EXTENSION THEOREM OF WHITNEY TYPE FOR $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ BY USE OF THE KERNEL THEOREM

Smiljana Jakšić and Bojan Prangoski

Abstract

We study the expansions of the elements in $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ and $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ with respect to the Laguerre orthonormal basis, extending the result of M. Guillemot-Teissier in the one dimensional case. As a consequence, we obtain Kernel theorem for $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ and $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ and an extension theorem of Whitney type for $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$.

1. Introduction

We denote by \mathbb{R}_{+}^{d} the set $(0, \infty)^{d}$ and by $\overline{\mathbb{R}_{+}^{d}}$ its closure, i.e., $[0, \infty)^{d}$. We will consider the space $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ which consists of all $f \in \mathcal{C}^{\infty}\left(\mathbb{R}_{+}^{d}\right)$ such that all derivatives $D^{p} f, p \in \mathbb{N}_{0}^{d}$, extend to continuous functions on $\overline{\mathbb{R}_{+}^{d}}$ and

$$
\sup _{x \in \mathbb{R}_{+}^{d}} x^{k}\left|D^{p} f(x)\right|<\infty, \text { for all } k, p \in \mathbb{N}_{0}^{d}
$$

With this system of seminorms, $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ becomes an (F)-space.
The results concerning the extension of a smooth function or a function of class \mathcal{C}^{k} out of some region and various reformulation of such problems are called extension theorems of Whitney type. One can see Whitney [11, Seeley 8 and Hörmander [3, Theorem 2.3.6, p.48]. Here we deal with a problem of extension of a function from $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ onto $\mathcal{S}\left(\mathbb{R}^{d}\right)$. Theorem 4.2 is the main result of the paper. For the purpose of this theorem we prove the Schwartz kernel theorem for $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ and $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$, Theorem 4.1

Recall, for $n=0,1,2 \ldots$ the functions

$$
L_{n}(x)=\frac{e^{x}}{n!}\left(\frac{d}{d x}\right)^{n}\left(e^{-x} x^{n}\right), \quad x>0
$$

[^0]are the Laguerre polynomials and $\mathcal{L}_{n}(x)=L_{n}(x) e^{-\frac{x}{2}}$ are Laguerre functions; $\left\{\mathcal{L}_{n}(x), n=0,1, \ldots\right\}$ is an orthonormal basis for $L^{2}(0, \infty)$ [10, p. 108].

The problem of expanding the elements of $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}\right)$with respect to the Laguerre orthonormal basis has been treated by Guillemont-Teissier in [4 and Duran in [1]: If $T \in \mathcal{S}^{\prime}\left(\mathbb{R}_{+}\right)$and $a_{n}=\left\langle T, \mathcal{L}_{n}(x)\right\rangle$, then $T=\sum_{n=0}^{\infty} a_{n} \mathcal{L}_{n}(x)$ and $\left\{a_{n}\right\}_{n=0}^{\infty}$ decreases slowly. Conversely, if $\left\{a_{n}\right\}_{n=0}^{\infty}$ decreases slowly, then there exists $T \in \mathcal{S}^{\prime}\left(\mathbb{R}_{+}\right)$such that $T=\sum_{n=0}^{\infty} a_{n} \mathcal{L}_{n}(x)$.

The papers [7, 12, 13] contain expansions of the same kind as in [4, 1]. The novelty of this paper is an extension of the results of 4] for the d-dimensional case. This leads to the Schwartz kernel theorem (Theorem 4.1) which states that there is one-to-one correspondence between elements from $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{m+n}\right)$ in two sets of variables x and y, and the continuous linear mappings of $\left(\mathcal{S}\left(\mathbb{R}_{+}^{m}\right)\right)_{y}$ into $\left(\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{m}\right)\right)_{x}$. As a consequence of Theorem 4.2, we explain the convolution in $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ in the last remark.

