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EXTENSION THEOREM OF WHITNEY TYPE FOR

S(Rd
+) BY USE OF THE KERNEL THEOREM

Smiljana Jakšić and Bojan Prangoski

Abstract. We study the expansions of the elements in S(Rd

+
) and S′(Rd

+
)

with respect to the Laguerre orthonormal basis, extending the result of M.
Guillemot-Teissier in the one dimensional case. As a consequence, we obtain
Kernel theorem for S(Rd

+
) and S′(Rd

+
) and an extension theorem of Whitney

type for S(Rd

+
).

1. Introduction

We denote by R
d
+ the set (0,∞)d and by Rd

+ its closure, i.e., [0,∞)d. We will

consider the space S(Rd
+) which consists of all f ∈ C∞(Rd

+) such that all derivatives

Dpf , p ∈ N
d
0, extend to continuous functions on Rd

+ and

sup
x∈Rd

+

xk|Dpf(x)| < ∞, for all k, p ∈ N
d
0.

With this system of seminorms, S(Rd
+) becomes an (F )-space.

The results concerning the extension of a smooth function or a function of
class Ck out of some region and various reformulation of such problems are called
extension theorems of Whitney type. One can see Whitney [11], Seeley [8] and
Hörmander [3, Theorem 2.3.6, p. 48]. Here we deal with a problem of extension of
a function from S(Rd

+) onto S(Rd). Theorem 4.2 is the main result of the paper.

For the purpose of this theorem we prove the Schwartz kernel theorem for S(Rd
+)

and S′(Rd
+), Theorem 4.1.

Recall, for n = 0, 1, 2 . . . the functions

Ln(x) =
ex

n!

( d

dx

)n

(e−xxn), x > 0

2010 Mathematics Subject Classification: Primary 46F05.
Key words and phrases: tempered distributions on Rd

+
; kernel theorem for tempered distri-

butions on R
d

+
; smooth extensions of smooth rapidly decreasing functions.

Partially supported by the Ministry of Science, Republic of Serbia, project 174024.
Communicated by Stevan Pilipović.

59



60 JAKŠIĆ AND PRANGOSKI

are the Laguerre polynomials and Ln(x) = Ln(x)e− x

2 are Laguerre functions;
{Ln(x), n = 0, 1, . . . } is an orthonormal basis for L2(0,∞) [10, p. 108].

The problem of expanding the elements of S′(R+) with respect to the Laguerre
orthonormal basis has been treated by Guillemont-Teissier in [4] and Duran in [1]: If
T ∈ S′(R+) and an = 〈T,Ln(x)〉, then T =

∑∞
n=0 anLn(x) and {an}∞

n=0 decreases
slowly. Conversely, if {an}∞

n=0 decreases slowly, then there exists T ∈ S′(R+) such
that T =

∑∞
n=0 anLn(x).

The papers [7, 12, 13] contain expansions of the same kind as in [4, 1]. The
novelty of this paper is an extension of the results of [4] for the d-dimensional
case. This leads to the Schwartz kernel theorem (Theorem 4.1) which states that
there is one-to-one correspondence between elements from S′(Rm+n

+ ) in two sets of
variables x and y, and the continuous linear mappings of (S(Rm

+ ))y into (S′(Rm
+ ))x.

As a consequence of Theorem 4.2, we explain the convolution in S′(Rd
+) in the last

remark.
The structure of the paper is as follows. We recall in Section 3 some properties

of Laguerre series and prove the convergence of the Laguerre series in S(Rd
+) and

S′(Rd
+). In Section 4, we state Schwartz’s kernel theorem for S(Rd

+) and prove an

extension theorem of Whitney type for S(Rd
+).

2. Notation

We use the standard multi-index notation. Given α = (α1, . . . , αd) ∈ N
d
0, we

write |α| =
∑d

i=1 αi, x
α = (x1, . . . , xd)(α1,...,αd) =

∏d

i=1 x
αi

i , Dα =
∏d

i=1
∂αi

∂xi
αi

for

the partial derivative and Xαf(x) = xαf(x) for the multiplication operator. For
x ∈ R

d, |x| stands for the standard Euclidean norm in R
d.

Let s be the space of rapidly decreasing sequences, i.e.,

{an}n∈Nd

0
∈ s ⇔

∑

n∈Nd

0

|an|2n2k < ∞, for all k ∈ N.

Then s′ stands for the strong dual of s, the space of slowly increasing sequences:

{an}n∈Nd

0
∈ s′ ⇔

∑

n∈Nd

0

|an|2n−2k < ∞, for a k ∈ N.

