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NSE CHARACTERIZATION OF
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Abstract. Let G be a group and π(G) be the set of primes p such that
G contains an element of order p. Let nse(G) be the set of the numbers of
elements of G of the same order. We prove that the simple group L2(3n) is
uniquely determined by nse(L2(3n)), where |π(L2(3n))| = 4.

1. Introduction

Let G be a group and π(G) be the set of primes p such that G contains an
element of order p and πe(G) be the set of element orders of G. If k ∈ πe(G), then
we denote by mk, the number of elements of order k in G. Let nse(G) = {mk |
k ∈ πe(G)}. In 1987, Thompson posed a problem [6, Problem 12.37] related to
algebraic number fields as follows:

Thompson Problem. Let T (G) = {(k, mk) | k ∈ πe(G)}. Suppose that
T (G) = T (H). If G is a finite solvable group, then is H also necessarily solvable?

Up to now, no one has been able to solve this problem completely even to give
a counterexample. It is easy to see that if G and H are two finite groups with
T (G) = T (H), then |G| = |H | and nse(G) = nse(H). Studies on characterizations
related to nse started by Shao et al. in [9]. They proved that if S is a finite simple
group with |π(S)| = 4, then S is characterizable by nse(S) and |S|, i.e., S is uniquely
determined by nse(S) and |S|. Also, in [4], it is proved that sporadic simple group
S is characterizable by nse(S) and |S|. Moreover, there are some research on the
characterization of finite simple groups by nse. For instance, in [3, 5, 8, 10],
it is proved that the groups A5, A6, A7, A8, J1 and L2(q), where q ∈ {7, 8, 11, 13}
can be uniquely determined by nse. It is worth mentioning that considering the
characterization of a simple group S by nse(S) is much more complicated than its
characterization by nse(S) and |S|. Because when G is a group with nse(G) =
nse(S), the most challenging part to show that G ∼= S, is to prove π(G) = π(S).
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We here consider this characterization motivated by the following problem, which
appeared in [3].

Problem. Let G be a group such that nse(G) = nse(L2(q)), where q is a prime
power. Is G isomorphic to L2(q)?

Our main purpose is to show that the problem has an affirmative answer for
q = 3n and |π(L2(q))| = 4. In fact, we have the following main theorem.

Main Theorem. Let G be a group such that nse(G) = nse(L2(3n)), where n,

(3n − 1)/2 and (3n + 1)/4 are odd primes. Then G ∼= L2(3n).

2. Notation and preliminaries

For a natural number m, by π(m), we mean the set of all prime divisors of m,
so it is obvious that if G is a finite group, then π(G) = π(|G|). A Sylow p-subgroup
of G is denoted by Gp and by np(G), we mean the number of Sylow p-subgroups
of G. Also, the largest element order of Gp is denoted by exp(Gp). Moreover, we
denote by ϕ, the Euler totient function and by (a, b), the greatest common divisor
of integers a and b.

In the following, we bring some useful lemmas which will be used in the proof
of the main theorem.

Lemma 2.1. [2] Let G be a finite group and m be a positive integer dividing

|G|. If Lm(G) = {g ∈ G : gm = 1}, then m | |Lm(G)|.

Lemma 2.2. [7] Let G be a finite group and p ∈ π(G) − {2}. Suppose that P
is a Sylow p-subgroup of G and n = psm, where (p, m) = 1. If P is not cyclic and

s > 1, then the number of elements of order n is either 0, or a multiple of ps.

Lemma 2.3. [11, Theorem 3] In a group of order g, the number of elements

whose orders are multiples of n is either zero, or a multiple of the greatest divisor

of g that is prime to n.

Lemma 2.4. [10] Let G be a group containing more than two elements. Let

k ∈ πe(G) and mk be the number of elements of order k in G. If s = sup{mk : k ∈
πe(G)} is finite, then G is finite and |G| 6 s(s2 − 1).

Lemma 2.5. [1] Let p be a prime number.

(1) If p 6= 3, then y2 ≡ −3 (mod p) is solvable if and only if p ≡ 1 (mod 3).
(2) The equation y2 ≡ −1 (mod p) is solvable if and only if p ≡ 1 (mod 4).