The structure of the paper is as follows. We recall in Section 3 some properties of Laguerre series and prove the convergence of the Laguerre series in $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ and $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$. In Section 4, we state Schwartz's kernel theorem for $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ and prove an extension theorem of Whitney type for $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$.

2. Notation

We use the standard multi-index notation. Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$, we write $|\alpha|=\sum_{i=1}^{d} \alpha_{i}, x^{\alpha}=\left(x_{1}, \ldots, x_{d}\right)^{\left(\alpha_{1}, \ldots, \alpha_{d}\right)}=\prod_{i=1}^{d} x_{i}^{\alpha_{i}}, D^{\alpha}=\prod_{i=1}^{d} \frac{\partial^{\alpha_{i}}}{\partial x_{i}{ }_{i}}$ for the partial derivative and $X^{\alpha} f(x)=x^{\alpha} f(x)$ for the multiplication operator. For $x \in \mathbb{R}^{d},|x|$ stands for the standard Euclidean norm in \mathbb{R}^{d}.

Let s be the space of rapidly decreasing sequences, i.e.,

$$
\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}^{d}} \in s \Leftrightarrow \sum_{n \in \mathbb{N}_{0}^{d}}\left|a_{n}\right|^{2} n^{2 k}<\infty, \quad \text { for all } k \in \mathbb{N} .
$$

Then s^{\prime} stands for the strong dual of s, the space of slowly increasing sequences:

$$
\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}^{d}} \in s^{\prime} \Leftrightarrow \sum_{n \in \mathbb{N}_{0}^{d}}\left|a_{n}\right|^{2} n^{-2 k}<\infty, \quad \text { for a } k \in \mathbb{N} .
$$

3. Laguerre series

The d-dimensional Laguerre functions

$$
\mathcal{L}_{n}(x)=\mathcal{L}_{n_{1}}\left(x_{1}\right) \cdots \mathcal{L}_{n_{d}}\left(x_{d}\right)=\prod_{i=1}^{d} \mathcal{L}_{n_{i}}\left(x_{i}\right)
$$

form an orthonormal basis for $L^{2}\left(\mathbb{R}_{+}^{d}\right)$ and are the eigenfunctions of the Laguerre operator $E=\left(D_{1}\left(x_{1} D_{1}\right)-\frac{x_{1}}{4}\right) \cdots\left(D_{d}\left(x_{d} D_{d}\right)-\frac{x_{d}}{4}\right), E: \mathcal{S}\left(\mathbb{R}_{+}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$

$$
\mathcal{L}_{n}(x) \rightarrow E\left(\mathcal{L}_{n}(x)\right)=\prod_{i=1}^{d}-\left(n_{i}+\frac{1}{2}\right) \mathcal{L}_{n}(x)
$$

Note that E is a self-adjoint operator, i.e.,

$$
\langle E f, g\rangle=\langle f, E g\rangle, \quad f, g \in \operatorname{dom}(E)=\left\{f \in L^{2}\left(\mathbb{R}_{+}^{d}\right) ; E f \in L^{2}\left(\mathbb{R}_{+}^{d}\right)\right\}
$$

For $f \in \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ we define the n-th Laguerre coefficient by $a_{n}=\int_{\mathbb{R}_{+}^{d}} f(x) \mathcal{L}_{n}(x) d x$. The Laguerre series of the function $f \in \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ is $\sum_{n \in \mathbb{N}_{0}^{d}} a_{n} \mathcal{L}_{n}(x)$.

