \in \mathcal{V}_{C}$ be a finite groupoid, $|G|=n$, and let $a \in G$. Then there exists a unique $c \in C_{a}$ such that $c \cdot G=c$.

Proof. Assume the opposite. Let $b \in C_{a}$ be such that $\left|F_{b}\right|$ is maximal. Since $\{b\} \neq b \cdot G$, then there exists $c \in b \cdot G, c \neq b$, so by Lemma 4.3 we get $\left|F_{c}\right|>\left|F_{b}\right|$. Moreover, the conditions $c \in b \cdot G$ and $b \in C_{a}$ mean that we can select some $i<n$ and $b_{1}, \ldots, b_{i}, d \in G$ such that $b=a b_{1} b_{2} \ldots b_{i}$ and $c=b d$. Thus $c \in C_{a}$, which contradicts the choice of b. Uniqueness of c in C_{a} follows from Lemma 4.4.

Lemma 4.6. Let $\mathbf{G} \in \mathcal{V}_{C}$ be a finite groupoid, $a \in G$, and let $\left|C_{a}\right|=3$. Then \mathbf{G} is not subdirectly irreducible.

Proof. Assume that $C_{a}=\{a, b, c\}$ and according to Lemma 4.5, one of b, c is a left zero, say $c \cdot G=c$.

First we show that $C_{a}=a \cdot G$. We know that $\{a\} \subseteq a \cdot G \subseteq a \cdot G \cdot G \subseteq \ldots$, and that once this sequence stabilizes, it stays constant and equal to C_{a}. Therefore, either $a \cdot G=\{a, b, c\}=C_{a}$, or $\{a\} \subsetneq a \cdot G \subsetneq a \cdot G \cdot G=\{a, b, c\}$. If $a \cdot G=\{a, c\}$, then $\{a, b, c\}=a \cdot G \cdot G=a \cdot G \cup c \cdot G=\{a, c\} \cup\{c\}$, a contradiction. If $a \cdot G=\{a, b\}$, then $a d e=c$ for some $d, e \in G$. We know $a d \in a \cdot G=\{a, b\}$. If $a d=a$, then $c=a d e=a e \in a \cdot G$. So, we may assume that $a d=b$. According to (C4), $c=a d e=a e d$, so an analogous argument proves that we may assume $a e=b$. However, from Lemma 4.3 it follows that $b e=b$, and this leads to a contradiction: $c=a d e=b e=b$.

Let $a d=c$. According to Lemma 4.4 we have $\{a, b, c\} \cdot d=c$. Lemma 4.3 implies that $b \cdot G \subseteq\{b, c\}$, and Lemma 4.4 implies $c \in b \cdot G$, while ($C 1$) implies $b \in b \cdot G$, so $b \cdot G=\{b, c\}$. Thus $C_{b}=\{b, c\}$, as c is a left zero. Lemma 4.2 implies that $\alpha=\Delta_{G} \cup\{\langle b, c\rangle,\langle c, b\rangle\}$ is a congruence of \mathbf{G}. Let us show that $\beta=\Delta_{G} \cup\{\langle a, b\rangle,\langle b, a\rangle\}$ is a congruence of \mathbf{G}. Let $a e=b$. If $g \in G$, then $g b=g \cdot a e={ }_{(C 3)} g a$. On the other hand, we know $\{a g, b g\} \subseteq\{a, b, c\}$. If $a g \in\{a, b\}$,

Lemma 4.3 implies $b g=b$. If $a g=c$, then Lemma 4.4 implies $b g=c$. So, $\alpha, \beta \in \operatorname{Con} \mathbf{G} \backslash\left\{\Delta_{G}\right\}$, but $\alpha \cap \beta=\Delta_{G}$, hence \mathbf{G} is not subdirectly irreducible.

Lemma 4.7. Let $\mathbf{G} \in \mathcal{V}_{C}$ be a finite groupoid, $a, b \in G$, and let $\left|C_{a}\right|=\left|C_{b}\right|=2$. Then \mathbf{G} is not subdirectly irreducible.

