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ON AVAKUMOVIC’S THEOREM FOR GENERALIZED
THOMAS-FERMI DIFFERENTIAL EQUATIONS

Jaroslav Jaros and Kusano TakasSi

ABSTRACT. For the generalized Thomas—Fermi differential equation
(2’| a) = q(t)|z)P ',

it is proved that if 1 < a < 8 and ¢(t) is a regularly varying function of index
@ with g > —a — 1, then all positive solutions that tend to zero as t — oo
are regularly varying functions of one and the same negative index p and
their asymptotic behavior at infinity is governed by the unique definite decay
law. Further, an attempt is made to generalize this result to more general
quasilinear differential equations of the form (p(t)|z’|*~1z’) = q(t)|x|? 1.

1. Introduction

In this paper the generalized Thomas—Fermi differential equation
(A) (J2'[*" ') = q(t)]2* "2
is considered under the assumption that
(a) a and B are positive constants such that o < f;
(b) ¢ :[a,00) = (0,00) is a continuous function.
This equation may well be called a super-half-linear generalized Thomas—Fermi
differential equation.
We are interested in positive solutions of (Al which are defined in a neighbor-
hood of infinity and decrease to zero as t — oco. Such solutions are often referred to

as strongly decreasing solutions of ([A). Tt is known that (A]) has strongly decreasing
solutions if and only if

(1.1) /aoo q(t)dt =00 or else /aoo (/too q(s) ds)édt = o0.

For the proof of this result see e.g. Theorems 2.2, 2.3 and 5.1 in [10].
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126 JAROS AND KUSANO

A natural question then arises: Is it possible to determine precisely the as-
ymptotic behavior of possible strongly decreasing solutions of (A])? This question
seems to be very difficult to answer for equation (Al with a general positive con-
tinuous coefficient ¢(t) even in the special case o = 1, that is, for the superlinear
Thomas—Fermi differential equation

(Ao) o = q(t)]z|" 'z,

where 8 > 1 and ¢(t) > 0 is continuous. A hint as to what to do in such circum-
stances can be found in the pioneering work of Avakumovié [I] who analyzed the
differential equation (Ag) by means of regularly varying functions (in the sense of
Karamata) and proved the following theorem

THEOREM Ag. Let 8 > 1. Assume that q(t) is a regularly varying function
of index u > —2. Then all strongly decreasing solutions z(t) of equation ([Ag) are
reqularly varying functions of indexr p = —g—J:Q and their asymptotic behavior is

1
governed by the unique formula

[ tha®)
0~ 507

Here the symbol ~ denotes the asymptotic equivalence of two positive functions:

g9(t)

f(t) ~g(t), t -0 & tlggo O 1.

The above result (referred to as Avakumovié’s property) is remarkable in that
all strongly decreasing solutions of equation (Ag)) with regularly varying coefficient
q(t) belong to one and the same definite class of regularly varying functions and
moreover obey the unique precise decay law depending on ¢(t) as t — co. Theorem
Ay has been generalized to the equation z” = ¢(t) ¢(x) in three papers of Marié
and Tomié [7), (8}, [9].

In view of a growing tendency in recent years to the in-depth analysis of quasi-
linear differential equations such as (A), it is natural to expect that Avakumovié’s
property of ([Ag) could be shared by the more general equation (A]). The objec-
tive of this paper is to demonstrate the truth of this expectation by proving the
following theorem in Section 3.

B—1
, t—o00.

THEOREM A. Let 1 < a < . Assume that q(t) is a regularly varying function
of index 1 > —a—1. Then all strongly decreasing solutions x(t) of equation (Bl are

regularly varying functions of index p = 7“5%“;'1, and their asymptotic behavior is
governed by the unique formula
t**tg(t 5=
w(t) ~ [ 0D T
a(l—p)(—p)~

It is natural to ask whether Theorem A may be generalized to more general
differential equations of the form

(B) (p()|2'|*"a") = q(t)]2) e,
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where «, 8 and ¢(t) are as in ([A]) and p(¢) > 0 is a positive continuous function on
[a, 00) satisfying

(1.2) /Oop(t)’édt = 0.