In [4, p.547], the following bound on the one-dimensional Laguerre functions is obtained:

$$
\left|x^{k}\left(\frac{d}{d x}\right)^{p} \mathcal{L}_{n}(x)\right| \leqslant C_{p, k}(n+1)^{p+k}, x \geqslant 0, n, p, k \geqslant 0
$$

Finding the bound on the d-dimensional Laguerre functions involves not complicated calculation. Hence

$$
\begin{equation*}
\left|x^{k} D^{p} \mathcal{L}_{n}(x)\right| \leqslant C_{p, k} \prod_{i=1}^{d}\left(n_{i}+1\right)^{p_{i}+k_{i}}, x \in \mathbb{R}_{+}^{d}, n, p, k \in \mathbb{N}_{0}^{d} \tag{3.1}
\end{equation*}
$$

3.1. Convergence of the Laguerre series in $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$.

Theorem 3.1. For $f \in \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$, let $a_{n}(f)=\int_{\mathbb{R}_{+}^{d}} f(x) \mathcal{L}_{n}(x) d x$. Then $f=$ $\sum_{n \in \mathbb{N}_{0}^{d}} a_{n}(f) \mathcal{L}_{n}$ and the series converges absolutely in $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$. Moreover the mapping $\iota: \mathcal{S}\left(\mathbb{R}_{+}^{d}\right) \rightarrow s, \iota(f)=\left\{a_{n}(f)\right\}_{n \in \mathbb{N}_{0}^{d}}$, is a topological isomorphism.

Proof. For $f \in \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ we have

$$
a_{n}(E f)=\left\langle E f, \mathcal{L}_{n}\right\rangle=\left\langle f, E\left(\mathcal{L}_{n}\right)\right\rangle=a_{n}(f)(-1)^{d} \prod_{i=1}^{d}\left(n_{i}+\frac{1}{2}\right)
$$

Moreover,

$$
a_{n}\left(E^{p} f\right)=a_{n}(f) \prod_{i=1}^{d}(-1)^{p_{i}}\left(n_{i}+\frac{1}{2}\right)^{p_{i}}
$$

for any $p \in \mathbb{N}^{d}$. As $E^{p} f \in \mathcal{S}\left(\mathbb{R}_{+}^{d}\right) \subset L^{2}\left(\mathbb{R}_{+}^{d}\right)$, we have

$$
\sum_{n \in \mathbb{N}_{0}^{d}}\left|a_{n}(f)\right|^{2} \prod_{i=1}^{d}\left(n_{i}+\frac{1}{2}\right)^{2 p_{i}}<\infty, \text { for every } p \in \mathbb{N}_{0}^{d}
$$

i.e., $\left\{a_{n}(f)\right\}_{n \in \mathbb{N}_{0}^{d}} \in s$. Clearly $f=\sum_{n \in \mathbb{N}_{0}^{d}} a_{n}(f) \mathcal{L}_{n}$ as elements of $L^{2}\left(\mathbb{R}_{+}^{d}\right)$. By (3.1), we obtain

$$
\begin{equation*}
\sum_{n \in \mathbb{N}_{0}^{d}}\left|x^{k} D^{p}\left(a_{n}(f) \mathcal{L}_{n}(x)\right)\right| \leqslant C_{p, k} \sum_{n \in \mathbb{N}_{0}^{d}}\left|a_{n}(f)\right| \prod_{i=1}^{d}\left(n_{i}+1\right)^{p_{i}+k_{i}}<\infty \tag{3.2}
\end{equation*}
$$

which yields the absolute convergence of the series in $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$.
To prove that ι is a topological isomorphism, first observe that by the above consideration it is well defined and it is clearly an injection. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}^{d}} \in s$. Define $f=\sum_{n \in \mathbb{N}_{o}^{d}} a_{n} \mathcal{L}_{n} \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$. Now (3.2) proves that this series converges in $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$, hence $f \in \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$. Thus ι is bijective. Observe that, (3.2) proves that ι^{-1} is
continuous. Since $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ and s are (F)-spaces, the open mapping theorem proves that ι is topological isomorphism.

