VERTEX DECOMPOSABLE GRAPH

N. Hajisharifi and S. Yassemi

Abstract

Let G be a simple graph on the vertex set $V(G)$ and $S=\left\{x_{11}, \ldots\right.$, $\left.x_{n 1}\right\}$ a subset of $V(G)$. Let $m_{1}, \ldots, m_{n} \geqslant 2$ be integers and G_{1}, \ldots, G_{n} connected simple graphs on the vertex sets $V\left(G_{i}\right)=\left\{x_{i 1}, \ldots, x_{i m_{i}}\right\}$ for $i=$ $1, \ldots, n$. The graph $G\left(G_{1}, \ldots, G_{n}\right)$ is obtained from G by attaching G_{i} to G at the vertex $x_{i 1}$ for $i=1, \ldots, n$. We give a characterization of $G\left(G_{1}, \ldots, G_{n}\right)$ for being vertex decomposable. This generalizes a result due to Mousivand, Seyed Fakhari, and Yassemi.

1. Introduction

Let G be a finite simple graph (no loops or multiple edges) on the vertex set $V(G)=\left\{x_{1}, \ldots, x_{m}\right\}$ and edge set $E(G)$. Adding a whisker to G at x_{i} means adding a new vertex y and edge $\left\{x_{i}, y\right\}$ to G. Villarreal showed that the graph obtained from G by adding a whisker to every vertex of G is Cohen-Macaulay [7. Proposition 2.2]. Moreover, it was shown that this graph is also unmixed and vertex decomposable [4, Theorem 4.4]. Adding a whisker to a vertex of G is the same as saying that attaching the complete graph K_{2} to a vertex of G. Let $S=$ $\left\{x_{11}, \ldots, x_{n 1}\right\}$ be a subset of $V(G)$. The graph $G\left(G_{1}, \ldots, G_{n}\right)$ is obtained from G by attaching G_{i} to G at the vertex $x_{i 1}$ for $i=1, \ldots, n$. Recently, Mousivand, Fakhari and Yassemi characterized when the graph obtained by attaching arbitrary graphs to every vertex of a given graph is vertex decomposable [6, Proposition 2.3]. We generalize this result (see Theorem 3.1).

2. Preliminaries

We recall some definitions and properties that will be used later. Let K be a field. To any finite simple graph G (no loops or multiple edges) with vertex set $V(G)=\left\{x_{1}, \ldots, x_{m}\right\}$ and edge set $E(G)$ one associates edge ideal $I(G) \subset$ $K\left[x_{1}, \ldots, x_{m}\right]$ whose generators are all monomials $x_{i} x_{j}$ such that $\left\{x_{i}, x_{j}\right\} \in E(G)$.

[^0]The graph G is called Cohen-Macaulay over K if $K\left[x_{1}, \ldots, x_{m}\right] / I(G)$ has this property.

Let G be a graph with the vertex set $V(G)=\left\{x_{1}, \ldots, x_{m}\right\}$ and the edge set $E(G)$. The induced subgraph $\left.G\right|_{W}$ for $W \subseteq V(G)$ is defined by

$$
\left.G\right|_{W}:=(W,\{e \in E(G) ; e \subset W\}) .
$$

For $W \subseteq V(G)$ we denote $\left.G\right|_{V(G) \backslash W}$ by $G \backslash W$. If $W=\{x\}$, we write $G \backslash x$ instead of $G \backslash\{x\}$. For any $x \in V(G)$ we denote the open neighbor set of x in G by $N_{G}(x)$, i.e., $N_{G}(x):=\{y \in V(G) \mid\{x, y\} \in E(G)\}, N_{G}[x]:=N_{G}(x) \cup\{x\}$. For $W \subseteq V(G)$, we set $N_{G}[W]=\bigcup_{x \in W} N_{G}[x]$.

A graph is complete if every two of its vertices are adjacent. The complete graph with n vertices is denoted by K_{n}.