3. Laguerre series

The d-dimensional Laguerre functions

Ln(x) = Ln1
(x1) · · · Lnd

(xd) =

d
∏

i=1

Lni
(xi)

form an orthonormal basis for L2(Rd
+) and are the eigenfunctions of the Laguerre

operator E =
(

D1(x1D1) − x1

4

)

· · ·
(

Dd(xdDd) − xd

4

)

, E : S(Rd
+) → S(Rd

+)

Ln(x) → E(Ln(x)) =

d
∏

i=1

−
(

ni +
1

2

)

Ln(x).
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Note that E is a self-adjoint operator, i.e.,

〈Ef, g〉 = 〈f,Eg〉, f, g ∈ dom(E) = {f ∈ L2(Rd
+); Ef ∈ L2(Rd

+)}.

For f ∈ S(Rd
+) we define the n-th Laguerre coefficient by an =

∫

Rd

+

f(x)Ln(x)dx.

The Laguerre series of the function f ∈ S(Rd
+) is

∑

n∈Nd

0

anLn(x).

In [4, p.547], the following bound on the one-dimensional Laguerre functions
is obtained:

∣

∣

∣
xk

( d

dx

)p

Ln(x)
∣

∣

∣
6 Cp,k(n+ 1)p+k, x > 0, n, p, k > 0.

Finding the bound on the d-dimensional Laguerre functions involves not compli-
cated calculation. Hence

(3.1) |xkDpLn(x)| 6 Cp,k

d
∏

i=1

(ni + 1)pi+ki , x ∈ R
d
+, n, p, k ∈ N

d
0.

3.1. Convergence of the Laguerre series in S(Rd
+).

Theorem 3.1. For f ∈ S(Rd
+), let an(f) =

∫

Rd

+

f(x)Ln(x) dx. Then f =
∑

n∈Nd

0

an(f)Ln and the series converges absolutely in S(Rd
+). Moreover the map-

ping ι : S(Rd
+) → s, ι(f) = {an(f)}n∈Nd

0
, is a topological isomorphism.

Proof. For f ∈ S(Rd
+) we have

an(Ef) = 〈Ef,Ln〉 = 〈f,E(Ln)〉 = an(f)(−1)d

d
∏

i=1

(

ni +
1

2

)

.

Moreover,

an(Epf) = an(f)

d
∏

i=1

(−1)pi

(

ni +
1

2

)pi

for any p ∈ N
d. As Epf ∈ S(Rd

+) ⊂ L2(Rd
+), we have

∑

n∈Nd

0

|an(f)|2
d

∏

i=1

(

ni +
1

2

)2pi

< ∞, for every p ∈ N
d
0,

i.e., {an(f)}n∈Nd

0
∈ s. Clearly f =

∑

n∈Nd

0

an(f)Ln as elements of L2(Rd
+). By

(3.1), we obtain

(3.2)
∑

n∈Nd

0

|xkDp(an(f)Ln(x))| 6 Cp,k

∑

n∈Nd

0

|an(f)|
d

∏

i=1

(ni + 1)pi+ki < ∞

which yields the absolute convergence of the series in S(Rd
+).

To prove that ι is a topological isomorphism, first observe that by the above
consideration it is well defined and it is clearly an injection. Let {an}n∈Nd

0
∈ s.

Define f =
∑

n∈Nd

0

anLn ∈ L2(Rd
+). Now (3.2) proves that this series converges in

S(Rd
+), hence f ∈ S(Rd

+). Thus ι is bijective. Observe that, (3.2) proves that ι−1 is
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continuous. Since S(Rd
+) and s are (F )-spaces, the open mapping theorem proves

that ι is topological isomorphism. �

3.2. Convergence of the Laguerre series in S′(Rd
+).

Theorem 3.2. For T ∈ S′(Rd
+), let bn(T ) = 〈T,Ln〉. Then {bn(T )}n∈Nd

0
∈ s′

and T =
∑

n∈Nd

0

bn(T )Ln. The series converges absolutely in S′(Rd
+). Conversely,

if {bn}n∈Nd

0
∈ s′, then there exists a T ∈ S′(Rd

+) such that T =
∑

n∈Nd

0

bnLn. As a

consequence, S′(Rd
+) is topologically isomorphic to s′.

Proof. Assume that {bn}n∈Nd

0
∈ s′. Then there exists a k ∈ N such that

∑

n∈Nd

0

|bn|2(|n| + 1)−2k < ∞. For a bounded subset B of S(Rd
+), Theorem 3.1

implies that there exists C > 0 such that
∑

n∈Nd

0

|an(f)|2(|n| + 1)2k 6 C, for all

f ∈ B, where we denote {an(f)}n∈Nd

0
= ι(f). Observe that for an arbitrary q ∈ N

we have
∑

|n|6q

sup
f∈B

|〈bnLn, f〉| 6 sup
f∈B

∑

n∈Nd

0

∑

m∈Nd

0

|〈bnLn, am(f)Lm〉|

= sup
f∈B

∑

n∈Nd

0

|bn||an(f)| 6 C′,

i.e.,
∑

n∈Nd

0

sup
f∈B

|〈bnLn, f〉| < ∞,

hence
∑

n∈Nd

0

bnLn converges absolutely in S′(Rd
+).