In Section 4 we will show that Avakumovi¢ property for (B]) is best understood in
the framework of generalized regularly varying functions introduced by the present
authors [4] and give a precise formulation of the extended version of Theorem A by
means of regularly varying functions with respect to the function P(t) defined by

(1.3) P(t) = / p(s) % ds.

The result thus obtained for (Bl) can be specialized to equation (Bl) with regularly
varying p(t) and ¢(t) to characterize the existence and asymptotic behavior of
strongly decreasing solutions of (Bl which are regularly varying.

The definition and some basic properties of regularly varying functions are sum-
marized in Section 2, and the definition of generalized regularly varying functions
is given at the beginning of Section 4.

2. Regularly varying functions

For the reader’s benefit we state here the definition and some basic properties
of regularly varying functions (in the sense of Karamata).

DEFINITION 2.1. A measurable function f : (0,00) — (0, 00) is called regularly
varying of index p € R if
lim M =)\ for each A > 0,
t—o0 f(t)

or equivalently if f(¢) is expressed in the form

(2.1) F(t) = e(t) exp { /tt %S)ds}, £ > to,

for some measurable functions ¢(¢) and &(¢) such that

tlggo c(t) =co € (0,00) and tli>I£<> i(t) = p.

In case ¢(t) = ¢o in ZI) f(t) is said to be a normalized regularly varying
function of index p.

The totality of regularly varying functions of index p is denoted by RV(p).
Use is made of the symbol RV = (J,cg RV(p). If in particular p = 0, then the
symbol SV is used for RV(0) and members of SV are referred to as slowly varying
functions. By definition f € RV(p) is expressed as f(t) = t°g(t) with g € SV, and
so the class SV of slowly varying functions is of fundamental importance in the
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theory of regular variation. Typical examples of slowly varying functions are: all
functions tending to positive constants as t — oo,

N N

H(logn O ar € R, and exp{ H(logn t)ﬂ’“}, Br € (0,1),

k=1 k=1
where log,, t denotes the nth iteration of the logarithm. The function
L(t) = exp {(log t)? cos(log )}, 6 € (0, 3),
is a slowly varying function which is oscillating in the sense that

lim sup L(t) = oo, liminf L(t) = 0.
t—o0

t—o00

The following result concerns operations which preserve slow variation.

PRrOPOSITION 2.1. If L(t), L1(t) and Lo(t) are slowly varying, then L(t)* for
every real o, Ly (t) + La(t), L1(¢t)La(t) and L1(La(t)) (if La(t) = 0o ast — o0) are
slowly varying.

A slowly varying function may decay to zero or grow to infinity a ¢ — oo.
However, its order of decay or growth is severely limited as explained in the following

PROPOSITION 2.2. If L(t) is slowly varying, then for any e >0
lim ¢°L(t) = oo, lim ¢t~ L(t) = 0.
t— o0 t— o0

We quote the following result, Karamata’s integration theorem, which is of the
highest importance in the application of slowly and regularly varying functions.

PROPOSITION 2.3. Let L(t) € SV. We have,
(i) if « > —1, then f(j s*L(s)ds ~ Zgt* T L(t), t — oo;

(i) if o < =1, then [~ s*L(s)ds ~ — =5t L(t), t — o00;

(iii) if « = —1, then

t
It) = / @ds €SV and lim L) =0,
o S t—oo [(t)
<L L
m(t) = / ﬁ)ds €SV and lim L) =0,
. s A (o)

provided L(t)/t is integrable near the infinity in the latter case.

We conclude this section with two propositions which are crucial in the proof
of our main result, Theorem 3.1.

PROPOSITION 2.4. A continuously differentiable function f(t) is normalized

regularly varying of index p if and only if lim;_, t% =p.



