DOI: 10.2298/PIM1613059J

EXTENSION THEOREM OF WHITNEY TYPE FOR $\mathcal{S}(\mathbb{R}^d_+)$ BY USE OF THE KERNEL THEOREM

Smiljana Jakšić and Bojan Prangoski

ABSTRACT. We study the expansions of the elements in $\mathcal{S}(\mathbb{R}^d_+)$ and $\mathcal{S}'(\mathbb{R}^d_+)$ with respect to the Laguerre orthonormal basis, extending the result of M. Guillemot-Teissier in the one dimensional case. As a consequence, we obtain Kernel theorem for $\mathcal{S}(\mathbb{R}^d_+)$ and $\mathcal{S}'(\mathbb{R}^d_+)$ and an extension theorem of Whitney type for $\mathcal{S}(\mathbb{R}^d_+)$.

1. Introduction

We denote by \mathbb{R}^d_+ the set $(0,\infty)^d$ and by $\overline{\mathbb{R}^d_+}$ its closure, i.e., $[0,\infty)^d$. We will consider the space $\mathcal{S}(\mathbb{R}^d_+)$ which consists of all $f \in \mathcal{C}^\infty(\mathbb{R}^d_+)$ such that all derivatives $D^p f, p \in \mathbb{N}^d_0$, extend to continuous functions on $\overline{\mathbb{R}^d_+}$ and

$$\sup_{x \in \mathbb{R}^d_+} x^k |D^p f(x)| < \infty, \text{ for all } k, p \in \mathbb{N}^d_0.$$

With this system of seminorms, $\mathcal{S}(\mathbb{R}^d_+)$ becomes an (F)-space.

The results concerning the extension of a smooth function or a function of class \mathcal{C}^k out of some region and various reformulation of such problems are called extension theorems of Whitney type. One can see Whitney [11], Seeley [8] and Hörmander [3, Theorem 2.3.6, p. 48]. Here we deal with a problem of extension of a function from $\mathcal{S}(\mathbb{R}^d_+)$ onto $\mathcal{S}(\mathbb{R}^d)$. Theorem 4.2 is the main result of the paper. For the purpose of this theorem we prove the Schwartz kernel theorem for $\mathcal{S}(\mathbb{R}^d_+)$ and $\mathcal{S}'(\mathbb{R}^d_+)$, Theorem 4.1.

Recall, for n = 0, 1, 2... the functions

$$L_n(x) = \frac{e^x}{n!} \left(\frac{d}{dx}\right)^n (e^{-x}x^n), \quad x > 0$$

59

²⁰¹⁰ Mathematics Subject Classification: Primary 46F05.

Key words and phrases: tempered distributions on \mathbb{R}^d_+ ; kernel theorem for tempered distributions on \mathbb{R}^d_+ ; smooth extensions of smooth rapidly decreasing functions.

Partially supported by the Ministry of Science, Republic of Serbia, project 174024. Communicated by Stevan Pilipović.

are the Laguerre polynomials and $\mathcal{L}_n(x) = L_n(x)e^{-\frac{x}{2}}$ are Laguerre functions; $\{\mathcal{L}_n(x), n = 0, 1, ...\}$ is an orthonormal basis for $L^2(0, \infty)$ [10, p. 108].

The problem of expanding the elements of $\mathcal{S}'(\mathbb{R}_+)$ with respect to the Laguerre orthonormal basis has been treated by Guillemont-Teissier in [4] and Duran in [1]: If $T \in \mathcal{S}'(\mathbb{R}_+)$ and $a_n = \langle T, \mathcal{L}_n(x) \rangle$, then $T = \sum_{n=0}^{\infty} a_n \mathcal{L}_n(x)$ and $\{a_n\}_{n=0}^{\infty}$ decreases slowly. Conversely, if $\{a_n\}_{n=0}^{\infty}$ decreases slowly, then there exists $T \in \mathcal{S}'(\mathbb{R}_+)$ such that $T = \sum_{n=0}^{\infty} a_n \mathcal{L}_n(x)$.

The papers [7, 12, 13] contain expansions of the same kind as in [4, 1]. The novelty of this paper is an extension of the results of [4] for the *d*-dimensional case. This leads to the Schwartz kernel theorem (Theorem 4.1) which states that there is one-to-one correspondence between elements from $\mathcal{S}'(\mathbb{R}^{m+n}_+)$ in two sets of variables *x* and *y*, and the continuous linear mappings of $(\mathcal{S}(\mathbb{R}^m_+))_y$ into $(\mathcal{S}'(\mathbb{R}^m_+))_x$. As a consequence of Theorem 4.2, we explain the convolution in $\mathcal{S}'(\mathbb{R}^d_+)$ in the last remark.

