PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 99(113) (2016), 203–209

DOI: 10.2298/PIM1613203H

VERTEX DECOMPOSABLE GRAPH

N. Hajisharifi and S. Yassemi

ABSTRACT. Let G be a simple graph on the vertex set V(G) and $S = \{x_{11}, \ldots, x_{n1}\}$ a subset of V(G). Let $m_1, \ldots, m_n \ge 2$ be integers and G_1, \ldots, G_n connected simple graphs on the vertex sets $V(G_i) = \{x_{i1}, \ldots, x_{im_i}\}$ for $i = 1, \ldots, n$. The graph $G(G_1, \ldots, G_n)$ is obtained from G by attaching G_i to G at the vertex x_{i1} for $i = 1, \ldots, n$. We give a characterization of $G(G_1, \ldots, G_n)$ for being vertex decomposable. This generalizes a result due to Mousivand, Seyed Fakhari, and Yassemi.

1. Introduction

Let G be a finite simple graph (no loops or multiple edges) on the vertex set $V(G) = \{x_1, \ldots, x_m\}$ and edge set E(G). Adding a *whisker* to G at x_i means adding a new vertex y and edge $\{x_i, y\}$ to G. Villarreal showed that the graph obtained from G by adding a whisker to every vertex of G is Cohen-Macaulay [7, Proposition 2.2]. Moreover, it was shown that this graph is also unmixed and vertex decomposable [4, Theorem 4.4]. Adding a whisker to a vertex of G is the same as saying that attaching the complete graph K_2 to a vertex of G. Let $S = \{x_{11}, \ldots, x_{n1}\}$ be a subset of V(G). The graph $G(G_1, \ldots, G_n)$ is obtained from G by attaching G_i to G at the vertex x_{i1} for $i = 1, \ldots, n$. Recently, Mousivand, Fakhari and Yassemi characterized when the graph obtained by attaching arbitrary graphs to every vertex of a given graph is vertex decomposable [6, Proposition 2.3]. We generalize this result (see Theorem 3.1).

2. Preliminaries

We recall some definitions and properties that will be used later. Let K be a field. To any finite simple graph G (no loops or multiple edges) with vertex set $V(G) = \{x_1, \ldots, x_m\}$ and edge set E(G) one associates *edge ideal* $I(G) \subset$ $K[x_1, \ldots, x_m]$ whose generators are all monomials $x_i x_j$ such that $\{x_i, x_j\} \in E(G)$.

²⁰¹⁰ Mathematics Subject Classification: Primary 13F55, 05E40; Secondary 05C70, 05C38. Key words and phrases: vertex decomposable, Cohen–Macaulay.

The research of S. Yassemi was in part supported by a grant from university of Tehran. Communicated by Slobodan Simić.

The graph G is called Cohen-Macaulay over K if $K[x_1, \ldots, x_m]/I(G)$ has this property.

Let G be a graph with the vertex set $V(G) = \{x_1, \ldots, x_m\}$ and the edge set E(G). The *induced subgraph* $G|_W$ for $W \subseteq V(G)$ is defined by

$$G|_W := (W, \{e \in E(G); e \subset W\}).$$

For $W \subseteq V(G)$ we denote $G|_{V(G) \setminus W}$ by $G \setminus W$. If $W = \{x\}$, we write $G \setminus x$ instead of $G \setminus \{x\}$. For any $x \in V(G)$ we denote the open neighbor set of x in Gby $N_G(x)$, i.e., $N_G(x) := \{y \in V(G) \mid \{x, y\} \in E(G)\}, N_G[x] := N_G(x) \cup \{x\}$. For $W \subseteq V(G)$, we set $N_G[W] = \bigcup_{x \in W} N_G[x]$.

A graph is *complete* if every two of its vertices are adjacent. The complete graph with n vertices is denoted by K_n .

