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VERTEX DECOMPOSABLE GRAPH

N. Hajisharifi and S. Yassemi

Abstract. Let G be a simple graph on the vertex set V (G) and S = {x11, . . . ,

xn1} a subset of V (G). Let m1, . . . , mn > 2 be integers and G1, . . . , Gn

connected simple graphs on the vertex sets V (Gi) = {xi1, . . . , ximi
} for i =

1, . . . , n. The graph G(G1, . . . , Gn) is obtained from G by attaching Gi to G

at the vertex xi1 for i = 1, . . . , n. We give a characterization of G(G1, . . . , Gn)
for being vertex decomposable. This generalizes a result due to Mousivand,
Seyed Fakhari, and Yassemi.

1. Introduction

Let G be a finite simple graph (no loops or multiple edges) on the vertex set
V (G) = {x1, . . . , xm} and edge set E(G). Adding a whisker to G at xi means
adding a new vertex y and edge {xi, y} to G. Villarreal showed that the graph
obtained from G by adding a whisker to every vertex of G is Cohen–Macaulay
[7, Proposition 2.2]. Moreover, it was shown that this graph is also unmixed and
vertex decomposable [4, Theorem 4.4]. Adding a whisker to a vertex of G is the
same as saying that attaching the complete graph K2 to a vertex of G. Let S =
{x11, . . . , xn1} be a subset of V (G). The graph G(G1, . . . , Gn) is obtained from
G by attaching Gi to G at the vertex xi1 for i = 1, . . . , n. Recently, Mousivand,
Fakhari and Yassemi characterized when the graph obtained by attaching arbitrary
graphs to every vertex of a given graph is vertex decomposable [6, Proposition 2.3].
We generalize this result (see Theorem 3.1).

2. Preliminaries

We recall some definitions and properties that will be used later. Let K be
a field. To any finite simple graph G (no loops or multiple edges) with vertex
set V (G) = {x1, . . . , xm} and edge set E(G) one associates edge ideal I(G) ⊂
K[x1, . . . , xm] whose generators are all monomials xixj such that {xi, xj} ∈ E(G).
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The graph G is called Cohen–Macaulay over K if K[x1, . . . , xm]/I(G) has this
property.

Let G be a graph with the vertex set V (G) = {x1, . . . , xm} and the edge set
E(G). The induced subgraph G|W for W ⊆ V (G) is defined by

G|W := (W, {e ∈ E(G); e ⊂ W }).

For W ⊆ V (G) we denote G|V (G)rW by G r W . If W = {x}, we write G r x
instead of G r {x}. For any x ∈ V (G) we denote the open neighbor set of x in G
by NG(x), i.e., NG(x) := {y ∈ V (G) | {x, y} ∈ E(G)}, NG[x] := NG(x) ∪ {x}. For
W ⊆ V (G), we set NG[W ] =

⋃

x∈W NG[x].
A graph is complete if every two of its vertices are adjacent. The complete

graph with n vertices is denoted by Kn.
A simplicial complex ∆ on a finite set V is a collection of subsets of V which

is closed under inclusion. Members of ∆ are called faces. The maximum faces of
∆ with respect to the inclusion are called the facets. The dimension of a face F is
|F | − 1 and the dimension of a complex ∆ is the maximum of the dimensions of its
facets. If all the facets of ∆ have the same dimension we say that ∆ is pure and
a complex with a unique facet is called a simplex. Let ∆ be a simplicial complex
on the vertex set V . The induced subcomplex of ∆|S for S ⊆ V is defined by
∆|S := {F ∈ ∆ | F ⊆ S}.

Let F be a face of ∆. The link and the deletion of F from ∆ are the simplicial
complex defined by

link∆ F := {G ∈ ∆ | G ∩ F = ∅, G ∪ F ∈ ∆}, del∆ F := {G ∈ ∆ | F * G}.

If F = {x}, we write link∆ x (resp. del∆ x) instead of link∆ {x} (resp. del∆ {x}).
See [5] for detailed information.