The structure of the paper is as follows. We recall in Section 3 some properties of Laguerre series and prove the convergence of the Laguerre series in $\mathcal{S}(\mathbb{R}^d_+)$ and $\mathcal{S}'(\mathbb{R}^d_+)$. In Section 4, we state Schwartz's kernel theorem for $\mathcal{S}(\mathbb{R}^d_+)$ and prove an extension theorem of Whitney type for $\mathcal{S}(\mathbb{R}^d_+)$.

2. Notation

We use the standard multi-index notation. Given $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d$, we write $|\alpha| = \sum_{i=1}^d \alpha_i$, $x^{\alpha} = (x_1, \ldots, x_d)^{(\alpha_1, \ldots, \alpha_d)} = \prod_{i=1}^d x_i^{\alpha_i}$, $D^{\alpha} = \prod_{i=1}^d \frac{\partial^{\alpha_i}}{\partial x_i^{\alpha_i}}$ for the partial derivative and $X^{\alpha}f(x) = x^{\alpha}f(x)$ for the multiplication operator. For $x \in \mathbb{R}^d$, |x| stands for the standard Euclidean norm in \mathbb{R}^d .

Let s be the space of rapidly decreasing sequences, i.e.,

$$\{a_n\}_{n\in\mathbb{N}_0^d}\in s\Leftrightarrow \sum_{n\in\mathbb{N}_0^d} |a_n|^2 n^{2k}<\infty,\quad \text{for all }k\in\mathbb{N}.$$

Then s' stands for the strong dual of s, the space of slowly increasing sequences:

$$\{a_n\}_{n\in\mathbb{N}_0^d}\in s'\Leftrightarrow \sum_{n\in\mathbb{N}_0^d}|a_n|^2n^{-2k}<\infty, \text{ for a } k\in\mathbb{N}.$$

3. Laguerre series

The *d*-dimensional Laguerre functions

$$\mathcal{L}_n(x) = \mathcal{L}_{n_1}(x_1) \cdots \mathcal{L}_{n_d}(x_d) = \prod_{i=1}^d \mathcal{L}_{n_i}(x_i)$$

form an orthonormal basis for $L^2(\mathbb{R}^d_+)$ and are the eigenfunctions of the Laguerre operator $E = \left(D_1(x_1D_1) - \frac{x_1}{4}\right) \cdots \left(D_d(x_dD_d) - \frac{x_d}{4}\right), E : \mathcal{S}(\mathbb{R}^d_+) \to \mathcal{S}(\mathbb{R}^d_+)$

$$\mathcal{L}_n(x) \to E(\mathcal{L}_n(x)) = \prod_{i=1}^d -\left(n_i + \frac{1}{2}\right)\mathcal{L}_n(x).$$

Note that E is a self-adjoint operator, i.e.,

$$\langle Ef,g\rangle = \langle f,Eg\rangle, \ f,g \in \operatorname{dom}(E) = \{f \in L^2(\mathbb{R}^d_+); \ Ef \in L^2(\mathbb{R}^d_+)\}$$

For $f \in \mathcal{S}(\mathbb{R}^d_+)$ we define the *n*-th Laguerre coefficient by $a_n = \int_{\mathbb{R}^d_+} f(x)\mathcal{L}_n(x)dx$. The Laguerre series of the function $f \in \mathcal{S}(\mathbb{R}^d_+)$ is $\sum_{n \in \mathbb{N}^d_+} a_n \mathcal{L}_n(x)$.

