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UMBRAL INTERPOLATION

Francesco Aldo Costabile and Elisabetta Longo

Abstract. A general linear interpolation problem is posed and solved. This
problem is called umbral interpolation problem because its solution can be ex-
pressed by a basis of Sheffer polynomials. The truncation error and its bounds
are considered. Some examples are discussed, in particular generalizations of
Abel–Gontscharoff and central interpolation are studied. Numerical examples
are given too.

1. Introduction

In [5–7] an application of Appell and ∆h-Appell polynomials to linear interpo-
lation problem for real functions has been given. In this note we will extend this
approach to the more general so-called Sheffer polynomials [8,9,12–14,16,24]. For
this purpose, let X be the linear space of real functions defined in the interval [a, b]
continuous and with continuous derivatives of all necessary orders; let Pn ⊂ X ,
n ∈ N, be the space of polynomials of degree less than or equal to n. Let Q be
a δ-operator [20] on Pn, and L a linear functional on X with L(1) 6= 0. Let be
XQ = {f ∈ X : Qif ∈ X, i = 0, . . . , n, for all n ∈ N}, then for each f ∈ XQ we
want a polynomial Pn[f ], if it exists, of degree less than or equal to n such that

f = Pn[f ] + Rn[f ],

with

(1.1) L(QiPn[f ]) = L(Qif), i = 0, . . . , n.

If Q = D or Q = ∆h, that is the differential operator or the finite difference
operator respectively, we have that XQ is the set of analytic functions on [a, b]
and, respectively, the set of bounded functions in [a, b]. In these cases problem (1.1)
admits a unique solution and it has been called Appell interpolation problem [1,5]
or ∆h-Appell interpolation problem [6,7], respectively.

In this note we want to address the general case and we give the solution of
problem (1.1) only if XQ is known. We will call this problem umbral interpolation

problem, because its solution can be expressed by a basis of Sheffer polynomials,
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also said umbral basis. Interpolation and approximation have been studied from an
umbral point of view in several papers [10, 15, 17]. In [18, 19] the authors study
the sequence of polynomials, which solve the linear interpolation in Pn, but not
the general case, moreover no connection with real function is given. The paper is
organized as follows: in Section 2 we give some preliminary definitions and results;
in Section 3 we define the umbral interpolation and provide its solution; in Section
4 we give, as examples, generalizations of Abel–Gontscharoff [11] and central in-
terpolation [22]; in Section 5, some numerical examples, which justify theoretical
results, are given; finally, in Section 6 conclusions and further developments are
announced.

2. Umbral basis for (L, Q)

In order to make the work self-contained we recall some basic notations of the
umbral calculus [8, 20, 21]. Let Q be a δ-operator and (pn)n∈N be the associated
sequence [20], that is, the sequence that satisfies p0(x) = 1, pn(0) = 0, Qpn =
npn−1, n = 1, 2, . . .. It is known [20] that (pn(x))n∈N is of binomial type and it is
a basis for Pn. Let L be a linear functional on X with L(1) 6= 0 and let us set

(2.1) βn = L(pn), n = 0, 1, . . .

and define the sequence of polynomials




s0(x) = 1
β0

sn(x) = (−1)n

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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)
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. . .

...
...

...
. . .

...
...

0 · · · · · · · · · 0 β0
(
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)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

n = 1, 2, . . . .(2.2)

Remark 2.1. [8] The sequence (sn(x))n∈N is a sequence of polynomials of
degree less than or equal to n, for which we have

sn(x) =

n∑

i=0

(n

i

)
αn−ipi(x), n = 0, 1, . . . ,

with

α0 =
1

β0
,

n∑

i=0

(n

i

)
αiβn−i = 0, n = 1, 2, . . . .

Remark 2.2 (Recurrence relation, [8]). For the polynomial sequence (sn(x))n∈N

the following recurrence relation holds

(2.3) sn(x) =
1

β0

(
pn(x) −

n−1∑

i=0

(n

i

)
βn−isi(x)

)
, n = 1, 2, . . . .
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Remark 2.3. [8] For the polynomial sequence (sn(x))n∈N we have

Qsn(x) = nsn−1(x), n = 1, 2, . . . .

Remark 2.4. We have

(2.4) L(Qisn(x)) = i!δi,n, i = 0, . . . , n,

where δi,n is the Kronecker symbol.

Proof. It follows from Remark 2.3, from which we have

L(Qisn(x)) = n(n − 1) . . . (n − i + 1)L(sn−i(x)) = i!
(n

i

)
δi,n = i!δi,n. �

Definition 2.1. The sequence (sn(x))n∈N is a basis for Pn, and we call it
umbral basis for (L, Q). In the following, often, we will omit for (L, Q).