A simplicial complex Δ on a finite set V is a collection of subsets of V which is closed under inclusion. Members of Δ are called faces. The maximum faces of Δ with respect to the inclusion are called the facets. The dimension of a face F is $|F|-1$ and the dimension of a complex Δ is the maximum of the dimensions of its facets. If all the facets of Δ have the same dimension we say that Δ is pure and a complex with a unique facet is called a simplex. Let Δ be a simplicial complex on the vertex set V. The induced subcomplex of $\left.\Delta\right|_{S}$ for $S \subseteq V$ is defined by $\left.\Delta\right|_{S}:=\{F \in \Delta \mid F \subseteq S\}$.

Let F be a face of Δ. The link and the deletion of F from Δ are the simplicial complex defined by
$\operatorname{link}_{\Delta} F:=\{G \in \Delta \mid G \cap F=\emptyset, G \cup F \in \Delta\}, \quad \operatorname{del}_{\Delta} F:=\{G \in \Delta \mid F \nsubseteq G\}$.
If $F=\{x\}$, we write $\operatorname{link}_{\Delta} x$ (resp. $\left.\operatorname{del}_{\Delta} x\right)$ instead of $\operatorname{link}_{\Delta}\{x\}$ (resp. del $\operatorname{del}_{\Delta}\{x\}$). See [5] for detailed information.

Let $G=(V(G), E(G))$ be a graph. A subset F of $V(G)$ is called an independent set if no two vertices of F are adjacent. The independence complex of G, denoted by $\operatorname{Ind}(G)$, is the simplicial complex on the vertex set $V(G)$, defined by

$$
\operatorname{Ind}(G):=\{F \subseteq G \mid F \text { is an independent set of } \mathrm{G}\} .
$$

A simplicial complex Δ is called vertex decomposable if it is a simplex or else has a vertex x such that
(1) both $\operatorname{del}_{\Delta} x$ and $\operatorname{link}_{\Delta} x$ are vertex decomposable, and
(2) there is no face of $\operatorname{link}_{\Delta} x$ which is also a facet of $\operatorname{del}_{\Delta} x$. A shedding vertex is the vertex x which satisfies condition (2).

Remark 2.1. Our definition of shedding vertex is slightly different with the definition in [6], where a shedding vertex is the one which satisfies conditions (1) and (2).

Vertex decomposability was introduced in the pure case by Billera and Provan [2] and extended to nonpure complexes by Björner and Wachs [3]. A graph G is called vertex decomposable if $\operatorname{Ind}(G)$ has this property. In [8] Woodroofe translated the notion of vertex decomposability for graphs as follows.

A graph G is vertex decomposable if it is totally disconnected (with no edges) or else has some vertex x such that
(1) both $G \backslash N_{G}[x]$ and $G \backslash x$ are vertex decomposable, and
(2) for every independent set S in $G \backslash N_{G}[x]$, there exists some $y \in N_{G}(x)$ such that $S \cup\{y\}$ is independent in $G \backslash x$.
A vertex x which satisfies condition (2) is called a shedding vertex for G.
A graph G is called chordal if every induced cycle of G of length $\geqslant 4$ has a chord. In [8] Woodroofe proved that every chordal graph is vertex decomposable.