In [4, p.547], the following bound on the one-dimensional Laguerre functions is obtained:

$$\left|x^{k}\left(\frac{d}{dx}\right)^{p}\mathcal{L}_{n}(x)\right| \leq C_{p,k}(n+1)^{p+k}, \ x \geq 0, \ n, p, k \geq 0.$$

Finding the bound on the d-dimensional Laguerre functions involves not complicated calculation. Hence

(3.1)
$$|x^k D^p \mathcal{L}_n(x)| \leq C_{p,k} \prod_{i=1}^a (n_i+1)^{p_i+k_i}, \ x \in \mathbb{R}^d_+, \ n, p, k \in \mathbb{N}^d_0.$$

3.1. Convergence of the Laguerre series in $\mathcal{S}(\mathbb{R}^d_+)$.

THEOREM 3.1. For $f \in \mathcal{S}(\mathbb{R}^d_+)$, let $a_n(f) = \int_{\mathbb{R}^d_+} f(x)\mathcal{L}_n(x) dx$. Then $f = \sum_{n \in \mathbb{N}^d_0} a_n(f)\mathcal{L}_n$ and the series converges absolutely in $\mathcal{S}(\mathbb{R}^d_+)$. Moreover the mapping $\iota : \mathcal{S}(\mathbb{R}^d_+) \to s$, $\iota(f) = \{a_n(f)\}_{n \in \mathbb{N}^d_0}$, is a topological isomorphism.

PROOF. For $f \in \mathcal{S}(\mathbb{R}^d_+)$ we have

$$a_n(Ef) = \langle Ef, \mathcal{L}_n \rangle = \langle f, E(\mathcal{L}_n) \rangle = a_n(f)(-1)^d \prod_{i=1}^d \left(n_i + \frac{1}{2} \right).$$

Moreover,

$$a_n(E^p f) = a_n(f) \prod_{i=1}^d (-1)^{p_i} \left(n_i + \frac{1}{2} \right)^{p_i}$$

for any $p \in \mathbb{N}^d$. As $E^p f \in \mathcal{S}(\mathbb{R}^d_+) \subset L^2(\mathbb{R}^d_+)$, we have

$$\sum_{n \in \mathbb{N}_0^d} |a_n(f)|^2 \prod_{i=1}^d \left(n_i + \frac{1}{2}\right)^{2p_i} < \infty, \text{ for every } p \in \mathbb{N}_0^d,$$

i.e., $\{a_n(f)\}_{n\in\mathbb{N}_0^d} \in s$. Clearly $f = \sum_{n\in\mathbb{N}_0^d} a_n(f)\mathcal{L}_n$ as elements of $L^2(\mathbb{R}_+^d)$. By (3.1), we obtain

(3.2)
$$\sum_{n \in \mathbb{N}_0^d} |x^k D^p(a_n(f)\mathcal{L}_n(x))| \leq C_{p,k} \sum_{n \in \mathbb{N}_0^d} |a_n(f)| \prod_{i=1}^d (n_i+1)^{p_i+k_i} < \infty$$

which yields the absolute convergence of the series in $\mathcal{S}(\mathbb{R}^d_+)$.

To prove that ι is a topological isomorphism, first observe that by the above consideration it is well defined and it is clearly an injection. Let $\{a_n\}_{n\in\mathbb{N}_0^d} \in s$. Define $f = \sum_{n\in\mathbb{N}_0^d} a_n \mathcal{L}_n \in L^2(\mathbb{R}_+^d)$. Now (3.2) proves that this series converges in $\mathcal{S}(\mathbb{R}_+^d)$, hence $f \in \mathcal{S}(\mathbb{R}_+^d)$. Thus ι is bijective. Observe that, (3.2) proves that ι^{-1} is

JAKŠIĆ AND PRANGOSKI

continuous. Since $\mathcal{S}(\mathbb{R}^d_+)$ and s are (F)-spaces, the open mapping theorem proves that ι is topological isomorphism.

3.2. Convergence of the Laguerre series in $\mathcal{S}'(\mathbb{R}^d_+)$.

THEOREM 3.2. For $T \in \mathcal{S}'(\mathbb{R}^d_+)$, let $b_n(T) = \langle T, \mathcal{L}_n \rangle$. Then $\{b_n(T)\}_{n \in \mathbb{N}^d_0} \in s'$ and $T = \sum_{n \in \mathbb{N}^d_0} b_n(T)\mathcal{L}_n$. The series converges absolutely in $\mathcal{S}'(\mathbb{R}^d_+)$. Conversely, if $\{b_n\}_{n \in \mathbb{N}^d_0} \in s'$, then there exists a $T \in \mathcal{S}'(\mathbb{R}^d_+)$ such that $T = \sum_{n \in \mathbb{N}^d_0} b_n \mathcal{L}_n$. As a consequence, $\mathcal{S}'(\mathbb{R}^d_+)$ is topologically isomorphic to s'.