ON AVAKUMOVIC’S THEOREM... 129

ProOPOSITION 2.5. [2 Theorem 1.8.2] Let f(t) be regularly varying of index
p. There exist two functions f1(t) and f2(t) such that fi1(t) ~ fa(t), t = oo, and
f1(t) < f(t) < fa(¢) for all large t and such that the functions ¥;(7) :=log fi(e7),
i =1,2, are C* on a neighborhood of infinity and satisfy
3

d—nwi(T)%O, nx=2 as T— 00,
-

d
%wl(T) - P,

fori=1,2.

For a complete exposition of theory of regular variation and its applications to
various branches of mathematical analysis the reader is referred to Bingham et al.
[2]. See also Seneta [11]. A comprehensive survey of results up to the year 2000 on
the asymptotic analysis of positive solutions of second order differential equations
can be found in Mari¢ [6].

3. Generalization of Avakumovic’s theorem

The purpose of this section is to prove the following theorem which, when
specialized to equation (Ag)), strengthens the assertion of Avakumovié’s theorem:
Theorem Ag.

THEOREM 3.1. Let 1 < a < 8 and suppose that q(t) is regularly varying of
index p. All strongly decreasing solutions of equation ([Bl) are regularly varying
functions of negative index p if and only if p > —a —1, in which case p is given by
p= —%‘gl, and the asymptotic behavior of any such solution x(t) is governed by
the unique formula
gt
(3.1) o(t) ~ —q()a

a(l = p)(=p)

PROOF. We begin by noting that any positive strongly decreasing solution ()

satisfies the differential equation

(3.2) 2”(t) = o~ lq(t) a(t)7 (—a'(8))' 7,

and the integral equation

(3.3) () = /too (/Oo olr) x(r)P dr) " ds.

(Proof of the “only if” part) Suppose that ¢(t) is expressed in the form ¢(t) =
t'"m(t), m € SV. Let x(t) be a strongly increasing solution of (Al on [T, 00
belonging to RV(p) with p < 0. We use the expression x(t) = tP£(t), £ € SV.

The convergence of the integral

(3.4) /too q(s) z(s)?ds = /00 shTPPm(s) €(s)Pds

t
implies that p+ pf8 < —1. If p+ pp = —1, then from (F4) we have

(3.5) (/too q(s) :E(S)Bds>é = (/too s_lm(s)f(s)ﬁds)é € SV.

T B«
, 1 — oo.
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Since no slowly varying function is integrable in a neighborhood of infinity, (3.3
is not integrable on [T, c0), which means that z(¢) cannot satisfy (33)), an impos-
sibility. Therefore, only the case u + p8 < —1 is possible. In this case, applying
Karamata’s integration theorem to (3.4]), we obtain

ptpB+1 1 B
a

> a ta t)=&(t
(3.6) (/ q(s)z(s)ﬁds) ~ m(t) E()l , t— o0

t EPEPTESE
From the integrability of (3.4 on [T, c0) we have ‘H”Tﬁﬂ < —1, but the equality
must be excluded. In fact, if the equality holds, then integrating (3.6) and using
B3) we see that

1

z(t) ~a~ = /too silm(s)ég(s)gds €SV,

i.e., p = 0, which is impossible. Let ﬁ% < —1. Then, integrating (B.6]) from ¢
to 0o, we obtain via Karamata’s integration theorem and ([B.3)
P () w (1)
~ 1 +tpBt1 ’
Gt B DI [~ (=T )]
This shows that z(t) is regularly varying of index ﬁ% + 1, that is,

_ktpB+1
p= (6

(3.7) x(t) t — oc.

1
b —«
The requirement p < 0 implies that u > —a — 1.
It is easy to check that the denominator of the right-hand side of [B7) equals
[a(1 — p)]= (—p). Using this fact and noting that [B7) is transformed into

otl 1 B8
L Ea®ra®)e
[a(1 = p)]=(=p)
we conclude that the asymptotic behavior of z(t) must obey the decay law (B).
(Proof of the “if” part) The proof is based on an extended adaptation of the
method of Geluk [3] used in proving Theorem [Agl Suppose that ¢ € RV(u) with
u > —a — 1. Since ¢(t) satisfies (LI)) equation (Al possesses strongly decreasing
solutions. Let z(¢) be any such solution on [T, c0). Put

x(t)

t — oo,

(3.8) v(s) = 10g[30(es)a75]7 P(s) =log {7@ —aa)a e(O‘H)Sq(eS) i

Let us differentiate v(s) twice with respect to s. In what follows - denotes differen-
tiation with respect to s. First we have