3.2. Convergence of the Laguerre series in $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$.

Theorem 3.2. For $T \in \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$, let $b_{n}(T)=\left\langle T, \mathcal{L}_{n}\right\rangle$. Then $\left\{b_{n}(T)\right\}_{n \in \mathbb{N}_{0}^{d}} \in s^{\prime}$ and $T=\sum_{n \in \mathbb{N}_{0}^{d}} b_{n}(T) \mathcal{L}_{n}$. The series converges absolutely in $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$. Conversely, if $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}^{d}} \in s^{\prime}$, then there exists a $T \in \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ such that $T=\sum_{n \in \mathbb{N}_{0}^{d}} b_{n} \mathcal{L}_{n}$. As a consequence, $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ is topologically isomorphic to s^{\prime}.

Proof. Assume that $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}^{d}} \in s^{\prime}$. Then there exists a $k \in \mathbb{N}$ such that $\sum_{n \in \mathbb{N}_{o}^{d}}\left|b_{n}\right|^{2}(|n|+1)^{-2 k}<\infty$. For a bounded subset B of $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$, Theorem 3.1 implies that there exists $C>0$ such that $\sum_{n \in \mathbb{N}_{0}^{d}}\left|a_{n}(f)\right|^{2}(|n|+1)^{2 k} \leqslant C$, for all $f \in B$, where we denote $\left\{a_{n}(f)\right\}_{n \in \mathbb{N}_{0}^{d}}=\iota(f)$. Observe that for an arbitrary $q \in \mathbb{N}$ we have

$$
\begin{aligned}
\sum_{|n| \leqslant q} \sup _{f \in B}\left|\left\langle b_{n} \mathcal{L}_{n}, f\right\rangle\right| & \leqslant \sup _{f \in B} \sum_{n \in \mathbb{N}_{0}^{d}} \sum_{m \in \mathbb{N}_{0}^{d}}\left|\left\langle b_{n} \mathcal{L}_{n}, a_{m}(f) \mathcal{L}_{m}\right\rangle\right| \\
& =\sup _{f \in B} \sum_{n \in \mathbb{N}_{0}^{d}}\left|b_{n} \| a_{n}(f)\right| \leqslant C^{\prime},
\end{aligned}
$$

i.e.,

$$
\sum_{n \in \mathbb{N}_{o}^{d}} \sup _{f \in B}\left|\left\langle b_{n} \mathcal{L}_{n}, f\right\rangle\right|<\infty,
$$

hence $\sum_{n \in \mathbb{N}_{0}^{d}} b_{n} \mathcal{L}_{n}$ converges absolutely in $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$.
Let $T \in \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$. Theorem 3.1 implies that ${ }^{t} \iota: s^{\prime} \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ is an isomorphism $\left({ }^{t} \iota\right.$ denotes the transpose of $\left.\iota\right)$. Now, one easily verifies that $\left({ }^{t} \iota\right)^{-1} T=\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}^{d}}$, where $b_{n}(T)=\left\langle T, \mathcal{L}_{n}\right\rangle$. Observe that for $f \in \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$

$$
\langle T, f\rangle=\sum_{n \in \mathbb{N}_{0}^{d}} a_{n}(f)\left\langle T, \mathcal{L}_{n}\right\rangle=\sum_{n \in \mathbb{N}_{0}^{d}} a_{n}(f) b_{n}(T)=\left\langle\sum_{n \in \mathbb{N}_{0}^{d}} b_{n}(T) \mathcal{L}_{n}, f\right\rangle,
$$

i.e., $T=\sum_{n \in \mathbb{N}_{0}^{d}} b_{n}(T) \mathcal{L}_{n}$.

4. Kernel theorem

The completions of the tensor product are denoted by $\hat{\otimes}_{\epsilon}$ and $\hat{\otimes}_{\pi}$ with respect to ϵ and π topologies. If they are equal, we drop the subindex.

Proposition 4.1. The spaces $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ and $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ are nuclear.
Proof. Since s is nuclear, Theorem 3.1 implies that $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ is also nuclear. Now $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ is nuclear as the strong dual of a nuclear (F)-space.