PROOF. Assume that $\{b_n\}_{n\in\mathbb{N}_0^d} \in s'$. Then there exists a $k \in \mathbb{N}$ such that $\sum_{n\in\mathbb{N}_0^d} |b_n|^2 (|n|+1)^{-2k} < \infty$. For a bounded subset B of $\mathcal{S}(\mathbb{R}_+^d)$, Theorem 3.1 implies that there exists C > 0 such that $\sum_{n\in\mathbb{N}_0^d} |a_n(f)|^2 (|n|+1)^{2k} \leq C$, for all $f \in B$, where we denote $\{a_n(f)\}_{n\in\mathbb{N}_0^d} = \iota(f)$. Observe that for an arbitrary $q \in \mathbb{N}$ we have

$$\sum_{|n| \leqslant q} \sup_{f \in B} |\langle b_n \mathcal{L}_n, f \rangle| \leqslant \sup_{f \in B} \sum_{n \in \mathbb{N}_0^d} \sum_{m \in \mathbb{N}_0^d} |\langle b_n \mathcal{L}_n, a_m(f) \mathcal{L}_m \rangle|$$
$$= \sup_{f \in B} \sum_{n \in \mathbb{N}_0^d} |b_n| |a_n(f)| \leqslant C',$$

i.e.,

$$\sum_{n \in \mathbb{N}_0^d} \sup_{f \in B} |\langle b_n \mathcal{L}_n, f \rangle| < \infty,$$

hence $\sum_{n \in \mathbb{N}^d_{\alpha}} b_n \mathcal{L}_n$ converges absolutely in $\mathcal{S}'(\mathbb{R}^d_+)$.

Let $T \in \mathcal{S}'(\mathbb{R}^d_+)$. Theorem 3.1 implies that ${}^t\iota: s' \to \mathcal{S}'(\mathbb{R}^d_+)$ is an isomorphism $({}^t\iota$ denotes the transpose of ι). Now, one easily verifies that $({}^t\iota)^{-1}T = \{b_n\}_{n \in \mathbb{N}^d_0}$, where $b_n(T) = \langle T, \mathcal{L}_n \rangle$. Observe that for $f \in \mathcal{S}(\mathbb{R}^d_+)$

$$\langle T, f \rangle = \sum_{n \in \mathbb{N}_0^d} a_n(f) \langle T, \mathcal{L}_n \rangle = \sum_{n \in \mathbb{N}_0^d} a_n(f) b_n(T) = \left\langle \sum_{n \in \mathbb{N}_0^d} b_n(T) \mathcal{L}_n, f \right\rangle,$$

i.e., $T = \sum_{n \in \mathbb{N}_0^d} b_n(T) \mathcal{L}_n.$

4. Kernel theorem

The completions of the tensor product are denoted by $\hat{\otimes}_{\epsilon}$ and $\hat{\otimes}_{\pi}$ with respect to ϵ and π topologies. If they are equal, we drop the subindex.

PROPOSITION 4.1. The spaces $\mathcal{S}(\mathbb{R}^d_+)$ and $\mathcal{S}'(\mathbb{R}^d_+)$ are nuclear.

PROOF. Since s is nuclear, Theorem 3.1 implies that $\mathcal{S}(\mathbb{R}^d_+)$ is also nuclear. Now $\mathcal{S}'(\mathbb{R}^d_+)$ is nuclear as the strong dual of a nuclear (F)-space.

THEOREM 4.1. The following canonical isomorphisms hold:

 $\mathcal{S}(\mathbb{R}^m_+) \hat{\otimes} \mathcal{S}(\mathbb{R}^n_+) \cong \mathcal{S}(\mathbb{R}^{m+n}_+), \quad \mathcal{S}'(\mathbb{R}^m_+) \hat{\otimes} \mathcal{S}'(\mathbb{R}^n_+) \cong \mathcal{S}'(\mathbb{R}^{m+n}_+).$

PROOF. The second isomorphism follows from the first one since $\mathcal{S}(\mathbb{R}^d_+)$ is a nuclear (F)-space. Thus, it is enough to prove the first isomorphism.