Proof. Lemma 4.2 implies that ρ_{a}, ρ_{b} are atoms in Con G. Assume that they are equal. Then from $a \in C_{a}$ and $b \in C_{b}$ we get $C_{a}=C_{b}=\{a, b\}$. According to Lemma 4.5, one of a, b must be a left zero, but this contradicts the assumption that $\left|C_{a}\right|=\left|C_{b}\right|=2$. Thus ρ_{a} and ρ_{b} are distinct atoms in $\operatorname{Con} \mathbf{G}$, so \mathbf{G} is not subdirectly irreducible.

Theorem 4.1. $\operatorname{resb}\left(\mathcal{V}_{C}\right) \leqslant 4$.
Proof. Let $\mathbf{G} \in \mathcal{V}_{C}$ be a subdirectly irreducible groupoid with at least 4 elements. \mathcal{V}_{C} is finitely generated, thus it is locally finite. Recall the Quackenbush Lemma from [8: if a locally finite variety has an infinite subdirectly irreducible algebra, it has no bound on sizes of finite subdirectly irreducibles. So we may assume that \mathbf{G} is finite.

According to Lemma 4.6, for all $a \in G,\left|C_{a}\right| \neq 3$. Assume that $a \in G$ is such that $\left|C_{a}\right|>3$. Lemma 4.5 implies that there exists a unique $c \in C_{a}$ such that $c \cdot G=c$. Lemma 4.4 implies that for all $d \in C_{a}, c \in C_{d}$. Let $b \in C_{a} \backslash\{c\}$ be such that C_{b} is minimal, and such that $\left|F_{b}\right|$ is maximal among $\left|F_{d}\right|$ which satisfy $d \in C_{a} \backslash\{c\}$ and $C_{d}=C_{b}$. If $C_{b} \neq\{b, c\}$, then $b \cdot G \neq\{b, c\}$ (otherwise we would get $b \cdot G \cdot G=b \cdot G \cup c \cdot G=\{b, c\})$. Let $d \in b \cdot G \backslash\{b, c\}$. Then $d \in C_{b}$ and $b \in C_{a}$ imply $d \in C_{a}$. Moreover, Lemma 4.3 implies that $C_{d} \subseteq C_{b}$ and $\left|F_{b}\right|<\left|F_{d}\right|$, contradicting the choice of b. Therefore, $C_{b}=\{c, b\}$. Next we select $d \in C_{a} \backslash\{b, c\}$ such that C_{d} is minimal, and such that $\left|F_{d}\right|$ is maximal among $\left|F_{e}\right|$ which satisfy $e \in C_{a} \backslash\{b, c\}$ and $C_{e}=C_{d}$. The analogous argument proves that either $C_{d}=\{c, d\}$, or $C_{d}=\{b, c, d\}$. But this is a contradiction with Lemma 4.7, or with Lemma 4.6 .

Assume now that $\left|C_{a}\right| \leqslant 2$ for all $a \in G$. Lemma 4.7 implies that at most one $a \in G$ is such that $\left|C_{a}\right|=2$. If $\left|C_{a}\right|=1$ for all $a \in G$, then \mathbf{G} is a left zero semigroup, and the only subdirectly irreducible left zero semigroup has two elements. Let $a \in G$ be the only element such that $\left|C_{a}\right|=2$, say $C_{a}=\{a, b\}$, and all other elements of G are left zeros. Since $|G| \geqslant 4$, then there exist left zeros $u, v \in G \backslash\{a\}$ such that $a u=a v$ (since G contains at least three left zeros, and $a \cdot G=\{a, b\}$). But then $\mathrm{Cg}^{\mathbf{G}}(a, b)=\rho_{a}=\{a, b\}^{2} \cup \Delta_{G}$ and $\mathrm{Cg}^{\mathbf{G}}(u, v)=\{u, v\}^{2} \cup \Delta_{G}$ are distinct atoms in Con \mathbf{G}, which is a contradiction.

TheOrem 4.2. All subdirectly irreducible members of \mathcal{V}_{C} are depicted in Table 3. Thus, $\operatorname{resb}\left(\mathcal{V}_{C}\right)=4$.