(3.9 () =~ - L)
and then using (32) and
—2'(t) = ! e *x(e®)(s)
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(a rewritten form of (33)), we easily obtain

i(s) = 0(s) = y0(s)* = —0(s)' = exp{th(s) — v(s)},

which can be expressed as

(310)  a7Hi(s)") —0(s)" = ((s)") T = —exp{w(s) — v(s)},
where v = 1/(8 — a) > 0.
We now define the function w(s) by w(s) = v(s) — ¥1(s), where 91(s) is a
C*°-function such that
(3.11)  4n(s) <o(s), wils) = 4(s), and ¢u(s) = p+a+l, ¢i(s) =0,

as s — 00. The existence of such a function 1 (s) is guaranteed by Proposition 2.5.
It is elementary to see that w(s) satisfies

(3.12) W (s) — 8(s)(s) — v (s)?
= ¢(s) — (w(s) + ¥n(s))' ™ exp{o(s) — Yu(s) —w(s)},

where §(s) = 1+ 2y¢1(s), and ¢(s) = —1(s) + 11 (s) + 721 (s)?. Notice that as
s — 00

(313) 4(s) > 1+sy(p+a+1) >0, &(s)— (p+a+1)(1+~y(p+a+1))>0.

We claim that the limit lim,_, o w(s) exists and is finite. The following three
cases are distinguished:
(a) w(s) = 0 for large s;
(b) w(s) <0 for large s;
(c) w(s) changes sign infinitely often as s — oo.

Let case (a) hold. Assume that lim,_,oc w(s) = oo and let s tend to infinity in
(BIZ). Note that since (w(s) + 11(s))! = is bounded because of a > 1 and (311,
it follows that

(1 (s) + ¥1(5)) =% exp{ep(s) — ¥1(s) —w(s)} =0, s— oco.
Using this in (3.12) and taking (3.I3)) into account, we find that

l
w(s) = 3 for all large s, = (u+a+1)1+~y(p+a+1)),

so that (s) — 0o as s — co. Divide (BIZ) by w(s)? and let s — co. Then,

)
~ —_——_— 5’
a2 " T el T
which implies that w(s) < 0 for all large s, a contradiction. Therefore, w(s) must
increase to a finite limit as s — oco.

Let case (b) hold. Assume that lims_, . w(s) = —oo. From (BI0) rewritten as
—aH(0(5)%) + ()™ +(0(5)*) T = exp{(s) — v (s) — w(s)},

we see that

—a N (0(s)*) +0(s)* + ’)/(1')(5)Q)IJré — 00, §—00.
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This implies that ©(s) is unbounded as s — oo, because otherwise from the above it
follows that (0(s)®)" — —o0, and hence v(s)* — —o0 as s — 0o, which contradicts
the positivity of 0(s). Consequently, there exists {s,} such that s, — oo and
¥(s,) = 00 as n — oo. Then, w(s,) = 0(sp) — 11(sn) — 00, n — oo, which is
impossible.

Let case (c) hold. Let {s,} be a sequence tending to infinity along which w(s)
changes sign. Each s, is a point at which w(s) takes a local minimum or a local
maximum. We may assume that {s2,,—1} and {s2,,} are, respectively, the points
of local maxima and those of local minima of w(s). It is clear that w(sam—1) <0
and W(sam) =0 form=1,2,....

Let s = s9,—1 in ([BI2). Then,

0> W(sam—1)
= P(s2m—1) — (1 (s2m—1))" " exp{t)(s2m 1) — 1 (s2m-1) — w(s2m—1)},
from which we have
w(Sam—1) < ¥(S2m—-1) — Y1(S2m-1) — 10g[q§(52m_1)¢1(52m_1)“_1], m=12,....