Step 1: From Theorem 3.1 it follows that $\mathcal{S}(\mathbb{R}^m_+) \otimes \mathcal{S}(\mathbb{R}^n_+)$ is dense in $\mathcal{S}(\mathbb{R}^{m+n}_+)$. It suffices to show that the latter induces on the former the topology $\pi = \epsilon$ (the π and the ϵ topologies are the same because $\mathcal{S}(\mathbb{R}^d_+)$ is nuclear). Since the bilinear mapping $(f,g) \mapsto f \otimes g$ of $\mathcal{S}(\mathbb{R}^m_+) \times \mathcal{S}(\mathbb{R}^n_+)$ into $\mathcal{S}(\mathbb{R}^{m+n}_+)$ is separately continuous, it follows that it is continuous $(\mathcal{S}(\mathbb{R}^m_+) \text{ and } \mathcal{S}(\mathbb{R}^n_+) \text{ are } (F)$ -spaces). The continuity of this bilinear mapping proves that the inclusion $\mathcal{S}(\mathbb{R}^m_+) \otimes_{\pi} \mathcal{S}(\mathbb{R}^n_+) \to \mathcal{S}(\mathbb{R}^{m+n}_+)$ is continuous, hence the topology π is stronger than the induced one from $\mathcal{S}(\mathbb{R}^{m+n}_+)$ onto $\mathcal{S}(\mathbb{R}^m_+) \otimes \mathcal{S}(\mathbb{R}^n_+)$.

Step 2: Let A' and B' be equicontinuous subsets of $\mathcal{S}'(\mathbb{R}^m_+)$ and $\mathcal{S}'(\mathbb{R}^n_+)$, respectively. There exist C > 0 and $j, l \in \mathbb{N}$ such that

$$\sup_{T \in A'} |\langle T, \varphi \rangle| \leqslant C \|\varphi\|_{j,l} \quad \text{and} \quad \sup_{F \in B'} |\langle F, \psi \rangle| \leqslant C \|\psi\|_{j,l},$$

where

$$||f||_{j,l} = \sup_{\substack{|k| \leq j \ x \in \mathbb{R}^d_+ \\ |p| \leq l}} \sup_{x \in \mathbb{R}^d_+} |x^k D^p f(x)| < \infty$$

For all $T \in A'$ and $F \in B'$ we have

$$\begin{split} |\langle T_x \otimes F_y, \chi(x,y) \rangle| &= |\langle F_y, \langle T_x, \chi(x,y) \rangle \rangle| \leqslant C \sup_{\substack{|k| \leqslant j \ y \in \mathbb{R}^n_+ \\ |p| \leqslant l}} \sup_{\substack{|k| \leqslant j \ k'| \leqslant j \ x \in \mathbb{R}^n_+ \\ |p| \leqslant l \ |p'| \leqslant l \ y \in \mathbb{R}^n_+ \\ \end{cases}} \sup_{\substack{|k| \leqslant j \ k'| \leqslant j \ x \in \mathbb{R}^n_+ \\ |p| \leqslant l \ |p'| \leqslant l \ y \in \mathbb{R}^n_+ \\ \leqslant C^2 \|\chi(x,y)\|_{(k',k),(p',p)}, \quad \text{for all } \chi \in \mathcal{S}(\mathbb{R}^n_+) \otimes \mathcal{S}(\mathbb{R}^n_+). \end{split}$$

It follows that the ϵ topology on $\mathcal{S}(\mathbb{R}^m_+) \otimes \mathcal{S}(\mathbb{R}^n_+)$ is weaker than the induced one from $\mathcal{S}(\mathbb{R}^{m+n}_+)$.

As a consequence of this theorem we have the following important

THEOREM 4.2. The restriction mapping $f \mapsto f|_{\mathbb{R}^d_+}$, $\mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d_+)$ is a topological homomorphism onto.

The space $S(\mathbb{R}^d_+)$ is topologically isomorphic to the quotient space $S(\mathbb{R}^d)/N$, where $N = \{f \in S(\mathbb{R}^d) \mid \text{supp } f \subseteq \mathbb{R}^d \setminus \mathbb{R}^d_+\}$. Consequently, $S'(\mathbb{R}^d_+)$ can be identified with the closed subspace of $S'(\mathbb{R}^d)$ which consists of all tempered distributions with support in \mathbb{R}^d_+ .