Proof. Let $\mathbf{G} \in \mathcal{V}_{C}$ be subdirectly irreducible. By Theorem4.1, $|G|<4$.
emphCase $|G|=3$: Let $G=\{a, b, c\}$. G is not a left zero semigroup, since the three-element left zero semigroup is not subdirectly irreducible. From Lemma 4.1 it follows that we may assume $a b=c$, from Lemmas 4.6 and 4.7 it follows that there is at most one element of G which is not a left zero, and it must be a, so b and c are left zeros. Finally, $a c=a$ since $a c \in C_{a}=\{a, c\}$ and $a c=c$ would imply

Table 3. Cayley tables of subdirectly irreducible groupoids in \mathcal{V}_{C}.

	a	b	c
a	a	c	a
b	b	b	b
c	c	c	c

	a	b
a	a	a
b	b	b

$a=c$ by Lemma 4.1. This means that \mathbf{G} is the left-hand side groupoid depicted in Table 33 which is subdirectly irreducible with the monolith $\mathrm{Cg}^{\mathrm{g}}(a, c)$.

Case $|G|=2$: Let $G=\{a, b\}$. We know that at least one of $\{a, b\}$ is a left zero. If a is not a left zero, then idempotence implies that $a b=b$, but from Lemma 4.1 it follows that $a=b$. So \mathbf{G} is a left zero semigroup.

5. Residual bound of \mathcal{W}

We turn to the variety \mathcal{W}. According to [4, more precisely Lemma 6.1 and Theorem $6.3, \mathcal{W}$ is the variety generated by

\mathbf{G}_{4}	x	y	$x y$	$y x$
x	x	$x y$	x	$x y$
y	$y x$	y	$y x$	y
$x y$				
$y x$				

which is also its 2-generated free groupoid. The equational base of \mathcal{W} is

$$
\begin{array}{ll}
(\mathrm{W} 1) x x \approx x, & (\mathrm{~W} 2) x y y \approx x \\
(\mathrm{~W} 3) x \cdot y z \approx x y, & (\mathrm{~W} 4) x y z \approx x z y
\end{array}
$$

Lemma 5.1. Let $\mathbf{G} \in \mathcal{W}$. The groupoid \mathbf{G} is right cancellative, i.e. for all $a, b, c \in G, b a=c a \Rightarrow b=c$. If $a, b \in G$ are distinct, then $a b \neq b$.

Proof. The proof follows from ($W 2$) and idempotence ($W 1$).
Lemma 5.2. Let $\mathbf{G} \in \mathcal{W}$ and assume $a, b, c \in G$ are pairwise distinct elements which satisfy $a b=c$. Then for every pair $\langle d, e\rangle \in \operatorname{Cg}^{\mathbf{G}}(a, c)$ and all $z \in G, z d=z e$. The congruence $\alpha=\operatorname{Cg}^{\mathbf{G}}(a, c)$ is an atom in the lattice $\operatorname{Con} \mathbf{G}$ and all α-classes have at most two elements.

Proof. From $(W 1)-(W 4)$ we get that $a c=a \cdot a b=a a=a, c a=a b a=a a b=$ $a b=c, c b=a b b=a$, i.e. the following equalities hold in \mathbf{G} :

\mathbf{G}	a	b	c	\ldots
a	a	c	a	\ldots
b	\cdot	b	.	\ldots
c	c	a	c	\ldots
\vdots	\vdots	\vdots	\vdots	\ddots

Recall that the congruences are generated by Mal'cev chains, so it suffices to prove that for any $z \in G$ and translation $p(x) \in \operatorname{Tr} G, z p(a)=z p(c)$. We prove this by an
induction on the complexity of the shortest composition of basic translations equal to $p(x)$. Since $a=c b$, it follows that for all $z \in G, z a=z c\left(z a=z(c b)={ }_{(W 3)} z c\right)$, which proves the inductive base. Assume that the shortest composition of basic translations which equals $p(x)$ uses any left translation λ_{u}, so $p(x)=\left(r \circ \lambda_{u} \circ q\right)(x)$, where $r, q \in \operatorname{Tr} G$, then $\left(\lambda_{u} \circ q\right)(a)=u q(a)=u q(c)=\left(\lambda_{u} \circ q\right)(c)$ by the inductive assumption on $q(x)$. Therefore, $p(a)=p(c)$, and also $z p(a)=z p(c)$. The only case we need to consider is when p is a composition of right translations.