Theorem 4.1. The following canonical isomorphisms hold:

$$
\mathcal{S}\left(\mathbb{R}_{+}^{m}\right) \hat{\otimes} \mathcal{S}\left(\mathbb{R}_{+}^{n}\right) \cong \mathcal{S}\left(\mathbb{R}_{+}^{m+n}\right), \quad \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{m}\right) \hat{\otimes} \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{n}\right) \cong \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{m+n}\right)
$$

Proof. The second isomorphism follows from the first one since $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ is a nuclear (F)-space. Thus, it is enough to prove the first isomorphism.

Step 1: From Theorem 3.1 it follows that $\mathcal{S}\left(\mathbb{R}_{+}^{m}\right) \otimes \mathcal{S}\left(\mathbb{R}_{+}^{n}\right)$ is dense in $\mathcal{S}\left(\mathbb{R}_{+}^{m+n}\right)$. It suffices to show that the latter induces on the former the topology $\pi=\epsilon$ (the π and the ϵ topologies are the same because $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ is nuclear). Since the bilinear mapping $(f, g) \mapsto f \otimes g$ of $\mathcal{S}\left(\mathbb{R}_{+}^{m}\right) \times \mathcal{S}\left(\mathbb{R}_{+}^{n}\right)$ into $\mathcal{S}\left(\mathbb{R}_{+}^{m+n}\right)$ is separately continuous, it follows that it is continuous $\left(\mathcal{S}\left(\mathbb{R}_{+}^{m}\right)\right.$ and $\mathcal{S}\left(\mathbb{R}_{+}^{n}\right)$ are (F)-spaces $)$. The continuity of this bilinear mapping proves that the inclusion $\mathcal{S}\left(\mathbb{R}_{+}^{m}\right) \otimes_{\pi} \mathcal{S}\left(\mathbb{R}_{+}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}_{+}^{m+n}\right)$ is continuous, hence the topology π is stronger than the induced one from $\mathcal{S}\left(\mathbb{R}_{+}^{m+n}\right)$ onto $\mathcal{S}\left(\mathbb{R}_{+}^{m}\right) \otimes \mathcal{S}\left(\mathbb{R}_{+}^{n}\right)$.

Step 2: Let A^{\prime} and B^{\prime} be equicontinuous subsets of $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{m}\right)$ and $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{n}\right)$, respectively. There exist $C>0$ and $j, l \in \mathbb{N}$ such that

$$
\sup _{T \in A^{\prime}}|\langle T, \varphi\rangle| \leqslant C\|\varphi\|_{j, l} \quad \text { and } \quad \sup _{F \in B^{\prime}}|\langle F, \psi\rangle| \leqslant C\|\psi\|_{j, l}
$$

where

$$
\|f\|_{j, l}=\sup _{\substack{|k| \leqslant j \\|p| \leqslant l}} \sup _{x \in \mathbb{R}_{+}^{d}}\left|x^{k} D^{p} f(x)\right|<\infty
$$

For all $T \in A^{\prime}$ and $F \in B^{\prime}$ we have

$$
\begin{aligned}
\left|\left\langle T_{x} \otimes F_{y}, \chi(x, y)\right\rangle\right| & =\left|\left\langle F_{y},\left\langle T_{x}, \chi(x, y)\right\rangle\right\rangle\right| \leqslant C \sup _{\substack{|k| \leqslant j|\leqslant l\\
| p \mathbb{R}_{+}^{n}}} \sup _{\substack{k}}\left|y^{k}\left\langle T_{x}, D_{y}^{p} \chi(x, y)\right\rangle\right| \\
& \leqslant C^{2} \sup _{\substack{|k| \leqslant j \\
|p| \leqslant l\left|k^{\prime}\right| \leqslant j}} \sup _{\substack{\prime \\
\mid \leqslant l}} \sup _{x \in \mathbb{R}_{+}^{m}}\left|x^{k^{\prime}} y^{k} D_{x}^{p^{\prime}} D_{y}^{p} \chi(x, y)\right| \\
& \leqslant C^{2}\|\chi(x, y)\|_{\left(k^{\prime}, k\right),\left(p^{\prime}, p\right)}, \quad \text { for all } \chi \in \mathcal{S}\left(\mathbb{R}_{+}^{m}\right) \otimes \mathcal{S}\left(\mathbb{R}_{+}^{n}\right) .
\end{aligned}
$$