Remark 2.5. We note explicitly that the polynomial sequence (sn(x))n∈N de-
fined in (2.2) is the Sheffer sequence [21] for (βn, pn(x)) as defined in [8].

3. Umbral interpolation

Let L be a linear functional on X with L(1) 6= 0, Q a δ-operator on Pn and
ωi ∈ R, i = 0, 1, . . . , n; then the problem

L(QiPn) = i!ωi, i = 0, . . . , n, Pn ∈ Pn,

is called umbral interpolation problem in Pn.

Theorem 3.1. Let Q be a δ-operator on Pn and L be a linear functional on

X with L(1) 6= 0. Let (sn(x))n∈N be the umbral basis for (L, Q) and ωi ∈ R,

i = 0, 1, . . . , n. The polynomial Pn(x) =
∑n

i=0 ωisi(x), is the unique polynomial of

degree less than or equal to n such that L(QiPn) = i!ωi, i = 0, . . . , n.

Proof. It is a straightforward consequence of (2.4) and of the linearity
of Q. �

Corollary 3.1. For each Pn(x) ∈ Pn we have

Pn(x) =

n∑

i=0

L(QiPn)

i!
si(x).

Let us consider a function f ∈ XQ. Then we have the following

Theorem 3.2 (Main theorem). The polynomial

(3.1) Pn[f ](x) =

n∑

i=0

L(Qif)

i!
si(x)

is the unique polynomial of degree less than or equal to n such that

L(QiPn[f ]) = L(Qif), i = 0, . . . , n.

Proof. It follows from Theorem 3.1. �

Definition 3.1. The polynomial Pn[f ](x) is called umbral interpolation poly-
nomial of the function f for (L, Q).
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Therefore, it is interesting to consider the estimation of the remainder

(3.2) Rn[f ](x) = f(x) − Pn[f ](x), ∀x ∈ [a, b].

Theorem 3.3. For any f(x) ∈ Pn and x ∈ [a, b],

Rn[f ](x) = 0, and Rn[pn+1(x)] 6= 0.

Proof. It follows from (2.1) and (2.3), noting that

L(Qipn(x)) = n(n − 1) . . . (n − i + 1)L(pn−i(x)) = i!
(n

i

)
βn−i. �

For a fixed x we may consider the remainder Rn[f ](x) as a linear functional
and, therefore, from Peano’s theorem [11, p. 69], we have

Theorem 3.4. Let f ∈ Cn+1[a, b]. The following relation holds

(3.3) ∀x ∈ [a, b], Rn[f ](x) =
1

n!

∫ b

a

Kn(x, t)f (n+1)(t) dt,

where Kn(x, t) = Rn[(x − t)n
+] = (x − t)n

+ −
n∑

i=0

Lx[Qi((x − t)n
+)]

i!
si(x).

Proof. It follows by Theorem 3.3 and Peano’s theorem. �

Remark 3.1. By (3.3), if f (n+1) ∈Lp[a, b] and Kn(x, t)∈Lq [a, b] with 1
p + 1

q = 1,

applying the Hölder’s inequality, classical error bounds can be obtained.

Now, let us fix z ∈ [a, b] and consider the polynomial

(3.4) P n[f, z](x) ≡ f(z)+Pn[f ](x)−Pn[f ](z) = f(z)+

n∑

i=1

L(Qif)

i!
(si(x)−si(z)).

In the following, to avoid encumbering the notation, we will denote it by P n[f ](x),
omitting the dependence on z. Then we have the following

Theorem 3.5. The polynomial P n[f ](x) is an approximating polynomial of

degree n for f(x), i.e.,

(3.5) ∀x ∈ [a, b], f(x) = P n[f ](x) + Rn[f ](x),

with Rn[pi(x)] = 0, i = 0, . . . , n and Rn[pn+1(x)] 6= 0.

Proof. For each x ∈ [a, b], by (3.2) we get (3.5); the exactness follows from
the exactness of the polynomial Pn[f ](x). �

Theorem 3.6. The polynomial P n[f ](x) satisfies the interpolatory conditions

P n[f ](z) = f(z), L(QiP n[f ]) = L(Qif), i = 1, . . . , n.

Proof. It follows from (2.4). �

We call P n[f ](x) umbral interpolation polynomial of second kind.



UMBRAL INTERPOLATION 169

4. Examples

4.1. Abel–Sheffer interpolation. With the previous notation, let be f an-
alytic in [a, b] and Qf = Daf = f ′(x + a), a ∈ R, a 6= 0. Then the associated
sequence is the Abel sequence [20]

A0(x, a) = 1, An(x, a) = x(x − an)n−1, n = 1, 2, . . . .