For each $z \in G$ we have

$$
\begin{aligned}
z \cdot a d_{1} \ldots d_{n} & ={ }_{(W 3)} z \cdot a d_{1} \ldots d_{n-1}={ }_{(W 3)} \cdots=_{(W 3)} z a=z c \\
& ={ }_{(W 3)} z \cdot c d_{1}={ }_{(W 3)} \cdots=_{(W 3)} z \cdot c d_{1} \ldots d_{n} .
\end{aligned}
$$

We obtain that all translations we need to consider for generating links in the Mal'cev chains in $\mathrm{Cg}^{\mathbf{G}}(a, c)$ are of the form $p(x)=x d_{1} \ldots d_{n}$. Moreover,

$$
a d_{1} \ldots d_{n} b=_{(W 4)} a d_{1} \ldots b d_{n}={ }_{(W 4)} \cdots=_{(W 4)} a b d_{1} \ldots d_{n}=c d_{1} \ldots d_{n}
$$

and equivalently, $c d_{1} \ldots d_{n} b=a d_{1} \ldots d_{n}$, since $c b=a$ can replace $a b=c$ and then the proof is analogous to above derivation. We have proved for any $u, v \in G$ that there exists a translation $p(x)$ such that $u=p(a)$ and $v=p(c)$ iff there exists a translation $q(x)$ such that $u=q(c)$ and $v=q(a)$.

Let $d_{1}, \ldots, d_{n}, e_{1}, \ldots, e_{m} \in G$ be parameters such that $a d_{1} \ldots d_{n} \neq c d_{1} \ldots d_{n}$ and $a e_{1} \ldots e_{m} \neq c e_{1} \ldots e_{m}$. We claim that

$$
\left|\left\{a d_{1} \ldots d_{n}, c d_{1} \ldots d_{n}\right\} \cap\left\{a e_{1} \ldots e_{m}, c e_{1} \ldots e_{m}\right\}\right| \neq 1
$$

Assume the opposite. By the above considerations, it suffices to consider the case when $a d_{1} \ldots d_{n}=a e_{1} \ldots e_{m}$ and $c d_{1} \ldots d_{n} \neq c e_{1} \ldots e_{m}$ and also the case when $a d_{1} \ldots d_{n} \neq a e_{1} \ldots e_{m}, c d_{1} \ldots d_{n}=c e_{1} \ldots e_{m}$. The two cases are symmetric, thus we may assume without loss of generality that $a d_{1} \ldots d_{n}=a e_{1} \ldots e_{m}$ and $c d_{1} \ldots d_{n} \neq c e_{1} \ldots e_{m}$. We get

$$
c d_{1} \ldots d_{n}=a d_{1} \ldots d_{n} b=a e_{1} \ldots e_{m} b=c e_{1} \ldots e_{m} \neq c d_{1} \ldots d_{n}
$$

a contradiction (the third equality was proved above). We conclude that all classes of the congruence $\mathrm{Cg}^{\mathbf{G}}(a, c)$ have at most two elements. Since the identity (W2) implies that

$$
\mathrm{Cg}^{\mathbf{G}}(a, c)=\mathrm{Cg}^{\mathbf{G}}\left(a d_{1} \ldots d_{n}, c d_{1} \ldots d_{n}\right)
$$

it follows that $\mathrm{Cg}^{\mathbf{G}}(a, c)$ is an atom in the lattice $\mathbf{C o n} \mathbf{G}$.
Lemma 5.3. Let $\mathbf{G} \in \mathcal{W}$ be subdirectly irreducible and for three distinct elements $a, b, c \in G$ let $a b=c$ hold. Then $\{a, c\} \cdot G=\{a, c\}$ and all elements in $G \backslash\{a, c\}$ are left zeros.