Letting m — oo in the above, we find that

(3.14)  limsupw(sam-_1) < —log(l(p + a4+ 1)*71)

m—r oo

= limsupw(s) < —log(l(p+a+1)*71).

§—00

Likewise, considering (312) along {sa,,}, we obtain

(3.15)  liminfw(say,) > —log(l(u +a+ 1))
m—r oo

= liminfw(s) > —log({(n+ o + 1)a_1)~

§—00
From [BI4) and B.I5) it follows that
lim w(s) = c:= —log(I(p + a + 1)*71),

which implies that
(3.16) Tim (u(s) — (s) = lim [w(s) + e (s) —(s)] = c.

Note that ([316) can be expressed as

z(e®)* P ~ eCL —aa) e og(e®), s — 00

(cf. B8))) or equivalently
(3.17) ()P ~ ecuta“q(t), t — o0.
a

Since t*T1q(t) € RV(u+ a+ 1), this shows that x(t) is a regularly varying function

0finde){p:—“§%";rl < 0. O
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REMARK 3.1. It can be shown that the solution x(t) obtained above is a nor-
malized regularly varying function. In fact, rewriting (817 as

(3.18) x(t) ~ kﬁtﬂm(t)a%ﬁ, t — o0, where k= GCM,
@
and using Karamata’s integration theorem, we obtain
1 B8 _
, oo 3 = ka(a—ﬂ) 1 1
(3.19) —2'(t) = ( a(s)z(s) ds) ~ T i) T, - 0.
t [a(1 = p)]=

Combining (31I8) with (3I9), we see that
2/ (t) 1

TS T e = p)E

Y

which implies that x(¢) is a normalized regularly varying function of index
—1/[ka(1 — p)]=. Since we already know that z € RV(p), we find that
1 1
R T —
[ka(1 = p)]= a(l = p)(=p)*

which combined with ([BI8) yields the asymptotic formula (3I)) for x(¢). This
provides another way of establishing the unique asymptotic formula for z(t).

ExXAMPLE 3.1. Consider equation (&) with ¢(¢) defined by
q(t) ~ t71000F995=1 oy {k(log t)? cos(log t)e}, t — 00,

where 6 € (0,3) and k > 0 are constants. Here, g(t) is regularly varying of index
pu=—100a + 9938 — 1 and we have p = (u +a+1)/(a — B) = —99. Therefore, by
Theorem 3.1 all strongly decreasing solutions of (&) belong to the class RV(—99)

and obey the decay law

x(t) ~ (10004-99“)571075_99 eXp{ ~3 i

(logt)? cos(log?ﬁ)e}7 t — oc.
-«

EXAMPLE 3.2. The differential equation
a—1_/N 20—1 o« 2
(1 7e) = a7, () = iy (1 o)

has a slowly varying solution z(¢) = 1/logt € SV = RV(0) which is strongly
decreasing. This example shows that equation (A]) may possess strongly decreasing
slowly varying solutions which cannot be covered by Theorem 3.1.

4. More general equations of Thomas—Fermi type

Our aim here is to show that Theorem 3.1 can be generalized in a natural way
to equations of the form (Bl with p(t) satisfying (L2)) if the analysis is made in
the framework of generalized regular variation introduced by the present authors
in [4].
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4.1. Generalized regularly varying functions. Let ®(t) be a positive C''-
function on (0, 00) such that ®'(t) > 0, ¢ > 0, and 1imt_>oo ®(t) = co. Let &1
denote the inverse of ®. (Do not confuse ® (¢ ) with ®(t)~! =1/9(¢).)

DEFINITION 4.1. A measurable function f: [tg,00) — (0,00) is said to be
a slowly varying function with respect to ® if fo®~1(t) = f(®~1(t)) is slowly
varying (as defined in Section 2), or equivalently, if f(¢) is expressed in the form
f(t) = L(®(t)) for some slowly varying function L. f(t) is called a regularly varying
function of index p with respect to @ if it is expressed as f(t) = ®(¢)?g(t) for some
slowly varying function g with respect to ®, or as f(t) = ®(¢)?L(®(¢)) for some
slowly varying function L.