Let T ∈ S′(Rd
+). Theorem 3.1 implies that tι : s′ → S′(Rd

+) is an isomorphism

(tι denotes the transpose of ι). Now, one easily verifies that (tι)−1T = {bn}n∈Nd

0
,

where bn(T ) = 〈T,Ln〉. Observe that for f ∈ S(Rd
+)

〈T, f〉 =
∑

n∈Nd

0

an(f)〈T,Ln〉 =
∑

n∈Nd

0

an(f)bn(T ) =

〈

∑

n∈Nd

0

bn(T )Ln, f

〉

,

i.e., T =
∑

n∈Nd

0

bn(T )Ln. �

4. Kernel theorem

The completions of the tensor product are denoted by ⊗̂ǫ and ⊗̂π with respect
to ǫ and π topologies. If they are equal, we drop the subindex.

Proposition 4.1. The spaces S(Rd
+) and S′(Rd

+) are nuclear.

Proof. Since s is nuclear, Theorem 3.1 implies that S(Rd
+) is also nuclear.

Now S′(Rd
+) is nuclear as the strong dual of a nuclear (F )-space. �

Theorem 4.1. The following canonical isomorphisms hold:

S(Rm
+ )⊗̂S(Rn

+) ∼= S(Rm+n
+ ), S′(Rm

+ )⊗̂S′(Rn
+) ∼= S′(Rm+n

+ ).
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Proof. The second isomorphism follows from the first one since S(Rd
+) is a

nuclear (F )-space. Thus, it is enough to prove the first isomorphism.
Step 1: From Theorem 3.1 it follows that S(Rm

+ )⊗S(Rn
+) is dense in S(Rm+n

+ ).
It suffices to show that the latter induces on the former the topology π = ǫ (the
π and the ǫ topologies are the same because S(Rd

+) is nuclear). Since the bilinear

mapping (f, g) 7→ f ⊗ g of S(Rm
+ ) × S(Rn

+) into S(Rm+n
+ ) is separately continuous,

it follows that it is continuous (S(Rm
+ ) and S(Rn

+) are (F )-spaces). The continuity

of this bilinear mapping proves that the inclusion S(Rm
+ ) ⊗π S(Rn

+) → S(Rm+n
+ ) is

continuous, hence the topology π is stronger than the induced one from S(Rm+n
+ )

onto S(Rm
+ ) ⊗ S(Rn

+).
Step 2: Let A′ and B′ be equicontinuous subsets of S′(Rm

+ ) and S′(Rn
+), re-

spectively. There exist C > 0 and j, l ∈ N such that

sup
T ∈A′

|〈T, ϕ〉| 6 C‖ϕ‖j,l and sup
F ∈B′

|〈F, ψ〉| 6 C‖ψ‖j,l,

where

‖f‖j,l = sup
|k|6j

|p|6l

sup
x∈Rd

+

|xkDpf(x)| < ∞.

For all T ∈ A′ and F ∈ B′ we have

|〈Tx ⊗ Fy , χ(x, y)〉| = |〈Fy , 〈Tx, χ(x, y)〉〉| 6 C sup
|k|6j

|p|6l

sup
y∈Rn

+

|yk〈Tx, D
p
yχ(x, y)〉|

6 C2 sup
|k|6j

|p|6l

sup
|k′|6j

|p′|6l

sup
x∈R

m

+

y∈R
n

+

|xk′

ykDp′

x D
p
yχ(x, y)|

6 C2‖χ(x, y)‖(k′,k),(p′,p), for all χ ∈ S(Rm
+ ) ⊗ S(Rn

+).

It follows that the ǫ topology on S(Rm
+ ) ⊗ S(Rn

+) is weaker than the induced one

from S(Rm+n
+ ). �

As a consequence of this theorem we have the following important

Theorem 4.2. The restriction mapping f 7→ f |Rd

+
, S(Rd) → S(Rd

+) is a topo-

logical homomorphism onto.

The space S(Rd
+) is topologically isomorphic to the quotient space S(Rd)/N ,

where N = {f ∈ S(Rd) | supp f ⊆ R
d
rR

d
+}. Consequently, S′(Rd

+) can be identi-

fied with the closed subspace of S′(Rd) which consists of all tempered distributions

with support in Rd
+.