From now on, we assume that n, u = (3n − 1)/2 and t = (3n + 1)/4 are odd
primes and x = 3n.

Lemma 2.6. We have

(1) (u, t) = 1, (u, 3) = 1, (u, 2) = 1, (t, 3) = 1, (t, 2) = 1;

(2) (u − 1) = 2(t − 1), (u − 1, t) = 1, (t − 1, u) = 1;

(3) 4 | 1 + xu.
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Proof. Parts (1) and (2) are straightforward. To prove part (3), we know
that t − 1 is even and hence, 8 | x − 3. Now if 4 ∤ 1 + xu, then 8 ∤ x2 − x + 2 and
hence 8 ∤ x2 − x + 2 + x − 3 = (x − 1)(x + 1) = 8tu, which is a contradiction. �

Lemma 2.7. Let p be a prime number which is prime to 2, 3, t, u, t − 1.

(1) If p | x2 − 5x + 8, then p ∤ 3x + 1, p ∤ x2 + x − 4 and p ∤ x2 − 5.

(2) If p | x2 − x − 4, then p ∤ 3x + 1 and p ∤ x2 + 5x + 8.

(3) If 16 | x − 3, then 16 ∤ x2 − x + 2.

Proof. Let p | x2−5x+8. If p | 3x+1, then p | 9(x2−5x+8)+(−3x+16)(3x+1)
= 8.11 and since (p, 2) = 1, we conclude that p = 11. Now since p | (3x + 1), we
conclude that 3n+1 ≡ −1 (mod p). Lemma 2.5 implies 4 | (p − 1) = 10, which is
a contradiction. If p | x2 + x − 4, then p | (x2 − 5x + 8) + 2(x2 + x − 4) = 6xu
and since (p, 2) = (p, 3) = (p, u) = 1, we get a contradiction. If p | x2 − 5, then
p | (−5x − 13)(x2 − 5x + 8) + (5x − 12)(x2 − 5) = −4.11 and since (p, 2) = 1, we
conclude that p = 11. Thus 11 | x2 −5−11 = (x−4)(x+4) and hence 11 | (x+4) or
11 | (x − 4). If 11 | (x + 4), then 11 | 3x + 1. Thus 3n+1 ≡ −1 (mod 11) and hence
Lemma 2.5 implies that 4 | (p − 1) = 10, which is a contradiction. If 11 | (x − 4),
then 11 | (x2 − 5x + 8) − (x2 − 5) + 5(x − 4) = −7, which is a contradiction.

Let p | x2 −x−4. If p | 3x+1, then p | −3(x2 −x−4)+(x−12)(3x+1) = −32x
and since (p, 3) = (p, 2) = 1, we get a contradiction. If p | x2 + 5x + 8, then
p | (x2 + 5x + 8) + 2(x2 − x − 4) = 12xt and since (p, 2) = (p, 3) = (p, t) = 1, we get
a contradiction.

If 16 | x − 3 and x2 − x + 2, then 16 | (x2 − x + 2) + (x − 3) = (x2 − 1) = 8tu
and since (u, 2) = (t, 2) = 1, we get a contradiction. �

3. Proof of the main theorem

According to [9], we know that |L2(3n)| = 223ntu and

nse(L2(3n)) = {1, 3nu, 8tu, (t − 1)3nu, (u − 1)3n2t} .

We prove the main theorem in a sequence of lemmas.

Lemma 3.1. The group G is finite and for every i ∈ πe(G), we have ϕ(i) | mi

and i |
∑

d|i md. Moreover, if i > 2, then mi is even.

Proof. According to Lemma 2.4, it is obvious that G is a finite group. Now,
if i ∈ πe(G), then Lemma 2.1 implies that i |

∑
d|i md. We know that the number

of elements of order i in a cyclic group of order i is equal to ϕ(i). Thus mi = ϕ(i)k,
where k is the number of cyclic subgroups of order i in G and hence, ϕ(i) | mi.
Also, it is known that if i > 2, then ϕ(i) is even and since ϕ(i) | mi, we conclude
that mi is even as well. �

Lemma 3.2. 2 ∈ π(G) and exp(G2) 6 25.