Let G = (V (G), E(G)) be a graph. A subset F of V (G) is called an independent

set if no two vertices of F are adjacent. The independence complex of G, denoted
by Ind(G), is the simplicial complex on the vertex set V (G), defined by

Ind(G) := {F ⊆ G | F is an independent set of G}.

A simplicial complex ∆ is called vertex decomposable if it is a simplex or else
has a vertex x such that

(1) both del∆ x and link∆ x are vertex decomposable, and
(2) there is no face of link∆ x which is also a facet of del∆ x.

A shedding vertex is the vertex x which satisfies condition (2).

Remark 2.1. Our definition of shedding vertex is slightly different with the
definition in [6], where a shedding vertex is the one which satisfies conditions (1)
and (2).

Vertex decomposability was introduced in the pure case by Billera and Provan
[2] and extended to nonpure complexes by Björner and Wachs [3]. A graph G is
called vertex decomposable if Ind(G) has this property. In [8] Woodroofe translated
the notion of vertex decomposability for graphs as follows.

A graph G is vertex decomposable if it is totally disconnected (with no edges)
or else has some vertex x such that
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(1) both G r NG[x] and G r x are vertex decomposable, and
(2) for every independent set S in G r NG[x], there exists some y ∈ NG(x)

such that S ∪ {y} is independent in G r x.

A vertex x which satisfies condition (2) is called a shedding vertex for G.
A graph G is called chordal if every induced cycle of G of length > 4 has a

chord. In [8] Woodroofe proved that every chordal graph is vertex decomposable.

3. Vertex decomposable graph

Here we prove our main result. We write B ∪̇ C for disjoint union.

Theorem 3.1. Let G be a simple graph on the vertex set V (G) and S =
{x11, . . . , xn1} a subset of V (G). Let m1, . . . , mn > 2 be integers and G1, . . . , Gn

connected graphs on the vertex set V (Gi) = {xi1, . . . , ximi
} for i = 1, . . . , n and

suppose that xi1 is a shedding vertex of Gi for i = 1, . . . , n. Then G(G1, . . . , Gn)
is vertex decomposable if and only if

(i) Gi rxi1 and Gi rNGi
[xi1] are vertex decomposable, for i = 1, . . . , n, and

(ii) for any face µ of ∆ = Ind(G) with µ ⊆ S, the complex link∆ µ|S̄ is vertex

decomposable, where S̄ = V (G) r S.

Proof. (⇐) The graph G(G1, . . . , Gn) is obtained from G by attaching Gi to
G at the vertex xi1 for i = 1, . . . , n. We prove the assertion by induction on n = |S|.
Set G′ = G(G1, . . . , Gn) . If S = ∅, then µ = ∅ , G′ = G and link∆ µ|S̄ = Ind(G) is
vertex decomposable by hypothesis.

Assume that n > 1 and the assertion holds for any graph G and every S ⊆ V (G)
such that |S| 6 n−1. Suppose S = {x11, . . . , xn1}. We prove that x11 is a shedding
vertex of G′. Assume that A is an independent set in G′ r NG′ [x11]. We have
A = B ∪̇ C where B = A ∩ [V (G2) ∪ · · · ∪ V (Gn) ∪ (V (G) r {x21, . . . , xn1})] and
C = A ∩ V (G1). Since NG1

[x11] ⊆ NG′ [x11], it follows that C is an independent
set in G1 r NG1

[x11]. There exists an x1k ∈ NG1
(x11) such that C ∪ {x1k} is

independent set in G1 r x11, because x11 is a shedding vertex of G1. For any
y ∈ V (G2) ∪ · · · ∪ V (Gn) ∪ (V (G) r {x21, . . . , xn1}), we have {x1k, y} /∈ E(G′).
Thus A ∪ {x1k} is independent in G′ r x11 and so x11 is a shedding vertex of G′.