Proof. Obviously, the restriction mapping f 7→ f |Rd

+
, S(Rd) → S(Rd

+) is

continuous. We prove its surjectivity by induction on d. For clarity, denote the
d-dimensional restriction by Rd. For d = 1, the surjectivity of R1 is proved in
[1, p. 168]. Assume that Rd is surjective. By the open mapping theorem, Rd

and R1 are topological homomorphisms onto since all the underlying spaces are
(F )-spaces. By the above theorem, Rd⊗̂πR1 is continuous mapping from S(Rd+1)

to S(Rd+1
+ ) (S(Rd)⊗̂S(R) ∼= S(Rd+1) by the Schwartz kernel theorem). Clearly
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Rd⊗̂πR1 = Rd+1. As S(Rd+1) and S(Rd+1
+ ) are (F )-spaces, [6, Theorem 7, p. 189]

implies that Rd+1 is also surjective.
The surjectivity of the restriction mapping together with the open mapping the-

orem implies that it is homomorphism. Clearly N is a closed subspace of S(Rd) and
kerRd = N . Thus Rd induces natural topological isomorphism between S(Rd)/N

and S(Rd
+). Hence

(

S(Rd)/N
)′

b
is topologically isomorphic to S′(Rd

+) (the index b

stands for the strong dual topology). Since S(Rd) is an (FS)-space, [5, Theorem

A.6.5, p. 255] implies that
(

S(Rd)/N
)′

b
is topologically isomorphic to the closed

subspace N⊥ = {T ∈ S′(Rd) | 〈T, f〉 = 0, for all f ∈ N} of S′(Rd) which is exactly

the subspace of all tempered distributions with support in Rd
+. �

Given f, g ∈ S′(Rd
+), Theorem 4.2 implies that we can consider them as el-

ements of S′(Rd) with support in Rd
+. Now, one easily verifies that for each

ϕ ∈ S(Rd), we have (f(x)⊗g(y))ϕ(x+y) ∈ D′
L1(R2d), hence the S′-convolution of f

and g exists (see [9, p. 26]). Also, if suppϕ∩Rd
+ = ∅, then (f(x)⊗g(y))ϕ(x+y) = 0,

hence supp f ∗ g ⊆ Rd
+, i.e., f ∗ g ∈ S′(Rd

+). Thus

〈f ∗ g, ϕ〉 = 〈f(x) ⊗ g(y), ϕ(x+ y)〉, ϕ ∈ S(Rd
+)

(observe that the function ϕ∆(x, y) = ϕ(x + y) is an element of S(R2d
+ )).

Remark 4.1. [1, Remark 3.7 for d = 1] Let us show that S′(Rd
+) is a convo-

lution algebra. Given f, g ∈ S′(Rd
+), we compute the n-th Laguerre coefficient of

f ∗ g. If an = 〈f,Ln〉 and bn = 〈g,Ln〉, then

〈f ∗ g,Ln(t)〉 = 〈f(x) ⊗ g(y),Ln(x+ y)〉.

Now, L1
n(x+y) =

∑n
k=0 Ln−k(x)Lk(y) and Ln(t) = L1

n(t)−L1
n−1(t) (see [2, p. 192])

where L1
n(x) =

∑n
k=0

(

n+1
n−k

)

((−x)k/k!). In order to simplify the proof, we consider
the case d = 2. Then

〈f ∗ g,Ln(t)〉 =

〈

f(x) ⊗ g(y),

2
∏

i=1

(L1
ni

(xi + yi) − L1
ni−1(xi + yi))

〉

=

〈

f(x) ⊗ g(y),

2
∏

i=1

( ni
∑

ki=0

Lni−ki
(xi)Lki

(yi) −
ni−1
∑

ki=0

Lni−ki−1(xi)Lki
(yi)

)〉

=

〈

f(x)g(y),
∑

k6(n1,n2)

L(n1,n2)−k(x)Lk(y) −
∑

k6(n1−1,n2)

L(n1−1,n2)−k(x)Lk(y)

−
∑

k6(n1,n2−1)

L(n1,n2−1)−k(x)Lk(y) +
∑

k6(n1−1,n2−1)

L(n1−1,n2−1)−k(x)Lk(y)

〉

=
∑

k6(n1,n2)

a(n1,n2)−kbk −
∑

k6(n1−1,n2)

a(n1−1,n2)−kbk

−
∑

k6(n1,n2−1)

a(n1,n2−1)−kbk +
∑

k6(n1−1,n2−1)

a(n1−1,n2−1)−kbk,
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where an or bn equals zero if some component of the subindex n is less than zero.
It is easy to verify that if (an)n∈N2 ∈ s′ and (bn)n∈N2 ∈ s′, then 〈f ∗ g,Ln(t)〉 ∈ s′.
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