Now, let L be a linear functional verifying L(1) 6= 0. Then the umbral interpolation
polynomials (3.1) and (3.4) become

(4.1) Pn[f ](x) = L(f) +

n∑

i=1

L(f (i)(x + ai))

i!
si(x),

and, setting z = 0,

P n[f ](x) = f(0) +

n∑

i=1

L(f (i)(x + ai))

i!
(si(x) − si(0)),

where si(x) is the umbral basis for (L, Da).
Abel–Gontscharoff interpolation. Let L(f) = f(x0), x0 ∈ [a, b]. Then the um-

bral basis for (L, Da) is the sequence

G̃0(x) = 1, G̃n(x, a) = (x − x0)(x − x0 − an)n−1, n = 1, 2, . . . ,

that is the classical Abel–Gontscharoff sequence [11] on the equidistant points
xi = x0 + ai, i = 0, . . . , n. Interpolation polynomial (3.1) becomes

G̃n[f ](x) =

n∑

i=0

f (i)(x0 + ai)

i!
G̃i(x, a),

i.e., the umbral interpolation is the well-known Abel–Gontscharoff interpolation
[11] on the equidistant points xi = x0 + ai, i = 0, . . . , n. Therefore (4.1) can
be seen as a generalization of Abel–Gontscharoff interpolation on the equidistant

points. For the remainder RL,n[f ](x) = G̃n[f ](x) − f(x), for any x ∈ [x0, b], by
Theorem 3.4, we have

RL,n[f ](x) =
1

n!

∫ b

x0

Kn(x, t)f (n+1)(t) dt

where

Kn(x, t) = RL,n[(x − t)n
+] = (x − t)n

+ −
n∑

i=0

(n

i

)
(x0 + ai − t)n−i

+ G̃i(x, a).

Remark 4.1. Abel–Gontscharoff interpolation, even in recent years, has been
object of study [23]. In the future we will consider a comparison with previous
works, especially as regards the error estimation.
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Abel-Bernoulli interpolation. . Let L(f) =
∫ 1

0 f(x) dx. Then the umbral basis

for (L, Da) is the Bernoulli–Abel sequence B̃n(x, a) [8].
Interpolation polynomials (3.1) and (3.4) become

B̃n[f ](x) =

∫ 1

0
f(x)dx +

n∑

i=1

f (i−1)(1 + ai) − f (i−1)(ai)

i!
B̃i(x, a),

B̃n[f ](x) = f(0) +

n∑

i=1

f (i−1)(1 + ai) − f (i−1)(ai)

i!
(B̃i(x, a) − B̃i(0, a)).(4.2)

For the remainder RL,n[f ](x) = B̃n[f ](x)−f(x), for any x ∈ [0, b], by Theorem 3.4,
we have

RL,n[f ](x) =
1

n!

∫ b

0
Kn(x, t)f (n+1)(t) dt

where

Kn(x, t) = RL,n

[
(x − t)n

+

]
= (x − t)n

+ −

∫ 1

0
(x − t)n

+dx

−

n∑

i=1

( n

i − 1

)1

i

[
(1 + ai − t)n−i+1

+ − (ai − t)n−i+1
+

]
B̃i(x, a).

For the remainder RL,n[f ](x) = B̃n[f ](x) − f(x), for any x ∈ [0, b], by Theo-
rem 3.4, we have

RL,n[f ](x) =
1

n!

∫ b

0
Kn(x, t)f (n+1)(t) dt

where

Kn(x, t) = RL,n

[
(x − t)n

+

]
= (x − t)n

+

−

n∑

i=1

( n

i − 1

)1

i

[
(1 + ai − t)n−i+1

+ − (ai − t)n−i+1
+

](
B̃i(x, a) − B̃i(0, a)

)
.

Abel-Euler interpolation. We consider L(f) = f(0)+f(1)
2 . Then the umbral basis

for (L, Da) is the Euler–Abel sequence Ẽn(x, a) [8].
Interpolation polynomials (3.1) and (3.4) become

Ẽn[f ](x) =
f(0) + f(1)

2
+

n∑

i=1

f (i)(ai) + f (i)(1 + ai)

2i!
Ẽi(x, a),(4.3)

Ẽn[f ](x) = f(0) +

n∑

i=1

f (i)(ai) + f (i)(1 + ai)

2i!

(
Ẽi(x, a) − Ẽi(0, a)

)
.

For the remainder RL,n[f ](x) = Ẽn[f ](x) − f(x), for any x ∈ [0, b], we have

RL,n[f ](x) =
1

n!