PROOF. Obviously, the restriction mapping $f \mapsto f|_{\mathbb{R}^d_+}$, $\mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d_+)$ is continuous. We prove its surjectivity by induction on d. For clarity, denote the d-dimensional restriction by R_d . For d = 1, the surjectivity of R_1 is proved in [1, p. 168]. Assume that R_d is surjective. By the open mapping theorem, R_d and R_1 are topological homomorphisms onto since all the underlying spaces are (F)-spaces. By the above theorem, $R_d \hat{\otimes}_{\pi} R_1$ is continuous mapping from $\mathcal{S}(\mathbb{R}^{d+1})$ to $\mathcal{S}(\mathbb{R}^{d+1})$ ($\mathcal{S}(\mathbb{R}^d) \hat{\otimes} \mathcal{S}(\mathbb{R}) \cong \mathcal{S}(\mathbb{R}^{d+1})$ by the Schwartz kernel theorem). Clearly $R_d \hat{\otimes}_{\pi} R_1 = R_{d+1}$. As $\mathcal{S}(\mathbb{R}^{d+1})$ and $\mathcal{S}(\mathbb{R}^{d+1}_+)$ are (F)-spaces, [6, Theorem 7, p. 189] implies that R_{d+1} is also surjective.

The surjectivity of the restriction mapping together with the open mapping theorem implies that it is homomorphism. Clearly N is a closed subspace of $\mathcal{S}(\mathbb{R}^d)$ and ker $R_d = N$. Thus R_d induces natural topological isomorphism between $\mathcal{S}(\mathbb{R}^d)/N$ and $\mathcal{S}(\mathbb{R}^d_+)$. Hence $(\mathcal{S}(\mathbb{R}^d)/N)'_b$ is topologically isomorphic to $\mathcal{S}'(\mathbb{R}^d_+)$ (the index b stands for the strong dual topology). Since $\mathcal{S}(\mathbb{R}^d)$ is an (FS)-space, [5, Theorem A.6.5, p. 255] implies that $(\mathcal{S}(\mathbb{R}^d)/N)'_b$ is topologically isomorphic to the closed subspace $N^{\perp} = \{T \in \mathcal{S}'(\mathbb{R}^d) \mid \langle T, f \rangle = 0$, for all $f \in N\}$ of $\mathcal{S}'(\mathbb{R}^d)$ which is exactly the subspace of all tempered distributions with support in \mathbb{R}^d_+ .

Given $f, g \in \mathcal{S}'(\mathbb{R}^d_+)$, Theorem 4.2 implies that we can consider them as elements of $\mathcal{S}'(\mathbb{R}^d)$ with support in $\overline{\mathbb{R}^d_+}$. Now, one easily verifies that for each $\varphi \in \mathcal{S}(\mathbb{R}^d)$, we have $(f(x) \otimes g(y))\varphi(x+y) \in \mathcal{D}'_{L^1}(\mathbb{R}^{2d})$, hence the \mathcal{S}' -convolution of f and g exists (see [9, p. 26]). Also, if $\sup \varphi \cap \overline{\mathbb{R}^d_+} = \emptyset$, then $(f(x) \otimes g(y))\varphi(x+y) = 0$, hence $\sup f * g \subseteq \overline{\mathbb{R}^d_+}$, i.e., $f * g \in \mathcal{S}'(\mathbb{R}^d_+)$. Thus

$$\langle f * g, \varphi \rangle = \langle f(x) \otimes g(y), \varphi(x+y) \rangle, \quad \varphi \in \mathcal{S}(\mathbb{R}^d_+)$$

(observe that the function $\varphi^{\Delta}(x,y) = \varphi(x+y)$ is an element of $\mathcal{S}(\mathbb{R}^{2d}_+)$).

REMARK 4.1. [1, Remark 3.7 for d = 1] Let us show that $\mathcal{S}'(\mathbb{R}^d_+)$ is a convolution algebra. Given $f, g \in \mathcal{S}'(\mathbb{R}^d_+)$, we compute the *n*-th Laguerre coefficient of f * g. If $a_n = \langle f, \mathcal{L}_n \rangle$ and $b_n = \langle g, \mathcal{L}_n \rangle$, then

$$\langle f * g, \mathcal{L}_n(t) \rangle = \langle f(x) \otimes g(y), \mathcal{L}_n(x+y) \rangle.$$