Set S1 = {x21, . . . , xn1} and ∆′ = Ind(G r x11). We have G′ r x11 = G′

1 ∪̇ G′

2
where G′

1 = G1 r x11 and G′

2 = (G r x11)(G2, . . . , Gn). Let µ ∈ ∆′ with µ ⊆ S1.
Thus µ ∈ ∆ and µ ⊆ S. We have

link∆′ µ|S̄1
= {F ∈ ∆′ | F ⊆ S̄1, F ∪ µ ∈ ∆′, F ∩ µ = ∅}

= {F ∈ ∆ | F ⊆ S̄, F ∪ µ ∈ ∆, F ∩ µ = ∅} = link∆ µ|S̄ .

Thus we have that link∆′ µ|S̄1
is vertex decomposable by hypothesis. Therefore G′

2
is vertex decomposable by induction and G′

1 is vertex decomposable by hypothesis.
It now follows from [8, Lemma 20] that G′ r x11 is vertex decomposable.

Now consider G′ r NG′ [x11]. If S ⊆ NG′ [x11], then

G′ r NG′ [x11] = (G r NG[x11]) ∪̇ (G1 r NG1
[x11] ∪̇ G2 r x21 ∪̇ · · · ∪̇ Gn r xn1).

Since S ⊆ V (G), it follows that S ⊆ NG[x11] and V (G r NG[x11]) ⊆ S̄.
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Set µ = {x11}. We have µ ∈ ∆, µ ⊆ S and link∆ µ|S̄ = Ind(G r NG[x11]) is
vertex decomposable by hypothesis. Also, for 2 6 i 6 n, Girxi1 and G1rNG1

[x11]
are vertex decomposable and hence (G1 rNG1

[x11] ∪̇ G2 r x21 ∪̇ · · · ∪̇ Gn r xn1) is
vertex decomposable by [8, Lemma 20]. Thus G′rNG′[x11] is vertex decomposable.

Assume S 6⊂ NG′ [x11]. After relabeling the vertices of G, we assume that
S ∩ NG[x11] = {x11, . . . , xl1} and

G′ r NG′ [x11] = G0(Gl+1, . . . , Gn) ∪̇ (G1 r NG1
[x11] ∪̇ G2 r x21 ∪̇ · · · ∪̇ Gl r xl1)

where G0 = (G r NG[x11]). Set S1 = S r NG[x11] = {xl+11, . . . , xn1}. Let µ ∈
link∆ x11 and µ ⊆ S1. We have

linklink∆ x11
µ|S̄1

= {F ∈ link∆ x11 | F ⊆ S̄1, F ∪ µ ∈ link∆ x11, F ∩ µ = ∅}

= {F ∈ ∆ | F ⊆ S̄, F ∪ µ ∪ {x11} ∈ ∆, F ∩ (µ ∪ {x11}) = ∅}

= link∆ (µ ∪ {x11})|S̄ .

From hypothesis, we have that link∆ (µ ∪ {x11})|S̄ is vertex decomposable and so
linklink∆ x11

µ|S̄1
is vertex decomposable for any face µ of link∆ x11 with µ ⊆ S1.

Note that Ind(G0) = link∆ x11 and hence G0(Gl+1, . . . , Gn) is vertex decomposable
by induction. Also, G1 rNG1

[x11], G2 r x21, . . . , Gl r xl1 are vertex decomposable
by hypothesis. Thus G′ r NG′ [x11] is vertex decomposable by [8, Lemma 20].

(⇒) Conversely, assume that G′ = G(G1, . . . , Gn) is vertex decomposable. Set
∆′ = Ind(G′). After relabeling the vertices of G, we assume that µ = {x11, . . . , xl1}
and µ ∈ ∆. Hence {x11, . . . , xl1} is independent set in G. We show that link∆(µ)|S̄
is vertex decomposable. For 1 6 j 6 l, let Aj be a facet of Ind(Gj) with xj1 ∈ Aj .
Note that for 1 6 i 6 n, Gi is connected graph and hence has no isolated vertex.
Thus Ind(Gj) has no cone point and let for l + 1 6 j 6 n, Aj be a facet of Ind(Gj)
with xj1 /∈ Aj . It follows that A =