∫ b

0
Kn(x, t)f (n+1)(t) dt
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where

Kn(x, t) = RL,n

[
(x − t)n

+]

= (x − t)n
+ −

n∑

i=0

(n

i

)1

2

[
(ai − t)n−i

+ + (1 + ai − t)n−i
+

]
Ẽi(x, a).

4.2. δh-Sheffer interpolation. Let be f bounded in [a, b] and Qf = δhf(x) =
f(x+h/2)−f(x−h/2)

h . Moreover, let δ−1
h be the inverse operator of δh, such that

δ−1
h ϕ(x) = f(x) ⇔ δhf(x) = ϕ(x).

Then the associated sequence to δh is the sequence [20]

x[0] = 1, x[n] ≡ x
(

x +
(n

2
− 1

)
h

)
n−1

= x
(

x +
(n

2
− 1

)
h

)
· · ·

(
x +

(
−

n

2
+ 1

)
h

)
, n = 1, 2, . . . .

Now, let L be a linear functional verifying L(1) 6= 0. Then umbral interpolation
polynomials (3.1) and (3.4) become

Pn[f ](x) =
n∑

i=0

L(δi
hf)

i!
si(x),(4.4)

P n[f ](x) = f(0) +

n∑

i=1

L(δi
hf)

i!
(si(x) − si(0)),

where si(x) is the umbral basis for (L, δh).
As in the previous example we can consider the following cases:
δh-central interpolation. Let L(f) = f(0). The umbral basis for (L, δh) is

sn(x) = x[n].
Interpolation polynomial (3.1) becomes

Pn[f ](x) = f(0) +

n∑

i=1

δi
hf(0)

i!
x[i].

It is known as interpolation formula with central differences [22, p. 32], therefore
(4.4) can be seen as generalization of central interpolation.

δh-Bernoulli interpolation. Let L(f) =
(
Dδ−1

h f
)

x=0. We call the umbral basis

for (L, δh) δh-Bernoulli polynomial sequence B̂n(x). Interpolation polynomials (3.1)
and (3.4) become

B̂n[f ](x) =
(
Dδ−1

h f
)

x=0
+

n∑

i=1

δi−1
h f ′(0)

i!
B̂i(x),

B̂n[f ](x) = f(0) +

n∑

i=1

δi−1
h f ′(0)

i!

(
B̂i(x) − B̂i(0)

)
.(4.5)
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δh-Euler interpolation. Let L(f) = (Mhf)x=0 =
f( 1

2
h)+f(−

1
2

h)
2 . We call the

umbral basis for (L, δh) δh-Euler polynomial sequence Ên (x). Interpolation poly-
nomials (3.1) and (3.4) become

Ên[f ](x) =
f(h/2) + f(−h/2)

2
+

n∑

i=1

δi
h

(
f(h/2) + f(−h/2)

)

2i!
Êi(x),(4.6)

Ên[f ](x) = f(0) +

n∑

i=1

δi
h

(
f(h/2) + f

(
− h/2)

)

2i!

(
Êi(x) − Êi(0)

)
.(4.7)

5. Numerical examples

Now, we consider some interpolation test problems and report the numerical
results obtained by using an ad hoc “Mathematica" code. We compare the er-
ror in approximating a given function with Appell, Abel–Sheffer, ∆h-Appell and
δh-Sheffer interpolation polynomials. In particular we compare numerical results
obtained by applying:

• Abel-Bernoulli interpolation polynomial defined by (4.2) as follows

B̃n[f ](x) = f(0) +

n∑

i=1

f (i−1)(1 + ai) − f (i−1)(ai)

i!

(
B̃i(x, a) − B̃i(0, a)

)
;

• Bernoulli interpolation polynomial defined in [2] as follows

Bn[f ](x) = f(0) +

n∑

i=1

f (i−1)(1) − f (i−1)(0)

i!

(
Bi(x) − Bi(0)

)
;

• δh-Bernoulli interpolation polynomial defined by (4.5) as follows

B̂n[f ](x) = f(0) +

n∑

i=1

δi−1
h f ′(0)

i!

(
B̂i(x) − B̂i(0)

)
;

• Bernoulli interpolation polynomial of second kind [6] defined as follows

B
II

n [f ](x) = f(0) +

n−1∑

i=0

f ′(ih)
(
BII

i (x) − BII
i (0)

)
.