It follows that the ϵ topology on $\mathcal{S}\left(\mathbb{R}_{+}^{m}\right) \otimes \mathcal{S}\left(\mathbb{R}_{+}^{n}\right)$ is weaker than the induced one from $\mathcal{S}\left(\mathbb{R}_{+}^{m+n}\right)$.

As a consequence of this theorem we have the following important
TheOrem 4.2. The restriction mapping $\left.f \mapsto f\right|_{\mathbb{R}_{+}^{d}}, \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ is a topological homomorphism onto.

The space $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ is topologically isomorphic to the quotient space $\mathcal{S}\left(\mathbb{R}^{d}\right) / N$, where $N=\left\{f \in \mathcal{S}\left(\mathbb{R}^{d}\right) \mid \operatorname{supp} f \subseteq \mathbb{R}^{d} \backslash \mathbb{R}_{+}^{d}\right\}$. Consequently, $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ can be identified with the closed subspace of $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ which consists of all tempered distributions with support in $\overline{\mathbb{R}_{+}^{d}}$.

Proof. Obviously, the restriction mapping $\left.f \mapsto f\right|_{\mathbb{R}_{+}^{d}}, \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$ is continuous. We prove its surjectivity by induction on d. For clarity, denote the d-dimensional restriction by R_{d}. For $d=1$, the surjectivity of R_{1} is proved in [1 p. 168]. Assume that R_{d} is surjective. By the open mapping theorem, R_{d} and R_{1} are topological homomorphisms onto since all the underlying spaces are (F)-spaces. By the above theorem, $R_{d} \hat{\otimes}_{\pi} R_{1}$ is continuous mapping from $\mathcal{S}\left(\mathbb{R}^{d+1}\right)$ to $\mathcal{S}\left(\mathbb{R}_{+}^{d+1}\right)\left(\mathcal{S}\left(\mathbb{R}^{d}\right) \hat{\otimes} \mathcal{S}(\mathbb{R}) \cong \mathcal{S}\left(\mathbb{R}^{d+1}\right)\right.$ by the Schwartz kernel theorem). Clearly
$R_{d} \hat{\otimes}_{\pi} R_{1}=R_{d+1}$. As $\mathcal{S}\left(\mathbb{R}^{d+1}\right)$ and $\mathcal{S}\left(\mathbb{R}_{+}^{d+1}\right)$ are (F)-spaces, [6, Theorem 7, p. 189] implies that R_{d+1} is also surjective.

The surjectivity of the restriction mapping together with the open mapping theorem implies that it is homomorphism. Clearly N is a closed subspace of $\mathcal{S}\left(\mathbb{R}^{d}\right)$ and ker $R_{d}=N$. Thus R_{d} induces natural topological isomorphism between $\mathcal{S}\left(\mathbb{R}^{d}\right) / N$ and $\mathcal{S}\left(\mathbb{R}_{+}^{d}\right)$. Hence $\left(\mathcal{S}\left(\mathbb{R}^{d}\right) / N\right)_{b}^{\prime}$ is topologically isomorphic to $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ (the index b stands for the strong dual topology). Since $\mathcal{S}\left(\mathbb{R}^{d}\right)$ is an $(F S)$-space, [5, Theorem A.6.5, p. 255] implies that $\left(\mathcal{S}\left(\mathbb{R}^{d}\right) / N\right)_{b}^{\prime}$ is topologically isomorphic to the closed subspace $N^{\perp}=\left\{T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right) \mid\langle T, f\rangle=0\right.$, for all $\left.f \in N\right\}$ of $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ which is exactly the subspace of all tempered distributions with support in $\overline{\mathbb{R}_{+}^{d}}$.