⋃n

j=1 Aj is a face of ∆′. One can check that

link∆(µ)|S̄ = link∆′(A).
Suppose F ∈ link∆(µ)|S̄ . It is clear that for 1 6 i 6 n, xi /∈ F and F ∪ µ ∈ ∆

and so F ∪A is independent set in G′ and hence F ∪A ∈ ∆′. Also, F ∩A = ∅ because
F ∩ µ = ∅. Since ∆ ⊆ ∆′ and F ∈ ∆, we have F ∈ ∆′ and so F ∈ link∆′(A).

We now consider the reverse inclusion. Let F ∈ link∆′(A). We have F ∩ A = ∅
and hence F ∩Aj = ∅ for 1 6 j 6 n. We claim that for 1 6 j 6 n, F ∩(V (Gj)) = ∅.
Let there exists an i ∈ {1, . . . , n} such that F ∩ V (Gi) 6= ∅, and let x ∈ F ∩ V (Gi).
Since F ∩ Ai = ∅, x /∈ Ai. On the other hand, one has F ∪ A ∈ ∆′. Therefore
Ai ∪ {x} is an independent set in Gi and Ai ⊂ Ai ∪ {x}, that contradiction with
facet Ai and so F ∩ (V (Gi)) = ∅ and F ⊆ S̄. Since S̄ ⊆ V (G), we have F ⊆ V (G).
Moreover, µ ⊆ A, F ∪ A ∈ ∆′ and ∆′ is simplicial complex, thus F ∪ µ ∈ ∆′. Also,
F ∪ µ ∈ ∆, because F, µ ∈ ∆ and ∆ ⊆ ∆′. Since F ∩ A = ∅ and µ ⊆ A, we have
F ∩ µ = ∅. Therefore F ∈ link∆(µ)|S̄ . Since ∆′ = Ind(G′) is vertex decomposable,
link∆′(A) is vertex decomposable by [1, Theorem 2.5] and so link∆(µ)|S̄ is vertex
decomposable for any µ ⊆ S and µ ∈ ∆.

Now, we prove that Girxi1 and GirNGi
[xi1] are vertex decomposable for 1 6

i 6 n. Assume G is a connected graph (otherwise consider connected components
of G). Then there exists a y ∈ V (G) such that xi1y ∈ E(G). Also, link∆′ y and
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link∆′ xi1 are vertex decomposable, because ∆′ is vertex decomposable [1, Theorem
2.5]. Note that Gi r xi1 and Gi r NGi

[xi1] are respectively connected components
of link∆′ y and link∆′ xi1 and so they are vertex decomposable [8, Lemma 20]. �

Let S = {x11, . . . , xn1} be a subset of V (G). The graph G ∪ W (S) is obtained
from G by adding a whisker to every vertex of S.

Corollary 3.1. [1, Theorem 4.4] Let Ind(G) be the independence complex

of a graph G on a vertex set V (G) and let S ⊆ V (G). Then Ind(G ∪ W (S)) is

vertex decomposable if and only if Ind((G r NG[µ])|S̄) is vertex decomposable for

all µ ∈ Ind(G) with µ ⊆ S.

Proof. Adding a whisker to a vertex of G is the same as attaching the com-
plete graph K2 to a vertex of G, and we have G ∪ W (S) = G(K2, . . . , K2

︸ ︷︷ ︸

n times

).

Note that linkInd(G)(µ)|S̄ = Ind(G r NG[µ])|S̄ = Ind((G r NG[µ])|S̄). Now,
apply Theorem 3.1. �

The cycle of length n is denoted by Cn. The induced cycle Cn of G is called
chordless cycle of length n. In [8, Theorem 1] Woodroofe showed that if G is a graph
with no chordless cycles of length other from 3 or 5, then G is vertex decomposable.