• Abel-Euler interpolation polynomial defined by (4.3) as follows

Ẽn[f ](x) =
f(0) + f(1)

2
+

n∑

i=1

f (i)(ai) + f (i)(1 + ai)

2i!
Ẽi(x, a);

• Euler interpolation polynomial defined in [5] as follows

En[f ](x) =

n∑

i=0

f (i)(0) + f (i)(1)

2i!
Ei(x);

• δh-Euler interpolation polynomial defined by (4.6) as follows

Ên[f ](x) =
f(h/2) + f(−h/2)

2
+

n∑

i=1

δi
h

(
f(h/2) + f(−h/2)

)

2i!
Êi(x);
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• Boole interpolation polynomial defined in [6] as follows

EII
n [f ](x) =

n∑

i=0

f(ih) + f((i + 1)h)

2
EII

i (x).

We emphasize that the compared polynomials of the same degree have the same
degree of exactness.

Example 5.1. Let us consider the function f(x) = e(x+1)/2, x ∈ [0, 1]. The
interpolation error is reported in the following tables (numbers in parentheses in-
dicate decimal exponents):

B̃n[f ](x) Bn[f ](x) B̂n[f ](x) B
II

n [f ](x)
n = 5 2.774(−6) 1.102(−6) 1.628(−5) 6.949(−7)
n = 6 1.460(−7) 8.619(−8) 8.814(−7) 1.733(−8)
n = 7 1.463(−8) 6.885(−9) 4.160(−8) 4.354(−10)
n = 8 7.589(−10) 5.458(−10) 1.742(−9) 8.609(−12)

Ẽn[f ](x) En[f ](x) Ên[f ](x) EII
n [f ](x)

n = 5 5.978(−5) 4.460(−5) 2.606(−6) 1.318(−7)
n = 6 9.432(−6) 7.103(−6) 1.171(−7) 2.925(−9)
n = 7 1.483(−6) 1.130(−6) 4.715(−9) 5.817(−11)
n = 8 2.354(−7) 1.799(−7) 1.726(−10) 1.041(−12)

Example 5.2. Let us consider the function f(x) = ln(x2 + 10), x ∈ [0, 1]. The
interpolation error is reported in the following tables:

B̃n[f ](x) Bn[f ](x) B̂n[f ](x) B
II

n [f ](x)
n = 5 1.994(−6) 4.526(−6) 1.310(−4) 2.823(−6)
n = 6 2.482(−6) 1.760(−6) 1.737(−6) 3.744(−7)
n = 7 5.442(−7) 3.457(−7) 5.477(−6) 1.579(−8)
n = 8 1.267(−7) 2.559(−7) 6.832(−8) 4.487(−9)

Ẽn[f ](x) En[f ](x) Ên[f ](x) EII
n [f ](x)

n = 5 1.183(−4) 2.138(−4) 1.974(−4) 4.435(−7)
n = 6 1.257(−4) 1.410(−4) 1.5591(−6) 6.225(−8)
n = 7 6.482(−5) 8.666(−5) 5.843(−7) 1.624(−9)
n = 8 5.736(−5) 7.829(−5) 4.823(−8) 1.041(−10)

Example 5.3. Let us consider the function

f(x) = 10 cos(x) +
sin2(x)

10
, x ∈ [0, 1].

The interpolation error is reported in the following tables:

B̃n[f ](x) Bn[f ](x) B̂n[f ](x) B
II

n [f ](x)
n = 5 4.652(−4) 2.319(−4) 4.227(−3) 1.483(−4)
n = 6 1.882(−5) 2.451(−6) 3.614(−6) 5.090(−7)
n = 7 1.338(−5) 2.695(−6) 1.224(−5) 9.767(−8)
n = 8 1.981(−6) 2.058(−6) 4.386(−7) 3.400(−8)
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Ẽn[f ](x) En[f ](x) Ên[f ](x) EII
n [f ](x)

n = 5 9.016(−3) 9.265(−3) 6.613(−4) 2.737(−5)
n = 6 1.881(−3) 3.195(−4) 2.770(−6) 6.299(−8)
n = 7 1.490(−3) 7.061(−4) 1.201(−6) 1.661(−8)
n = 8 6.494(−4) 6.746(−4) 3.200(−7) 4.111(−9)

6. Conclusions

Let Q be a δ-operator on Pn, X a linear space of functions such that Pn ⊆ X
and L a linear functional on X , with L(1) 6= 0. Let be XQ ⊆ X such that
Qif ∈ X , then for all f ∈ XQ we defined umbral interpolation for the couple (L, Q).
In particular generalizations of Abel–Gontscharoff and central interpolation have
been considered. Further developments are possible, for example the function series
associated to the interpolation polynomial can be considered and its convergence
radius can be studied. Furthermore, polynomial (4.7) seems to be of interest for
applications on IVP. The multivariate case is interesting too.
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