Given $f, g \in \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$, Theorem 4.2 implies that we can consider them as elements of $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ with support in $\overline{\mathbb{R}_{+}^{d}}$. Now, one easily verifies that for each $\varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, we have $(f(x) \otimes g(y)) \varphi(x+y) \in \mathcal{D}_{L^{1}}^{\prime}\left(\mathbb{R}^{2 d}\right)$, hence the \mathcal{S}^{\prime}-convolution of f and g exists (see [9, p. 26]). Also, if $\operatorname{supp} \varphi \cap \frac{\mathbb{R}_{+}^{d}}{}=\emptyset$, then $(f(x) \otimes g(y)) \varphi(x+y)=0$, hence supp $f * g \subseteq \overline{\mathbb{R}_{+}^{d}}$, i.e., $f * g \in \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$. Thus

$$
\langle f * g, \varphi\rangle=\langle f(x) \otimes g(y), \varphi(x+y)\rangle, \quad \varphi \in \mathcal{S}\left(\mathbb{R}_{+}^{d}\right)
$$

(observe that the function $\varphi^{\Delta}(x, y)=\varphi(x+y)$ is an element of $\mathcal{S}\left(\mathbb{R}_{+}^{2 d}\right)$).
Remark 4.1. [1, Remark 3.7 for $d=1$] Let us show that $\mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$ is a convolution algebra. Given $f, g \in \mathcal{S}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$, we compute the n-th Laguerre coefficient of $f * g$. If $a_{n}=\left\langle f, \mathcal{L}_{n}\right\rangle$ and $b_{n}=\left\langle g, \mathcal{L}_{n}\right\rangle$, then

$$
\left\langle f * g, \mathcal{L}_{n}(t)\right\rangle=\left\langle f(x) \otimes g(y), \mathcal{L}_{n}(x+y)\right\rangle
$$

Now, $L_{n}^{1}(x+y)=\sum_{k=0}^{n} L_{n-k}(x) L_{k}(y)$ and $L_{n}(t)=L_{n}^{1}(t)-L_{n-1}^{1}(t)$ (see [2, p. 192]) where $L_{n}^{1}(x)=\sum_{k=0}^{n}\binom{n+1}{n-k}\left((-x)^{k} / k!\right)$. In order to simplify the proof, we consider the case $d=2$. Then

$$
\begin{aligned}
& \left\langle f * g, \mathcal{L}_{n}(t)\right\rangle=\left\langle f(x) \otimes g(y), \prod_{i=1}^{2}\left(\mathcal{L}_{n_{i}}^{1}\left(x_{i}+y_{i}\right)-\mathcal{L}_{n_{i}-1}^{1}\left(x_{i}+y_{i}\right)\right)\right\rangle \\
& =\left\langle f(x) \otimes g(y), \prod_{i=1}^{2}\left(\sum_{k_{i}=0}^{n_{i}} \mathcal{L}_{n_{i}-k_{i}}\left(x_{i}\right) \mathcal{L}_{k_{i}}\left(y_{i}\right)-\sum_{k_{i}=0}^{n_{i}-1} \mathcal{L}_{n_{i}-k_{i}-1}\left(x_{i}\right) \mathcal{L}_{k_{i}}\left(y_{i}\right)\right)\right\rangle \\
& =\left\langle f(x) g(y), \sum_{k \leqslant\left(n_{1}, n_{2}\right)} \mathcal{L}_{\left(n_{1}, n_{2}\right)-k}(x) \mathcal{L}_{k}(y)-\sum_{k \leqslant\left(n_{1}-1, n_{2}\right)} \mathcal{L}_{\left(n_{1}-1, n_{2}\right)-k}(x) \mathcal{L}_{k}(y)\right. \\
& \left.\quad-\sum_{k \leqslant\left(n_{1}, n_{2}-1\right)} \mathcal{L}_{\left(n_{1}, n_{2}-1\right)-k}(x) \mathcal{L}_{k}(y)+\sum_{k \leqslant\left(n_{1}-1, n_{2}-1\right)} \mathcal{L}_{\left(n_{1}-1, n_{2}-1\right)-k}(x) \mathcal{L}_{k}(y)\right\rangle \\
& =\sum_{k \leqslant\left(n_{1}, n_{2}\right)} a_{\left(n_{1}, n_{2}\right)-k} b_{k}-\sum_{k \leqslant\left(n_{1}-1, n_{2}\right)} a_{\left(n_{1}-1, n_{2}\right)-k} b_{k} \\
& \quad-\sum_{k \leqslant\left(n_{1}, n_{2}-1\right)} a_{\left(n_{1}, n_{2}-1\right)-k} b_{k}+\sum_{k \leqslant\left(n_{1}-1, n_{2}-1\right)} a_{\left(n_{1}-1, n_{2}-1\right)-k} b_{k},
\end{aligned}
$$