Proof. Since 3nu is the only odd element of nse(G) − {1}, Lemma 3.1 yields
2 ∈ π(G) and m2 = 3nu. If exp(G2) > 25, then 26 ∈ πe(G) and hence by
Lemma 3.1, we have 25 = ϕ(26) | m26 . Lemma 2.6 now implies that 8 | t − 1.
Therefore 32 | x − 3 and also according to nse(G), we have 8 divides m4 and m8.
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Thus Lemma 3.1 implies that 8 | 1 + m2 and hence, 16 | x2 − x + 2, which is
impossible according to Lemma 2.7. So exp(G2) 6 25. �

Lemma 3.3. We have π(G) 6= {2}.

Proof. If π(G) = {2}, then |G| = 2k = 1 + 3nu + k18tu + k2(t − 1)3nu +
k3(u− 1)3n2t, where k, k1, k2, k3 are natural numbers. By Lemma 3.2, exp(G2) 6 25

and hence |πe(G)| 6 6. Thus k1 + k2 + k3 6 4. If k1 = 1, then 3n | |G|, which is
a contradiction. Thus, we have (k1, k2, k3) = (2, 1, 1), which implies that u | |G|, a
contradiction. �

Lemma 3.4. We have π(G) 6= {2, 3}.

Proof. Let π(G) = {2, 3}. We prove the lemma in the following four steps.

Step 1. In this step, we prove that 3 is the only element of πe(G) such that
m3 = 8tu and hence |G| = 1 + 3nu + 8tu + k1(t − 1)3nu + k2(u − 1)3n2t, where
k1, k2 are natural numbers and k1 + k2 6 |πe(G)| − 3.

According to nse(G), there exists i ∈ πe(G) such that mi = 8tu. Since i ∈ πe(G)
and π(G) = {2, 3}, we have i = 2α3β, where α, β > 0 and the case α = β = 0 does
not happen. By Lemma 3.1, it is obvious that if i = 3, then m3 = 8tu. Now we
are going to reach a contradiction for the other cases of α and β.

Case 1. Let α > 1 and β = 0. Thus mi = m2α = 8tu. If 2α3 /∈ πe(G), then
G3 acts fixed point freely on the set of elements of order 2α by conjugation and
hence, |G3| | m2α , which is a contradiction. Thus 2α3 ∈ πe(G) and according to
Lemma 3.1, we conclude that 2α3 |

∑
d|2α3 md and 2α−13 |

∑
d|2α−13 md. Therefore,

3 | m2α + m2α3. Since 3 ∤ m2α , we have 3 ∤ m2α3 and hence m2α3 = m2α = 8tu
which implies that 3 | m2α + m2α3 = 16tu, a contradiction.

Case 2. Let α > 1 and β = 1. Thus mi = m2α3 = 8tu and Lemma 3.1
implies that 2α3 |

∑
d|2α3 md and 2α−13 |

∑
d|2α−13 md. Thus 3 | m2α + m2α3.

According to Case 1, we know that m2α 6= 8tu and hence, 3 | m2α . Thus 3 | m2α3,
a contradiction.

Case 3. Let α > 0 and β > 2. If G3 is cyclic of order 3k, then n3(G) =
m

3k

ϕ(3k) =
m

3k

2.3k−1 . Thus according to nse(G), we have u | n3(G) or t | n3(G) and since

n3(G) | |G|, we can get a contradiction. So G3 is not cyclic and Lemma 2.2 now
yields 9 | m2α3β , which is a contradiction.

Step 2. In this step, we prove that |G3| = 3n and exp(G3) = 3.
According to step 1, we have

|G| = |G2||G3| = 1 + 3nu + 8tu + k1(t − 1)3nu + k2(u − 1)3n2t.