3. Vertex decomposable graph

Here we prove our main result. We write $B \dot{\cup} C$ for disjoint union.
Theorem 3.1. Let G be a simple graph on the vertex set $V(G)$ and $S=$ $\left\{x_{11}, \ldots, x_{n 1}\right\}$ a subset of $V(G)$. Let $m_{1}, \ldots, m_{n} \geqslant 2$ be integers and G_{1}, \ldots, G_{n} connected graphs on the vertex set $V\left(G_{i}\right)=\left\{x_{i 1}, \ldots, x_{i m_{i}}\right\}$ for $i=1, \ldots, n$ and suppose that $x_{i 1}$ is a shedding vertex of G_{i} for $i=1, \ldots, n$. Then $G\left(G_{1}, \ldots, G_{n}\right)$ is vertex decomposable if and only if
(i) $G_{i} \backslash x_{i 1}$ and $G_{i} \backslash N_{G_{i}}\left[x_{i 1}\right]$ are vertex decomposable, for $i=1, \ldots, n$, and
(ii) for any face μ of $\Delta=\operatorname{Ind}(G)$ with $\mu \subseteq S$, the complex $\left.\operatorname{link}_{\Delta} \mu\right|_{\bar{S}}$ is vertex decomposable, where $\bar{S}=V(G) \backslash S$.
Proof. (\Leftarrow) The graph $G\left(G_{1}, \ldots, G_{n}\right)$ is obtained from G by attaching G_{i} to G at the vertex $x_{i 1}$ for $i=1, \ldots, n$. We prove the assertion by induction on $n=|S|$. Set $G^{\prime}=G\left(G_{1}, \ldots, G_{n}\right)$. If $S=\emptyset$, then $\mu=\emptyset, G^{\prime}=G$ and $\left.\operatorname{link}_{\Delta} \mu\right|_{\bar{S}}=\operatorname{Ind}(G)$ is vertex decomposable by hypothesis.

Assume that $n \geqslant 1$ and the assertion holds for any graph G and every $S \subseteq V(G)$ such that $|S| \leqslant n-1$. Suppose $S=\left\{x_{11}, \ldots, x_{n 1}\right\}$. We prove that x_{11} is a shedding vertex of G^{\prime}. Assume that A is an independent set in $G^{\prime} \backslash N_{G^{\prime}}\left[x_{11}\right]$. We have $A=B \cup \dot{C}$ where $B=A \cap\left[V\left(G_{2}\right) \cup \cdots \cup V\left(G_{n}\right) \cup\left(V(G) \backslash\left\{x_{21}, \ldots, x_{n 1}\right\}\right)\right]$ and $C=A \cap V\left(G_{1}\right)$. Since $N_{G_{1}}\left[x_{11}\right] \subseteq N_{G^{\prime}}\left[x_{11}\right]$, it follows that C is an independent set in $G_{1} \backslash N_{G_{1}}\left[x_{11}\right]$. There exists an $x_{1 k} \in N_{G_{1}}\left(x_{11}\right)$ such that $C \cup\left\{x_{1 k}\right\}$ is independent set in $G_{1} \backslash x_{11}$, because x_{11} is a shedding vertex of G_{1}. For any $y \in V\left(G_{2}\right) \cup \cdots \cup V\left(G_{n}\right) \cup\left(V(G) \backslash\left\{x_{21}, \ldots, x_{n 1}\right\}\right)$, we have $\left\{x_{1 k}, y\right\} \notin E\left(G^{\prime}\right)$. Thus $A \cup\left\{x_{1 k}\right\}$ is independent in $G^{\prime} \backslash x_{11}$ and so x_{11} is a shedding vertex of G^{\prime}.

Set $S_{1}=\left\{x_{21}, \ldots, x_{n 1}\right\}$ and $\Delta^{\prime}=\operatorname{Ind}\left(G \backslash x_{11}\right)$. We have $G^{\prime} \backslash x_{11}=G_{1}^{\prime} \dot{\cup} G_{2}^{\prime}$ where $G_{1}^{\prime}=G_{1} \backslash x_{11}$ and $G_{2}^{\prime}=\left(G \backslash x_{11}\right)\left(G_{2}, \ldots, G_{n}\right)$. Let $\mu \in \Delta^{\prime}$ with $\mu \subseteq S_{1}$. Thus $\mu \in \Delta$ and $\mu \subseteq S$. We have

$$
\begin{aligned}
\left.\operatorname{link}_{\Delta^{\prime}} \mu\right|_{\bar{S}_{1}} & =\left\{F \in \Delta^{\prime} \mid F \subseteq \bar{S}_{1}, F \cup \mu \in \Delta^{\prime}, F \cap \mu=\emptyset\right\} \\
& =\{F \in \Delta \mid F \subseteq \bar{S}, F \cup \mu \in \Delta, F \cap \mu=\emptyset\}=\left.\operatorname{link}_{\Delta} \mu\right|_{\bar{S}}
\end{aligned}
$$

Thus we have that link $\left.\Delta_{\Delta^{\prime}} \mu\right|_{\bar{S}_{1}}$ is vertex decomposable by hypothesis. Therefore G_{2}^{\prime} is vertex decomposable by induction and G_{1}^{\prime} is vertex decomposable by hypothesis. It now follows from [8, Lemma 20] that $G^{\prime} \backslash x_{11}$ is vertex decomposable.