Now, $L_n^1(x+y) = \sum_{k=0}^n L_{n-k}(x)L_k(y)$ and $L_n(t) = L_n^1(t) - L_{n-1}^1(t)$ (see [2, p. 192]) where $L_n^1(x) = \sum_{k=0}^n {n+1 \choose n-k}((-x)^k/k!)$. In order to simplify the proof, we consider the case d = 2. Then

$$\begin{split} \langle f * g, \mathcal{L}_{n}(t) \rangle &= \left\langle f(x) \otimes g(y), \prod_{i=1}^{2} (\mathcal{L}_{n_{i}}^{1}(x_{i}+y_{i}) - \mathcal{L}_{n_{i}-1}^{1}(x_{i}+y_{i})) \right\rangle \\ &= \left\langle f(x) \otimes g(y), \prod_{i=1}^{2} \left(\sum_{k_{i}=0}^{n_{i}} \mathcal{L}_{n_{i}-k_{i}}(x_{i}) \mathcal{L}_{k_{i}}(y_{i}) - \sum_{k_{i}=0}^{n_{i}-1} \mathcal{L}_{n_{i}-k_{i}-1}(x_{i}) \mathcal{L}_{k_{i}}(y_{i}) \right) \right\rangle \\ &= \left\langle f(x)g(y), \sum_{k \leqslant (n_{1},n_{2})} \mathcal{L}_{(n_{1},n_{2})-k}(x) \mathcal{L}_{k}(y) - \sum_{k \leqslant (n_{1}-1,n_{2})} \mathcal{L}_{(n_{1}-1,n_{2})-k}(x) \mathcal{L}_{k}(y) \right. \\ &- \sum_{k \leqslant (n_{1},n_{2}-1)} \mathcal{L}_{(n_{1},n_{2}-1)-k}(x) \mathcal{L}_{k}(y) + \sum_{k \leqslant (n_{1}-1,n_{2}-1)} \mathcal{L}_{(n_{1}-1,n_{2}-1)-k}(x) \mathcal{L}_{k}(y) \right\rangle \\ &= \sum_{k \leqslant (n_{1},n_{2})} a_{(n_{1},n_{2}-1)-k} b_{k} - \sum_{k \leqslant (n_{1}-1,n_{2})} a_{(n_{1}-1,n_{2}-1)-k} b_{k} \\ &- \sum_{k \leqslant (n_{1},n_{2}-1)} a_{(n_{1},n_{2}-1)-k} b_{k} + \sum_{k \leqslant (n_{1}-1,n_{2}-1)} a_{(n_{1}-1,n_{2}-1)-k} b_{k}, \end{split}$$

64

where a_n or b_n equals zero if some component of the subindex n is less than zero. It is easy to verify that if $(a_n)_{n \in \mathbb{N}^2} \in s'$ and $(b_n)_{n \in \mathbb{N}^2} \in s'$, then $\langle f * g, \mathcal{L}_n(t) \rangle \in s'$.

References

- A. J. Duran, Laguerre expansions of Tempered Distributions and Generalized Functions, J. Math. Anal. Appl. 150 (1990), 166–180.
- 2. A. Erdelyi, Higher Transcedentals Function, Vol. 2, McGraw-Hill, New York, 1953.
- 3. L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Springer-Verlag, 1990.
- M. Guillemot-Teissier, Développements des distributions en séries de fonctions orthogonales. Séries de Legendre et de Laguerre, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 25(3) (1971), 519–573.
- 5. M. Morimoto, An Introduction to Sato's Hyperfunctions, 129, American Mathematical Soc., 1993.
- 6. G. Köthe, Topological vector spaces II, Vol. II, Springer-Verlag, New York, 1979.
- S. Pilipović, On the Laguerre expansions of generalized functions, C. R. Math. Rep. Acad. Sci. Canada 11 (1) (1989), 23–27.
- R. T. Seeley, Extension of C8 functions defined in a half space, Proc. Am. Math. Soc. 15 (1964), 625–626.
- R. Shiraishi, On the definition of convolutions for distributions, J. Sci. Hiroshima Univ. Ser. A 23 (1959), 19–32.
- 10. G. Szego, Orthogonal Polynomials, Am. Math. Soc. Collequium, 1959.
- H. Whitney, Analytic extensions of functions defined in closed sets, Trans. Am. Math. Soc. 36 (1934), 63–89.
- 12. A. I. Zayed, Laguerre series as boundary values, SIAM J. Math. Anal. 13 (2) (1982), 263–279.
- 13. A. H. Zemanian, Generalized Integral Transformations, Interscience, New York, 1968.

Faculty of Forestry Belgrade University Belgrade, Serbia smiljana.jaksic@sfb.bg.ac.rs (Received 26 08 2015)

Faculty of Mechanical Engineering University Ss. Cyril and Methodius Skopje, Macedonia bprangoski@yahoo.com