Since

3n | 1 + 3nu + 8tu + k1(t − 1)3nu + k2(u − 1)3n2t,

3n+1 ∤ 1 + 3nu + 8tu + k1(t − 1)3nu + k2(u − 1)3n2t,
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we conclude that |G3| = 3n. Let exp(G3) = 3k, where k > 2. Then by Step 1, for
every i > 0, m2i3k 6= 8tu. Lemma 2.3 now implies

|G2| |
∑

i>0

m2i3k = k′
1(t − 1)3nu + k′

2(u − 1)3n2t,

where k′
1, k′

2 > 0 are integers and since 3k ∈ πe(G), we have k′
1 + k′

2 > 1. Thus
|G2| | k′

1(t − 1)u + k′
2(u − 1)2t. On the other hand, |G| = |G2||G3| = |G2|3n =

1 + 3nu + 8tu + k1(t − 1)3nu + k2(u − 1)3n2t, where k1, k2 are natural numbers
and k′

1 6 k1, k′
2 6 k2. Thus |G2| = u + 3n + k1(t − 1)u + k2(u − 1)2t. Therefore

u+3n +k1(t−1)u+k2(u−1)2t 6 k′
1(t−1)u+k′

2(u−1)2t, which is a contradiction
because k′

1 6 k1, k′
2 6 k2. So exp(G3) = 3.

Step 3. In this step, we prove that 6 ∈ πe(G).
Let 6 /∈ πe(G). Then G2 acts fixed point freely on the set of elements of order 3

by conjugation and hence, |G2| | 8 and since | nse(G)| = 5 and exp(G3) = 3, we
conclude that 8 ∈ πe(G). Thus G2 is cyclic and n2(G) = m8/4. Now according to
nse(G), we conclude that t or u divides n2(G) and since n2(G) | |G|, we can get a
contradiction.

Step 4. In this step, we prove that π(G) 6= {2, 3}.
By steps 1 and 2, we have |G3| = 3n and |G| = |G2||G3| = 1 + 3nu + 8tu +

k1(t − 1)3nu + k2(u − 1)3n2t, where k1, k2 are natural numbers. Thus |G2| =
u+3n+k1(t−1)u+k2(u−1)2t = 1/8p(x), where p(x) = Ax2+Bx+C, A = k1+2k2,
B = 12−4k1−4k2 and C = −4+3k1−6k2. By Lemma 3.2 and Step 2, exp(G2) 6 25

and exp(G3) = 3. Thus |πe(G)| 6 12, which implies that k1 + k2 6 9. According to
Lemma 2.3 we know that |G2| |

∑
i>0 m2i3 = 8tu + k′

1(t − 1)3nu + k′
2(u − 1)3n2t,

where k′
1, k′

2 > 0 are integers. Thus |G2| | 1/8q(x), where q(x) = A′x3 + B′x2 +
C′x + D′, A′ = k′

1 + 2k′
2, B′ = 8 − 4k′

1 − 4k′
2, C′ = 3k′

1 − 6k′
2 and D′ = −8. Now

by step 3, we can conclude that k′
1 + k′

2 > 1 and since exp(G2) 6 25, we have
5 > k′

1 + k′
2. It is obvious that

p(x) | (AA′x + AB′ − A′B)p(x) − A2q(x)

= (AB′B − A′B2 − A2C′ + AA′C)x + (AB′C − A′BC − A2D′).

Thus

Ax2 + Bx + C 6 (AB′B − A′B2 − A2C′ + AA′C)x + (AB′C − A′BC − A2D′)

which implies that

Ax2 + (B − AB′B + A′B2 + A2C′ − AA′C)x + (C − AB′C + A′BC + A2D′) 6 0.

But according to k1 + k2 6 9 and 1 6 k′
1 + k′

2 6 5, we conclude that x < 201. Thus
m = 3 and k1 + k2 = 8 and |G2| = 210. Since exp(G2) 6 25 and exp(G3) = 3, we
conclude that exp(G2) = 25. Hence Lemma 3.1 implies that

210 = |G2| | 1 + m2 + m4 + m8 + m16 + m32

= 1 + 3nu + k′′
1 (t − 1)3nu + k′′

2 (u − 1)3n2t = 1 + 351 + k′′
1 2106 + k′′

2 4536,

where k′′
1 , k′′

2 > 0 are integers and k′′
1 + k′′

2 = 4, which is a contradiction. �
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Lemma 3.5. We have π(G) ⊆ {2, 3, t, u}.