Now consider $G^{\prime} \backslash N_{G^{\prime}}\left[x_{11}\right]$. If $S \subseteq N_{G^{\prime}}\left[x_{11}\right]$, then

$$
G^{\prime} \backslash N_{G^{\prime}}\left[x_{11}\right]=\left(G \backslash N_{G}\left[x_{11}\right]\right) \dot{\cup}\left(G_{1} \backslash N_{G_{1}}\left[x_{11}\right] \dot{\cup} G_{2} \backslash x_{21} \dot{\cup} \ldots \dot{\cup} G_{n} \backslash x_{n 1}\right) .
$$

Since $S \subseteq V(G)$, it follows that $S \subseteq N_{G}\left[x_{11}\right]$ and $V\left(G \backslash N_{G}\left[x_{11}\right]\right) \subseteq \bar{S}$.

Set $\mu=\left\{x_{11}\right\}$. We have $\mu \in \Delta, \mu \subseteq S$ and $\left.\operatorname{link}_{\Delta} \mu\right|_{\bar{S}}=\operatorname{Ind}\left(G \backslash N_{G}\left[x_{11}\right]\right)$ is vertex decomposable by hypothesis. Also, for $2 \leqslant i \leqslant n, G_{i} \backslash x_{i 1}$ and $G_{1} \backslash N_{G_{1}}\left[x_{11}\right]$ are vertex decomposable and hence $\left(G_{1} \backslash N_{G_{1}}\left[x_{11}\right] \dot{\cup} G_{2} \backslash x_{21} \dot{\cup} \cdots \dot{\cup} G_{n} \backslash x_{n 1}\right)$ is vertex decomposable by [8, Lemma 20]. Thus $G^{\prime} \backslash N_{G^{\prime}}\left[x_{11}\right]$ is vertex decomposable.

Assume $S \not \subset N_{G^{\prime}}\left[x_{11}\right]$. After relabeling the vertices of G, we assume that $S \cap N_{G}\left[x_{11}\right]=\left\{x_{11}, \ldots, x_{l 1}\right\}$ and

$$
G^{\prime} \backslash N_{G^{\prime}}\left[x_{11}\right]=G_{0}\left(G_{l+1}, \ldots, G_{n}\right) \dot{\cup}\left(G_{1} \backslash N_{G_{1}}\left[x_{11}\right] \dot{\cup} G_{2} \backslash x_{21} \dot{\cup} \ldots \dot{\cup} G_{l} \backslash x_{l 1}\right)
$$

where $G_{0}=\left(G \backslash N_{G}\left[x_{11}\right]\right)$. Set $S_{1}=S \backslash N_{G}\left[x_{11}\right]=\left\{x_{l+11}, \ldots, x_{n 1}\right\}$. Let $\mu \in$ $\operatorname{link}_{\Delta} x_{11}$ and $\mu \subseteq S_{1}$. We have

$$
\begin{aligned}
\left.\operatorname{link}_{\text {link }_{\Delta} x_{11}} \mu\right|_{\bar{S}_{1}} & =\left\{F \in \operatorname{link}_{\Delta} x_{11} \mid F \subseteq \bar{S}_{1}, F \cup \mu \in \operatorname{link}_{\Delta} x_{11}, F \cap \mu=\emptyset\right\} \\
& =\left\{F \in \Delta \mid F \subseteq \bar{S}, F \cup \mu \cup\left\{x_{11}\right\} \in \Delta, F \cap\left(\mu \cup\left\{x_{11}\right\}\right)=\emptyset\right\} \\
& =\left.\operatorname{link}_{\Delta}\left(\mu \cup\left\{x_{11}\right\}\right)\right|_{\bar{S}} .
\end{aligned}
$$