The set of all slowly varying functions (or regularly varying functions of index
p with respect to ®) is denoted by SVg (or RVg(p)). We use the symbol RVg =
U,er RVa(p). It is shown that most of the basic properties of ordinary regularly
varying functions can be transplanted to generalized regularly varying functions
(see [4]), but they will not be reproduced here.

EXAMPLE 4.1. 1. Let ® € RV(m), m > 0. Then, ®~! € RV(1/m) and hence
f€RV(p) = fe€RVa(p/m).

2. Let ®(t) = et. Then, ®~1(t) = logt.

(i) Consider f(t) = exp(t7), v > 0:

(a) If v < 1, then f € SV¢;

(b) If v =1, then f € RV (1);

(c) If v > 1, then f is rapidly varying, so that f ¢ RV,:.
(ii) If f € RV(p), then f € SVe:.

3. Let ®(t) = logt. Since ®~1(t) = €', we see that

(¢
(i) if f(t) = (loglogt)*, A # 0, then f € SViogt;
(i) if f(t) = (logt)#, p # 0, then f € RViog¢(p);
(ili) if f(¢t) =¢”, v #0, then f is rapidly varying, so that f ¢ RVigg+.

4.2. Avakumovié’s property of equation (B]). Consider equation (B]) for
which it is assumed that 0 < o < 8, p(t) and ¢(t) are positive continuous functions
on [a,00) and p(t) satisfies condition (2). The object of our investigation are
positive solutions of (Bl which decrease to zero as t — co. Such solutions are also
called strongly decreasing solutions of (B]).

It is a matter of elementary computation to check that by the change of vari-
ables (t,z) — (7, X) given by

equation (B]) can be transformed into

(4.1) (IX[*7'X) = QMIXIP'X,  Q(7) = p(t)=q(t),
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where - denotes differentiation with respect to 7. Equation (1)) is of the same type
as equation ([A]), and so it has strongly decreasing solutions (in 7) if and only if

(4.2) h Q(T)dr =00 or else /00 (/00 Qo) da) 1/Oth = 0.
P(a) T

P(a)
Since ([@2)) is equivalent to

(4.3) /aoo q(t)dt =00 or else /aoo (Iﬁ /:0 q(r) dr) 1/Otds = 00,

it follows that equation (B]) has strongly decreasing solutions if and only if (@3]
holds. Furthermore, if Theorem 3.1 is applied to equation (B]) with @ € RV(u) as
a function of 7, then then it is concluded that if 1 < a < §, all strongly decreasing
solutions X (7) are regularly varying of negative index p as functions of 7 if and
only if 4 > —a — 1, in which case p is given by p = —(u+ o+ 1)/(8 — ) and any
such solution enjoys the asymptotic behavior

[ Q)
a(l = p)(=p)*

Observe that to each strongly decreasing solution X () of ([@I) there corre-
sponds a unique strongly decreasing solution z(t) = X (7) of (Bl and vice versa,
and that in view of Definition 4.1 a regularly varying solution (in 7) of (&II) de-
termines a unique regularly varying solution with respect to P(¢) (in t) of (B]).
Thus what is described above for (1)) can be translated into the following theorem
which is a natural generalization of Theorem 3.1 to equation (B).

X(7) ~ } m, T — 00.

THEOREM 4.1. Let 1 < a < 8. Suppose that p(t) and q(t) are regularly varying
functions with respect to P of indices \ and p, respectively. All strongly decreasing
solutions of equation (Bl) are regularly varying of negative index p with respect to
P if and only z'f% + p > —a—1, in which case p is given by

24 pta+l
= o ,
and any such solution x(t) obeys the unique decay law
P)*tp(t) = g(t
) ity ~ [P0
a(l = p)(=p)*
ExXAMPLE 4.2. Consider equation (Bl with p(t) and ¢(¢) such that
p(t) ~exp(—at),  q(t) ~ kexp(yt + 6Vt)(tlogt), t — oo,

where k > 0, , 6 and ¢ are constants. Clearly p(¢) satisfies (I.2]) and the function
P(t) defined by (L3) can be taken to be P(t) = e'. As easily checked, p € RV . (—a)
and ¢ € RV.:(y). Applying Theorem 4.1 to this case, we see that all strongly
decreasing solutions of ([A]) are regularly varying functions (with respect to e!) of
negative index p = —(a +v)/(8 — «) and enjoy the asymptotic behavior

kexp(0v/1)(tlogt)®1— 7=
a(l = p)(—p)* ’