Proof. Let p ∈ π(G) − {2, 3, t, u}. We prove the lemma in the following six
steps.

Step 1. In this step, we prove that mp 6= 8tu and hence (p, t − 1) = 1.
Let mp = 8tu. Then p | (1 + mp) = 32n, which is a contradiction. So mp 6= 8tu

and hence mp ∈ {(t − 1)3nu, (u − 1)3n2t}. Since (p, mp) = 1, we conclude that
(p, t − 1) = 1.

Step 2. In this step, we prove that exp(Gp) = p.
Let exp(Gp) > p. Then p2 ∈ πe(G). Since p(p − 1) = ϕ(p2) | mp2 , we conclude

that p divides one of the numbers 2, 3, t, u or t − 1, which is a contradiction. So
exp(Gp) = p.

Step 3. In this step, we prove that if q ∈ πe(G) and (p, q) = 1, then qp ∈ πe(G)
and p | mq + mqp.

Let q ∈ πe(G) which is prime to p. If qp /∈ πe(G), then Gp acts fixed point freely
on the set of elements of order q by conjugation and hence |Gp| | mq, which implies
that p divides one of the numbers 2, 3, t, u or (t − 1), which is a contradiction.
So qp ∈ πe(G). Let q = qs1

1 · · · qsk

k , where q1, . . . , qk are distinct prime numbers
and k, s1, . . . , sk are natural numbers. We prove p | mq + mqp by induction on
s = s1+· · ·+sk. Let s = 1. Then we have p | 1+mp+mqi

+mqip and since p | 1+mp,
p | mqi

+ mqip. Let s = 2. Then there exist 1 6 i < j 6 k such that q = qiqj or
q = q2

i . If q = qiqj , then we have p | 1+mp+mqi
+mqj

+mqip+mqjp+mqiqj
+mqiqjp

and since p | 1 + mp, mqi
+ mqip, mqj

+ mqj p, we conclude that p | mqiqj
+ mqiqjp,

as desired. The case q = q2
i is similar and we omit the details for the sake of

convenience. Now, assume the statement is true for the values less than s. We
have

p |
∑

d|qp

md =
∑

d|qp
d 6=q,qp

md + mq + mqp.

Moreover, according to the induction hypothesis, p |
∑

d|qp, d 6=q,qp md. Therefore,

p | mq + mqp.

Step 4. mp 6= (t − 1)3nu.
Let mp = (t − 1)3nu. Then p | 1 + mp and hence p | x2 − 5x + 8. On

the other hand, by nse(G), there is q ∈ πe(G) such that (q, p) = 1 and mq or
mqp = (u − 1)3n2t. Thus by step 3, p | mq + mqp. Now, there are four cases:

Case 1. If {mq, mqp} = {(u − 1)3n2t, 3nu}, then p | x2 − 5, which is a contra-
diction by Lemma 2.7(1).

Case 2. If {mq, mqp} = {(u − 1)3n2t, 8tu}, then p | x2 + x − 4, which is a
contradiction by Lemma 2.7(1).

Case 3. If {mq, mqp} = {(u − 1)3n2t, (t − 1)3nu}, then p | 3x + 1, which is a
contradiction by Lemma 2.7(1).

Case 4. If {mq, mqp} = {(u − 1)3n2t}, then p | (u − 1)3n4t, which is a contra-
diction according to Step 1 and Lemma 2.6(2).

Step 5. mp 6= (u − 1)3n2t.
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Let mp = (u − 1)3n2t. Then p | 1 + mp and hence p | x2 − x − 4. On the other
hand, by nse(G), there is q ∈ πe(G) such that (q, p) = 1 and mq or mqp = (t−1)3nu.
Thus by Step 3, p | mq + mqp. Now there are four cases:

Case 1. If {mq, mqp} = {(t − 1)3nu, 3nu}, then p | 3ntu, which is a contradic-
tion.

Case 2. If {mq, mqp} = {(t − 1)3nu, 8tu}, then p | x2 + 5x + 8, which is a
contradiction by Lemma 2.7(2).

Case 3. If {mq, mqp} = {(t − 1)3nu}, then p | 2(t − 1)3nu, which is a contra-
diction according to Step 1.