From hypothesis, we have that $\left.\operatorname{link}_{\Delta}\left(\mu \cup\left\{x_{11}\right\}\right)\right|_{\bar{S}}$ is vertex decomposable and so link $\left._{\text {link }_{\Delta} x_{11}} \mu\right|_{\overline{S_{1}}}$ is vertex decomposable for any face μ of $\operatorname{link}_{\Delta} x_{11}$ with $\mu \subseteq S_{1}$. Note that $\operatorname{Ind}\left(G_{0}\right)=\operatorname{link}_{\Delta} x_{11}$ and hence $G_{0}\left(G_{l+1}, \ldots, G_{n}\right)$ is vertex decomposable by induction. Also, $G_{1} \backslash N_{G_{1}}\left[x_{11}\right], G_{2} \backslash x_{21}, \ldots, G_{l} \backslash x_{l 1}$ are vertex decomposable by hypothesis. Thus $G^{\prime} \backslash N_{G^{\prime}}\left[x_{11}\right]$ is vertex decomposable by [8, Lemma 20].
(\Rightarrow) Conversely, assume that $G^{\prime}=G\left(G_{1}, \ldots, G_{n}\right)$ is vertex decomposable. Set $\Delta^{\prime}=\operatorname{Ind}\left(G^{\prime}\right)$. After relabeling the vertices of G, we assume that $\mu=\left\{x_{11}, \ldots, x_{l 1}\right\}$ and $\mu \in \Delta$. Hence $\left\{x_{11}, \ldots, x_{l 1}\right\}$ is independent set in G. We show that link $\left.{ }_{\Delta}(\mu)\right|_{\bar{S}}$ is vertex decomposable. For $1 \leqslant j \leqslant l$, let A_{j} be a facet of $\operatorname{Ind}\left(G_{j}\right)$ with $x_{j 1} \in A_{j}$. Note that for $1 \leqslant i \leqslant n, G_{i}$ is connected graph and hence has no isolated vertex. Thus $\operatorname{Ind}\left(G_{j}\right)$ has no cone point and let for $l+1 \leqslant j \leqslant n, A_{j}$ be a facet of $\operatorname{Ind}\left(G_{j}\right)$ with $x_{j 1} \notin A_{j}$. It follows that $A=\bigcup_{j=1}^{n} A_{j}$ is a face of Δ^{\prime}. One can check that $\left.\operatorname{link}_{\Delta}(\mu)\right|_{\bar{S}}=\operatorname{link}_{\Delta^{\prime}}(A)$.

Suppose $\left.F \in \operatorname{link}_{\Delta}(\mu)\right|_{\bar{S}}$. It is clear that for $1 \leqslant i \leqslant n, x_{i} \notin F$ and $F \cup \mu \in \Delta$ and so $F \cup A$ is independent set in G^{\prime} and hence $F \cup A \in \Delta^{\prime}$. Also, $F \cap A=\emptyset$ because $F \cap \mu=\emptyset$. Since $\Delta \subseteq \Delta^{\prime}$ and $F \in \Delta$, we have $F \in \Delta^{\prime}$ and so $F \in \operatorname{link}_{\Delta^{\prime}}(A)$.