Proof. The table in the proof of Lemma 5.2 proves that $\{a, c\} \cdot\{a, b, c\}=$ $\{a, c\}$.

Assume that there exists an element $d \in G \backslash\{a, b, c\}$ such that $a d \notin\{a, c\}$. Then $a d \neq d$ by Lemma [5.1. so $a d \notin\{a, d\}$ and Lemma 5.2 proves that $\mathrm{Cg}^{\mathbf{G}}(a, a d)$ is an atom in the lattice $\mathbf{C o n} \mathbf{G}$, which is incomparable with $\mathrm{Cg}^{\mathbf{G}}(a, c)$. This contradicts the assumption that \mathbf{G} is subdirectly irreducible. The proof that $c d \in$

Table 4. Cayley tables of all subdirectly irreducible groupoids in \mathcal{W}.

	a	b	c	d
a	a	c	a	a
b	b	b	b	b
c	c	a	c	c
d	d	d	d	d

	a	b	c
a	a	c	a
b	b	b	b
c	c	a	c

	a	b
a	a	a
b	b	b

$\{a, c\}$ is analogous, obtained by interchanging a and c above. Therefore, $\{a, c\} \cdot G=$ $\{a, c\}$. Thus $\mathrm{Cg}^{\mathbf{G}}(a, c)=\Delta_{G} \cup\{a, c\}^{2}$, according to Lemma5.2.

Assume that there exist $d \in G \backslash\{a, c\}$ and $e \in G \backslash\{d\}$ such that $d \neq d e$. Then $d e \neq e$ by Lemma [5.1] so $d e \notin\{d, e\}$. The argument from the preceding paragraph proves that $\mathrm{Cg}^{\mathbf{G}}(d, d e)=\Delta_{G} \cup\{d, d e\}^{2}$ and $\mathrm{Cg}^{\mathbf{G}}(a, c) \cap \mathrm{Cg}^{\mathbf{G}}(d, d e)=\Delta_{G}$, which is impossible since \mathbf{G} is subdirectly irreducible. Thus all $d \in G \backslash\{a, c\}$ are left zeros.

Theorem 5.1. $\operatorname{resb}(\mathcal{W}) \leqslant 5$.
Proof. Assume the opposite, i.e. let $\mathbf{G} \in \mathcal{W}$ be a subdirectly irreducible groupoid with $|G| \geqslant 5$. G can not be a left zero semigroup, since the only subdirectly irreducible left zero semigroup has two elements. From Lemma 5.1]and idempotence it follows that there exist $a, b, c \in G$ such that $a b=c$. Lemma 5.2 proves that $\mathrm{Cg}^{\mathbf{G}}(a, c)$ is an atom in the congruence lattice Con \mathbf{G} and $\mathrm{Cg}^{\mathbf{G}}(a, c) \neq \nabla_{G}$ since $|G| \geqslant 5$ and all equivalence classes of $\mathrm{Cg}^{\mathbf{G}}(a, c)$ have at most two elements.

Lemma 5.3 implies that $\{a, c\} \cdot G=\{a, c\}$ and all elements of $G \backslash\{a, c\}$ are left zeros. Since $|G| \geqslant 5$, there exist elements $d, e \in G \backslash\{a, c\}$ such that $a d=a e$. Thus for each $z \in G \backslash\{c\}$ we have $z d=z e$, for $z \in G \backslash\{a, c\}$ are left zeros. On the other hand, if $z=c$, we get $c d=a b d={ }_{(W 4)} a d b=a e b={ }_{(W 4)} a b e=c e$. Therefore, $\mathrm{Cg}^{\mathbf{G}}(d, e)=\Delta_{G} \cup\{d, e\}^{2}$, and $\mathrm{Cg}^{\mathbf{G}}(a, c) \cap \mathrm{Cg}^{\mathbf{G}}(d, e)=\Delta_{G}$, a contradiction.