where a_{n} or b_{n} equals zero if some component of the subindex n is less than zero. It is easy to verify that if $\left(a_{n}\right)_{n \in \mathbb{N}^{2}} \in s^{\prime}$ and $\left(b_{n}\right)_{n \in \mathbb{N}^{2}} \in s^{\prime}$, then $\left\langle f * g, \mathcal{L}_{n}(t)\right\rangle \in s^{\prime}$.

References

1. A. J. Duran, Laguerre expansions of Tempered Distributions and Generalized Functions, J. Math. Anal. Appl. 150 (1990), 166-180.
2. A. Erdelyi, Higher Transcedentals Function, Vol. 2, McGraw-Hill, New York, 1953.
3. L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Springer-Verlag, 1990.
4. M. Guillemot-Teissier, Développements des distributions en séries de fonctions orthogonales. Séries de Legendre et de Laguerre, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 25(3) (1971), 519-573.
5. M. Morimoto, An Introduction to Sato's Hyperfunctions, 129, American Mathematical Soc., 1993.
6. G. Köthe, Topological vector spaces II, Vol. II, Springer-Verlag, New York, 1979.
7. S. Pilipović, On the Laguerre expansions of generalized functions, C. R. Math. Rep. Acad. Sci. Canada 11 (1) (1989), 23-27.
8. R. T. Seeley, Extension of C8 functions defined in a half space, Proc. Am. Math. Soc. 15 (1964), 625-626.
9. R. Shiraishi, On the definition of convolutions for distributions, J. Sci. Hiroshima Univ. Ser. A 23 (1959), 19-32.
10. G. Szego, Orthogonal Polynomials, Am. Math. Soc. Collequium, 1959.
11. H. Whitney, Analytic extensions of functions defined in closed sets, Trans. Am. Math. Soc. 36 (1934), 63-89.
12. A. I. Zayed, Laguerre series as boundary values, SIAM J. Math. Anal. 13 (2) (1982), 263-279.
13. A. H. Zemanian, Generalized Integral Transformations, Interscience, New York, 1968.

Faculty of Forestry
(Received 2608 2015)
Belgrade University
Belgrade, Serbia
smiljana.jaksic@sfb.bg.ac.rs
Faculty of Mechanical Engineering University Ss. Cyril and Methodius Skopje, Macedonia
bprangoski@yahoo.com

[^0]: 2010 Mathematics Subject Classification: Primary 46F05.
 Key words and phrases: tempered distributions on \mathbb{R}_{+}^{d}; kernel theorem for tempered distributions on \mathbb{R}_{+}^{d}; smooth extensions of smooth rapidly decreasing functions.

 Partially supported by the Ministry of Science, Republic of Serbia, project 174024.
 Communicated by Stevan Pilipović.