We now consider the reverse inclusion. Let $F \in \operatorname{link}_{\Delta^{\prime}}(A)$. We have $F \cap A=\emptyset$ and hence $F \cap A_{j}=\emptyset$ for $1 \leqslant j \leqslant n$. We claim that for $1 \leqslant j \leqslant n, F \cap\left(V\left(G_{j}\right)\right)=\emptyset$. Let there exists an $i \in\{1, \ldots, n\}$ such that $F \cap V\left(G_{i}\right) \neq \emptyset$, and let $x \in F \cap V\left(G_{i}\right)$. Since $F \cap A_{i}=\emptyset, x \notin A_{i}$. On the other hand, one has $F \cup A \in \Delta^{\prime}$. Therefore $A_{i} \cup\{x\}$ is an independent set in G_{i} and $A_{i} \subset A_{i} \cup\{x\}$, that contradiction with facet A_{i} and so $F \cap\left(V\left(G_{i}\right)\right)=\emptyset$ and $F \subseteq \bar{S}$. Since $\bar{S} \subseteq V(G)$, we have $F \subseteq V(G)$. Moreover, $\mu \subseteq A, F \cup A \in \Delta^{\prime}$ and Δ^{\prime} is simplicial complex, thus $F \cup \mu \in \Delta^{\prime}$. Also, $F \cup \mu \in \Delta$, because $F, \mu \in \Delta$ and $\Delta \subseteq \Delta^{\prime}$. Since $F \cap A=\emptyset$ and $\mu \subseteq A$, we have $F \cap \mu=\emptyset$. Therefore $\left.F \in \operatorname{link}_{\Delta}(\mu)\right|_{\bar{S}}$. Since $\Delta^{\prime}=\operatorname{Ind}\left(G^{\prime}\right)$ is vertex decomposable, $\operatorname{link}_{\Delta^{\prime}}(A)$ is vertex decomposable by [1, Theorem 2.5] and so $\left.\operatorname{link}_{\Delta}(\mu)\right|_{\bar{S}}$ is vertex decomposable for any $\mu \subseteq S$ and $\mu \in \Delta$.

Now, we prove that $G_{i} \backslash x_{i 1}$ and $G_{i} \backslash N_{G_{i}}\left[x_{i 1}\right]$ are vertex decomposable for $1 \leqslant$ $i \leqslant n$. Assume G is a connected graph (otherwise consider connected components of G). Then there exists a $y \in V(G)$ such that $x_{i 1} y \in E(G)$. Also, $\operatorname{link}_{\Delta^{\prime}} y$ and
$\operatorname{link}_{\Delta^{\prime}} x_{i 1}$ are vertex decomposable, because Δ^{\prime} is vertex decomposable [1. Theorem 2.5]. Note that $G_{i} \backslash x_{i 1}$ and $G_{i} \backslash N_{G_{i}}\left[x_{i 1}\right]$ are respectively connected components of $\operatorname{link}_{\Delta^{\prime}} y$ and $\operatorname{link}_{\Delta^{\prime}} x_{i 1}$ and so they are vertex decomposable [8, Lemma 20].

Let $S=\left\{x_{11}, \ldots, x_{n 1}\right\}$ be a subset of $V(G)$. The graph $G \cup W(S)$ is obtained from G by adding a whisker to every vertex of S.

Corollary 3.1. [1, Theorem 4.4] Let $\operatorname{Ind}(G)$ be the independence complex of a graph G on a vertex set $V(G)$ and let $S \subseteq V(G)$. Then $\operatorname{Ind}(G \cup W(S))$ is vertex decomposable if and only if $\operatorname{Ind}\left(\left.\left(G \backslash N_{G}[\mu]\right)\right|_{\bar{S}}\right)$ is vertex decomposable for all $\mu \in \operatorname{Ind}(G)$ with $\mu \subseteq S$.

Proof. Adding a whisker to a vertex of G is the same as attaching the complete graph K_{2} to a vertex of G, and we have $G \cup W(S)=G(\underbrace{K_{2}, \ldots, K_{2}}_{n \text { times }})$.

Note that $\left.\operatorname{link}_{\operatorname{Ind}(G)}(\mu)\right|_{\bar{S}}=\left.\operatorname{Ind}\left(G \backslash N_{G}[\mu]\right)\right|_{\bar{S}}=\operatorname{Ind}\left(\left.\left(G \backslash N_{G}[\mu]\right)\right|_{\bar{S}}\right)$. Now, apply Theorem 3.1.