THEOREM 5.2. $\operatorname{resb}(\mathcal{W})=5$ and all subdirectly irreducible groupoids in \mathcal{W} are given in Table 4

Proof. Let $\mathbf{G} \in \mathcal{W}$ be a subdirectly irreducible groupoid. From Theorem 5.1 we know that $|G|<5$.

Case $|G|=4$: Let $G=\{a, b, c, d\}$ and we may assume that $a b=c$ since \mathbf{G} can't be a left zero semigroup and $a b \neq b$ by Lemma [5.1. In the proof of Lemma 5.2 we showed that $a c=c b=a$ and $a b=c a=c$ in this case. From Lemma 5.3 it follows that b and d are left zeros and that $\{a, c\} \cdot G=\{a, c\}$. If $a b=a d$, it would follow that $c d=a b \cdot d=a d \cdot b=a b \cdot b=c b$, and $\Delta_{G} \cup\{b, d\}^{2}$ would have been a congruence, a contradiction. Similarly we conclude $c b \neq c d$, so $a d \neq a b=c$ forces $a d=a$, and we also get $c d=c$. This is the leftmost groupoid in Table 4 for which we verify that it is subdirectly irreducible and in \mathcal{W} by checking directly the identities and the congruence lattice.

Case $|G|=3$: Let $G=\{a, b, c\}$. We may assume that $a b=c$ like in the previous case, and the proofs that b is a left zero, that $a c=c b=a$ and $a b=c a=c$
are also just as above. Thus we obtain the middle groupoid in 4 which is subdirectly irreducible with the monolith $\mathrm{Cg}^{\mathrm{g}}(a, c)$.

Case $|G|=2$: Let $G=\{a, b\}$. By idempotence and Lemma 5.1 we get that G is the left zero semigroup.

Acknowledgements. We express thanks to Professor David Stanovsky for his explanations regarding Steiner quasigroups, SIE groupoids and quandles. We profoundly thank the referee for numerous useful comments, catching several mistakes in our proofs and improving the presentation of our proofs.

References

1. C. Bergman, Universal Algebra: Fundamentals and Selected Topics, Chapman and Hall/CRC Press, 2011.
2. S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Grad. Texts Math. 78, Springer-Verlag, New York-Berlin, 1981.
3. P. Đapić, J. Ježek, P. Marković, R. McKenzie, D. Stanovsky, Star-linear equational theories of groupoids, Algebra Univers. 56 (2007), 357-397.
4. P. Đapić, J. Ježek, P. Marković, Star-quasilinear equational theories of groupoids, Stud. Sci. Math. Hung. 47 (2010), 267-288.
5. P. Jedlička, A. Pilitowska, D. Stanovsky, A. Zamojska-Dzienio, The structure of medal quandles, J. Algebra 443 (2015), 300-334.
6. J. A. Gerhard, Subdirectly irreducible idempotent semigrups, Pac. J. Math. 39 (1971), 669-676.
7. R. McKenzie, G. McNulty, W. Taylor, Algebras, lattices, varieties, Vol. I, Wadsworth andBrooks/Cole Math. Series, Wadsworth and Brooks/Cole Advanced Books and Software, 1987.
8. R. W. Quackenbush, Equational classes generated by finite algebras, Algebra Univers. 1 (1971), 265-266.
9. $\frac{}{1198}$
10. B. Roszkowska, On some varieties of symmetric idempotent entropic groupoids, in: K. Hałkowska, B. Stawski, (eds.) Universal and Applied Algebra, World Scientific, Singapore 1989, 254-274.
11. B. Roszkowska-Lech, A representation of symmetric idempotent and entropic groupoids, Demonstr. Math. 32 (1999), 247-262.
12. Subdirectly irreducible symmetric idempotent and entropic groupoids, Demonstr. Math. 32 (1999), 469-484.

[^0]: 2010 Mathematics Subject Classification: Primary 08B26; Secondary 08B15, 08A45, 08A30, 08A62.

 Key words and phrases: variety, equational theory, linear term, subdirectly irreducible, residually large, residually finite.

 Supported by the grant 174018 of the Ministry of Education and Science of Serbia.
 Communicated by Žarko Mijajlović.