]757Q, t — oo.

x(t) ~ exp(pt){ t — oc.
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Let us now consider equation (B)) in which p(t) and ¢(¢) are ordinary regularly
varying functions. In this case one may ask if (Bl enjoys Avakumovié¢’s property
within the class of regularly varying functions. The affirmative answer is given in
the following result which is actually a corollary of Theorem 4.1.

THEOREM 4.2. Let 1 < oo < 3. Suppose thatp € RV(A\), A < a, and ¢ € RV (u).
All strongly decreasing solutions of equation (B) are regularly varying of negative
index p if and only if

(4.5) —A+pu>—a—1,
in which case p is given by

Atpta+tl
4.6 S N o M M
(4.6 —

and any such solution x(t) obeys the unique decay law

e p(t)~"q(t)
1—2 —p)(=p)
PROOF. We use the following expressions for p(t) and ¢(t):
p(t) = (1), q(t) =tFm(t), I,m e SV.
Since A < a, p(t) satisfies (L2)) and

(4.8) P(t):/ sTal(s)"ads ~

(Note that we have excluded the case A = « from our discussions because of com-
putational difficulty.)

In view of (@8] p(t) and ¢(t) can be considered as regularly varying functions
with respect to P (cf. Example 4.1): p € RVp(aa—_)‘)\), qE€ RVP(%).

Therefore, Theorem 4.1 can be applied to this case, allowing us to conclude
that (@3] is a necessary and sufficient condition for all strongly decreasing solutions
of ([B) to be regularly varying (with respect to P) of negative index p’ given by

B—a
, t—o00.

(4.7) a(t) ~ Lé(

o

P10 e RV(22).

;o amtastatl o Atptatl

r= 8-« T a— A B8—a '
This means all strongly solutions of (B]) are (ordinary) regularly varying solutions
of negative index p given by (L) if and only if (@H) holds. A straightforward
calculation shows that the Avakumovi¢ formula ([@4]) (with p replaced by p’) as
RV p-functions is transformed into the formula (£7) as RV-functions. This com-
pletes the proof. O

EXAMPLE 4.3. Consider the equation (B)) with p(¢) and ¢(¢) defined by

—5a+8—3

p(t) ~t5 logt, q(t) ~kt— 3 (logt-loglogt)?, t— oo,
—5a+5—3
3

where k > 0 is a constant. Here A = —5 and u = , which clearly satisfy

([#£3H) and determine the regularity index p = f% of all strongly decreasing regularly



ON AVAKUMOVIC’S THEOREM... 137

varying solutions of this equation (B]). When specialized to this case, the asymptotic
formula (7)) governing any such solutions reduces to

5 +a 1
x(t) ~ (3a—(i1> ’ tié(klogt(loglogt)Q)fﬂ, t — 0.

REMARK 4.1. This paper is concerned exclusively with strongly decreasing
solutions of equations (A]). Equation (&) may have strongly increasing solutions x(t)
such that lim; o, z(t)/t = co. Neither the regularity nor the precise asymptotics

of such increasing solutions of (Al with regularly varying coefficient g(t) seems to
have been investigated in the literature.

REMARK 4.2. Consider equations of the form ([A) in which the exponents o and
0 satisfy a > 8 > 0. Such equations are referred to as sub-half-linear generalized
Thomas—Fermi differential equations. It is not known if an analogue of Avaku-
movié’s property is possessed by the sub-half-linear equations (A]), but instead the
existence and asymptotic behavior of all possible regularly varying solutions of such
equations with regularly varying ¢(¢) have been analyzed in some detail. See, for
example, the paper [5].
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