The cycle of length n is denoted by C_{n}. The induced cycle C_{n} of G is called chordless cycle of length n. In [8, Theorem 1] Woodroofe showed that if G is a graph with no chordless cycles of length other from 3 or 5 , then G is vertex decomposable.

Corollary 3.2. Let G be a simple graph on the vertex set $V(G)$ and $S=$ $\left\{x_{11}, \ldots, x_{n 1}\right\}$ a subset of $V(G)$. Let $m_{1}, \ldots, m_{n} \geqslant 2$ be integers and G_{1}, \ldots, G_{n} connected simple graphs on the vertex sets $V\left(G_{i}\right)=\left\{x_{i 1}, \ldots, x_{i m_{i}}\right\}$ for $i=1, \ldots, n$. Assume that $x_{i 1}$ is a shedding vertex of G_{i} for $i=1, \ldots, n$. If $G_{i} \backslash x_{i 1}$ and $G_{i} \backslash N_{G_{i}}\left[x_{i 1}\right]$ for $i=1, \ldots, n$ are vertex decomposable and $G \backslash S$ is a graph with no chordless cycles of length other than 3 or 5 , then $G\left(G_{1}, \ldots, G_{n}\right)$ is vertex decomposable.

Proof. Note that $\left.\operatorname{link}_{\operatorname{Ind}(G)}(\mu)\right|_{\bar{S}}=\left.\operatorname{Ind}\left(G \backslash N_{G}[\mu]\right)\right|_{\bar{S}}=\operatorname{Ind}\left(\left.\left(G \backslash N_{G}[\mu]\right)\right|_{\bar{S}}\right)$. For every $\mu \subseteq S,\left.\left(G \backslash N_{G}[\mu]\right)\right|_{\bar{S}}$ is an induced subgraph of $\left.G\right|_{\bar{S}}$, so it is a graph with no chordless cycles of length other from 3 or 5 , and hence it is vertex decomposable by [8. Theorem 1]. Now, apply Theorem 3.1.

Therefore, we infer the following result.
Corollary 3.3. Let G be a simple graph on the vertex set $V(G)$ and let $S \subseteq V(G)$. If $G \backslash S$ is a graph with no chordless cycles of length other than 3 or 5 , then $G \cup W(S)$ is a vertex decomposable graph.

Corollary 3.4. Let G be a simple graph on the vertex set $V(G)$ and $S=$ $\left\{x_{11}, \ldots, x_{n 1}\right\}$ a subset of $V(G)$ with $|S| \geqslant|V(G)|-3$. Let $m_{1}, \ldots, m_{n} \geqslant 2$ be integers and G_{1}, \ldots, G_{n} connected simple graphs on the vertex sets $V\left(G_{i}\right)=$ $\left\{x_{i 1}, \ldots, x_{i m_{i}}\right\}$ for $i=1, \ldots, n$. Assume $x_{i 1}$ is a shedding vertex of G_{i} for $i=$ $1, \ldots, n$. Moreover, let $G_{i} \backslash x_{i 1}$ and $G_{i} \backslash N_{G_{i}}\left[x_{i 1}\right]$ for $i=1, \ldots, n$ be vertex decomposable. Then $G\left(G_{1}, \ldots, G_{n}\right)$ is vertex decomposable.

Proof. Since $|S| \geqslant|V(G)|-3, G \backslash S$ is a graph on at most 3 vertices. So $G \backslash S$ is either a tree, edgeless graph, $K_{2} \dot{\cup} K_{1}$ or C_{3}. Thus $G \backslash S$ is chordal and the assertion holds by Corollary 3.2.

Therefore the following result holds.
Corollary 3.5. Let G be a simple graph, and let $S \subset V(G)$. Assume that $|S| \geqslant|V(G)|-3$. Then $G \cup W(S)$ is a vertex decomposable graph.

In the following example it is shown that the bound $|V(G)|-3$ in Corollary 3.4 is sharp.