Case 4. If {mq, mqp} = {(t − 1)3nu, (u − 1)3n2t}, then p | 3x + 1, which is a
contradiction by Lemma 2.7(2).

Step 6. p /∈ π(G). According to steps 1, 4 and 5, mp /∈ nse(G) and hence,
p /∈ π(G). �

Lemma 3.6. If t ∈ π(G), then u ∈ π(G).

Proof. If t ∈ π(G), then according to Lemma 3.1, we have mt is even and
(mt, t) = 1 and hence, according to nse(G), it is obvious that mt = (t − 1)3nu.
Now we claim that t2 6∈ πe(G). Suppose, contraty to our claim, that t2 ∈ πe(G).
Lemma 3.1 implies that t(t−1) = ϕ(t2) | mt2 and hence according to Lemma 2.6, we
have mt2 = (u−1)3n2t. On the other hand, Lemma 3.1 implies that t2 | 1+mt+mt2

and hence (x+1)2 | (x+1)2(6x−28)+44(x+1). Thus (x+1) | 44. So we conclude
that t = 11, which is a contradiction because 4t = 3n + 1. Therefore, t2 6∈ πe(G).
Now we are going to show that |Gt| = t. Since 2 ∈ πe(G), we can assume that
q is the largest element of πe(G) satisfies (q, t) = 1. Thus {q} ⊆ {s ∈ πe(G) :
s is multiple of q} ⊆ {q, qt}. Now Lemma 2.3 implies that |Gt| | mq or mq + mqt.
Hence by nse(G) and Lemma 2.6, we conclude that |Gt| = t. So nt(G) = mt

ϕ(t) = 3nu

and since nt(G) | |G|, we have u ∈ π(G). �

Lemma 3.7. We have π(G) = {2, 3, t, u}.

Proof. We first show that u2 /∈ πe(G). If u2 ∈ πe(G), then by Lemma 3.1,
u(u − 1) = ϕ(u2) | mu2 . But according to Lemma 2.6 and nse(G), we can easily
see that there is no choice for mu2 . Therefore u2 /∈ πe(G).

If u ∈ π(G), then according to nse(G) and Lemma 3.1, we can easily conclude
that mu = (u − 1)3n2t. Since u2 /∈ πe(G), Lemma 2.1 implies that |Gu| | 1 + mu.
If u2 | 1 + mu, then (x − 1)2 | (x − 1)2x − 4(x − 1) and hence (x − 1) | 4, which is
a contradiction. Thus |Gu| = u and we have nu(G) = mu

ϕ(u) = 3n2t. Now according

to Lemmas 3.2-3.6, we have u ∈ π(G) and since nu(G) = 3n2t and nu(G) | |G|, we
conclude that {2, 3, t, u} ⊆ π(G). On the other hand, by Lemma 3.5, there is no
p ∈ π(G) such that p 6= 2, 3, t, u. Therefore, π(G) = {2, 3, t, u}. �

Lemma 3.8. We have 2u, 3u, tu, 3t, 4t /∈ πe(G) but 2t ∈ πe(G) and m2t = mt.

Moreover if 6 ∈ πe(G), then m6 6= 8tu

Proof. If 2u ∈ πe(G), then m2u = ϕ(2u)nu(G)k, where k is the number of
cyclic subgroups of order 2 in CG(Gu). Actually, this follows from the fact that all
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centralizers of Sylow u-subgroups of G in G are conjugate in G. Therefore we have
(u−1)3n2t | m2u. Thus m2u = mu. On the other hand, 2u | 1+m2 +mu +m2u and
u | 1+m2 +mu which implies that u | m2u, a contradiction. Similarly, we can prove
that 3u, tu, 3t, 4t /∈ πe(G). If 2t /∈ πe(G), then Gt acts fixed point freely on the set
of elements of order 2 by conjugation and hence, |Gt| | m2, which is a contradiction.
So 2t ∈ πe(G). Similarly, we can prove that m2t = mt. Let 6 ∈ πe(G) such that
m6 = 8tu. Since 3 | 1 + m2 + m3 and 6 | 1 + m2 + m3 + m6, we conclude that
3 | m6, which is a contradiction. �

Lemma 3.9. We have exp(G3) = 3.