Corollary 3.2. Let G be a simple graph on the vertex set V (G) and S =
{x11, . . . , xn1} a subset of V (G). Let m1, . . . , mn > 2 be integers and G1, . . . , Gn

connected simple graphs on the vertex sets V (Gi) = {xi1, . . . , ximi
} for i = 1, . . . , n.

Assume that xi1 is a shedding vertex of Gi for i = 1, . . . , n. If Gi r xi1 and

Gi r NGi
[xi1] for i = 1, . . . , n are vertex decomposable and G r S is a graph with

no chordless cycles of length other than 3 or 5, then G(G1, . . . , Gn) is vertex de-

composable.

Proof. Note that linkInd(G)(µ)|S̄ = Ind(G r NG[µ])|S̄ = Ind((G r NG[µ])|S̄).
For every µ ⊆ S, (GrNG[µ])|S̄ is an induced subgraph of G|S̄ , so it is a graph with
no chordless cycles of length other from 3 or 5, and hence it is vertex decomposable
by [8, Theorem 1]. Now, apply Theorem 3.1. �

Therefore, we infer the following result.

Corollary 3.3. Let G be a simple graph on the vertex set V (G) and let

S ⊆ V (G). If G r S is a graph with no chordless cycles of length other than 3 or

5, then G ∪ W (S) is a vertex decomposable graph.

Corollary 3.4. Let G be a simple graph on the vertex set V (G) and S =
{x11, . . . , xn1} a subset of V (G) with |S| > |V (G)| − 3. Let m1, . . . , mn > 2
be integers and G1, . . . , Gn connected simple graphs on the vertex sets V (Gi) =
{xi1, . . . , ximi

} for i = 1, . . . , n. Assume xi1 is a shedding vertex of Gi for i =
1, . . . , n. Moreover, let Gi r xi1 and Gi r NGi

[xi1] for i = 1, . . . , n be vertex de-

composable. Then G(G1, . . . , Gn) is vertex decomposable.

Proof. Since |S| > |V (G)| − 3, G r S is a graph on at most 3 vertices. So
G r S is either a tree, edgeless graph, K2 ∪̇ K1 or C3. Thus G r S is chordal and
the assertion holds by Corollary 3.2. �
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Therefore the following result holds.

Corollary 3.5. Let G be a simple graph, and let S ⊂ V (G). Assume that

|S| > |V (G)| − 3. Then G ∪ W (S) is a vertex decomposable graph.

In the following example it is shown that the bound |V (G)| − 3 in Corollary
3.4 is sharp.

Example 3.1. Let G and G1 be graphs shown in the figure below, and let
S = {x1}. Note that the only shedding vertices of G(G1) are x1, y and z. Then
G(G1) is not vertex decomposable, because G(G1) r N [y] = G(G1) r N [z] = C4

and G(G1) r x1 = K2 ∪̇ C4 are not vertex decomposable.

Corollary 3.6. Let G be a simple graph on the vertex set V (G) and S =
{x11, . . . , xn1} a subset of V (G). Let m1, . . . , mn > 2 be integers and G1, . . . , Gn

connected simple graphs on the vertex sets V (Gi) = {xi1, . . . , ximi
} for i = 1, . . . , n.

Assume that xi1 is a shedding vertex of Gi for i = 1, . . . , n. Moreover, let Gi,

Gi r xi1 and Gi r NGi
[xi1] for i = 1, . . . , n be vertex decomposable. Then

(i) If S is a vertex cover of G, then G(G1, . . . , Gn) is vertex decomposable.

(ii) If G r S is a forest, then G(G1, . . . , Gn) is vertex decomposable.

(iii) If G = Cn is a cycle and x a vertex of Cn, then G(G1) is vertex decom-

posable.

Proof. If S is a vertex cover of G, then G r S is an edgeless graph and so it
is a chordal graph. Also, every forest is a chordal graph. Now, (i) and (ii) follow
from Corollary 3.2. Finally, the resulting graph of removing a vertex from Cn is a
tree and hence (iii) follows from (ii). �
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