Example 3.1. Let G and G_{1} be graphs shown in the figure below, and let $S=\left\{x_{1}\right\}$. Note that the only shedding vertices of $G\left(G_{1}\right)$ are x_{1}, y and z. Then $G\left(G_{1}\right)$ is not vertex decomposable, because $G\left(G_{1}\right) \backslash N[y]=G\left(G_{1}\right) \backslash N[z]=C_{4}$ and $G\left(G_{1}\right) \backslash x_{1}=K_{2} \dot{\cup} C_{4}$ are not vertex decomposable.

G_{1}

G

$G\left(G_{1}\right)$

Corollary 3.6. Let G be a simple graph on the vertex set $V(G)$ and $S=$ $\left\{x_{11}, \ldots, x_{n 1}\right\}$ a subset of $V(G)$. Let $m_{1}, \ldots, m_{n} \geqslant 2$ be integers and G_{1}, \ldots, G_{n} connected simple graphs on the vertex sets $V\left(G_{i}\right)=\left\{x_{i 1}, \ldots, x_{i m_{i}}\right\}$ for $i=1, \ldots, n$. Assume that $x_{i 1}$ is a shedding vertex of G_{i} for $i=1, \ldots, n$. Moreover, let G_{i}, $G_{i} \backslash x_{i 1}$ and $G_{i} \backslash N_{G_{i}}\left[x_{i 1}\right]$ for $i=1, \ldots, n$ be vertex decomposable. Then
(i) If S is a vertex cover of G, then $G\left(G_{1}, \ldots, G_{n}\right)$ is vertex decomposable.
(ii) If $G \backslash S$ is a forest, then $G\left(G_{1}, \ldots, G_{n}\right)$ is vertex decomposable.
(iii) If $G=C_{n}$ is a cycle and x a vertex of C_{n}, then $G\left(G_{1}\right)$ is vertex decomposable.

Proof. If S is a vertex cover of G, then $G \backslash S$ is an edgeless graph and so it is a chordal graph. Also, every forest is a chordal graph. Now, (i) and (ii) follow from Corollary 3.2. Finally, the resulting graph of removing a vertex from C_{n} is a tree and hence (iii) follows from (ii).

References

1. J. Biermann, C.A Francisco, H. T. Há, A. Van Tuyl, Colorings of simplicial complexes and vertex decomposability, J. Commut. Algebra 7 (2015), 337-352.
2. L. J. Billera, J. S. Provan, Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5(4) (1980), 576-594.
3. A. Björner, M. Wachs, Shellable nonpure complexes and posets I, Trans. Am. Math. Soc. 348 (1996), 1299-1327.
4. A. Dochtermann, A. Engström, Algebraic properties of edge ideals via combinatorial topology, Electron. J. Comb. 16(2) (2009), research paper 2, 24 pp.
5. J. Herzog, T. Hibi, Monomial Ideals, Grad. Texts Math. 260, Springer-Verlag, 2010.
6. M. Mousivand, S. A. Seyed Fakhari, S. Yassemi, A new construction for Cohen-Macaulay graphs, Commun. Algebra 43(12) (2015), 5104-5112.
7. R. H. Villarreal, Cohen-Macaulay graphs, Manuscr. Math 66 (1990), 277-293.
8. R. Woodroofe, vertex decomposable graphs and obstructions to shellability, Proc. Am. Math. Soc 137 (2009), 3235-3246.

Young Researchers and Elite Club
(Received 3112 2014)
Khomein Branch
(Revised 1510 2015)
Islamic Azad University
Khomein
Iran
hajisharifi@iaukhomein.ac.ir
School of Math.
Stat. Comp. Sci.
College of Science
University of Tehran
Tehran
Iran
yassemi@ut.ac.ir

[^0]: 2010 Mathematics Subject Classification: Primary 13F55, 05E40; Secondary 05C70, 05C38.
 Key words and phrases: vertex decomposable, Cohen-Macaulay.
 The research of S. Yassemi was in part supported by a grant from university of Tehran.
 Communicated by Slobodan Simić.