Proof. If exp(G3) > 3, then 9 ∈ πe(G). Since 3t, 3u /∈ πe(G), we conclude
that 9t, 9u /∈ πe(G). Thus Gt and Gu act fixed point freely on the set of elements
of order 9 by conjugation and hence, |Gt| | m9 and |Gu| | m9. So we have tu | m9,
which implies that m9 = 8tu, a contradiction, because 6 = ϕ(9) | m9. �

Lemma 3.10. We have exp(G2) = 2.

Proof. If exp(G2) > 2, then 4 ∈ πe(G). Thus Lemma 3.8 implies that 4t, 4u /∈
πe(G). Thus Gt and Gu act fixed point freely on the set of elements of order 4
by conjugation and hence, |Gt| | m4 and |Gu| | m4. So tu | m4, which implies
that m4 = 8tu. On the other hand, 12 ∈ πe(G) because otherwise G3 acts fixed
point freely on the set of elements of order 4 by conjugation and hence, 3 | m4, a
contradiction. So 12 ∈ πe(G). Now since 6 | 1 + m2 + m3 + m6 and 12 | 1 + m2 +
m3 + m4 + m6 + m12, we conclude that 3 | m4 + m12. Thus 3 ∤ m12, which implies
that m12 = 8tu. But we have 3 | m4 + m12 = 16tu, a contradiction. �

Lemma 3.11. We have |G| = 1 + 3nu + 8tu + k1(t − 1)3nu + k2(u − 1)3n2t,
where k1, k2 are natural and 3 6 k1 + k2 6 4.

Proof. According to Lemmas 3.8–3.10, we have {1, 2, 3, t, 2t, u} ⊆ πe(G) ⊆
{1, 2, 3, 6, t, 2t, u} and m1 = 1, m2 = 3nu, m3 = 8tu, mt = m2t = (t − 1)3nu,
mu = (u − 1)3n2t and m6 ∈ {(t − 1)3nu, (u − 1)3n2t}. So we conclude that
|G| = 1 + 3nu + 8tu + k1(t − 1)3nu + k2(u − 1)3n2t, where k1, k2 are natural
numbers and 3 6 k1 + k2 6 4. �

Lemma 3.12. We have |G3| = 3n.

Proof. By Lemma 3.11, |G| = 1+3nu+8tu+k1(t−1)3nu+k2(u−1)3n2t, where
k1, k2 are natural. Now since 3n | 1 + 3nu + 8tu + k1(t − 1)3nu + k2(u − 1)3n2t and
3n+1 ∤ 1+3nu+8tu+k1(t−1)3nu+k2(u−1)3n2t, we conclude that |G3| = 3n. �

Lemma 3.13. We have |G2| = 4.

Proof. If |G2| = 2, then G2 is cyclic and n2(G) = 3nu. Since |G3| = 3n and
n2(G) = |G : NG(G2)|, we conclude that 3 ∤ |NG(G2)|. Thus 6 /∈ πe(G) and by
Lemma 3.11, we have |G| = 1 + 3nu + 8tu + 2(t − 1)3nu + (u − 1)3n2t. Lemma 2.6
now yields 4 | |G|, which is a contradiction. Therefore, |G2| > 4. If |G2| > 8, then
by Lemmas 2.1 and 3.10, 8 | 1 + m2. Thus 16 | x2 − x + 2. On the other hand, by
Lemma 3.8, t, 2t are only elements of πe(G) which are multiple, of t and mt = m2t.



NSE CHARACTERIZATION OF THE SIMPLE GROUP L2(3n) 201

Thus Lemma 2.3 implies that |G2||G3||Gu| | mt + m2t = 2(t − 1)3nu. Therefore
4 | (t − 1). So 16 | (x − 3), which is a contradiction according to Lemma 2.7. �

Lemma 3.14. We have G ∼= L2(3n).

Proof. Since |Gu| = u, |Gt| = t, |G3| = 3n and |G2| = 4, we conclude that
|G| = |L2(3n)| = 223ntu. Now according to [9] we have G ∼= L2(3n). �
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