A simplicial complex Δ on a finite set V is a collection of subsets of V which is closed under inclusion. Members of Δ are called *faces*. The maximum faces of Δ with respect to the inclusion are called the *facets*. The *dimension* of a face F is |F| - 1 and the dimension of a complex Δ is the maximum of the dimensions of its facets. If all the facets of Δ have the same dimension we say that Δ is *pure* and a complex with a unique facet is called a *simplex*. Let Δ be a simplicial complex on the vertex set V. The *induced subcomplex* of $\Delta|_S$ for $S \subseteq V$ is defined by $\Delta|_S := \{F \in \Delta \mid F \subseteq S\}.$

Let F be a face of Δ . The *link* and the *deletion* of F from Δ are the simplicial complex defined by

 $\operatorname{link}_{\Delta} F := \{ G \in \Delta \mid G \cap F = \emptyset, G \cup F \in \Delta \}, \quad \operatorname{del}_{\Delta} F := \{ G \in \Delta \mid F \nsubseteq G \}.$

If $F = \{x\}$, we write $\operatorname{link}_{\Delta} x$ (resp. $\operatorname{del}_{\Delta} x$) instead of $\operatorname{link}_{\Delta} \{x\}$ (resp. $\operatorname{del}_{\Delta} \{x\}$). See [5] for detailed information.

Let G = (V(G), E(G)) be a graph. A subset F of V(G) is called an *independent* set if no two vertices of F are adjacent. The independence complex of G, denoted by Ind(G), is the simplicial complex on the vertex set V(G), defined by

 $Ind(G) := \{ F \subseteq G \mid F \text{ is an independent set of } G \}.$

A simplicial complex Δ is called *vertex decomposable* if it is a simplex or else has a vertex x such that

(1) both $\operatorname{del}_{\Delta} x$ and $\operatorname{link}_{\Delta} x$ are vertex decomposable, and

(2) there is no face of $\operatorname{link}_{\Delta} x$ which is also a facet of $\operatorname{del}_{\Delta} x$.

A shedding vertex is the vertex x which satisfies condition (2).

REMARK 2.1. Our definition of shedding vertex is slightly different with the definition in [6], where a shedding vertex is the one which satisfies conditions (1) and (2).

Vertex decomposability was introduced in the pure case by Billera and Provan [2] and extended to nonpure complexes by Björner and Wachs [3]. A graph G is called *vertex decomposable* if Ind(G) has this property. In [8] Woodroofe translated the notion of vertex decomposability for graphs as follows.

A graph G is *vertex decomposable* if it is totally disconnected (with no edges) or else has some vertex x such that

- (1) both $G \setminus N_G[x]$ and $G \setminus x$ are vertex decomposable, and
- (2) for every independent set S in $G \setminus N_G[x]$, there exists some $y \in N_G(x)$ such that $S \cup \{y\}$ is independent in $G \setminus x$.

A vertex x which satisfies condition (2) is called a *shedding vertex* for G.

A graph G is called *chordal* if every induced cycle of G of length ≥ 4 has a chord. In [8] Woodroofe proved that every chordal graph is vertex decomposable.

3. Vertex decomposable graph

Here we prove our main result. We write $B \cup C$ for disjoint union.

THEOREM 3.1. Let G be a simple graph on the vertex set V(G) and $S = \{x_{11}, \ldots, x_{n1}\}$ a subset of V(G). Let $m_1, \ldots, m_n \ge 2$ be integers and G_1, \ldots, G_n connected graphs on the vertex set $V(G_i) = \{x_{i1}, \ldots, x_{im_i}\}$ for $i = 1, \ldots, n$ and suppose that x_{i1} is a shedding vertex of G_i for $i = 1, \ldots, n$. Then $G(G_1, \ldots, G_n)$ is vertex decomposable if and only if

- (i) $G_i \setminus x_{i1}$ and $G_i \setminus N_{G_i}[x_{i1}]$ are vertex decomposable, for $i = 1, \ldots, n$, and
- (ii) for any face μ of $\Delta = \text{Ind}(G)$ with $\mu \subseteq S$, the complex $\text{link}_{\Delta} \mu|_{\bar{S}}$ is vertex decomposable, where $\bar{S} = V(G) \smallsetminus S$.

PROOF. (\Leftarrow) The graph $G(G_1, \ldots, G_n)$ is obtained from G by attaching G_i to G at the vertex x_{i1} for $i = 1, \ldots, n$. We prove the assertion by induction on n = |S|. Set $G' = G(G_1, \ldots, G_n)$. If $S = \emptyset$, then $\mu = \emptyset$, G' = G and $\operatorname{link}_{\Delta} \mu|_{\bar{S}} = \operatorname{Ind}(G)$ is vertex decomposable by hypothesis.

Assume that $n \ge 1$ and the assertion holds for any graph G and every $S \subseteq V(G)$ such that $|S| \le n-1$. Suppose $S = \{x_{11}, \ldots, x_{n1}\}$. We prove that x_{11} is a shedding vertex of G'. Assume that A is an independent set in $G' \smallsetminus N_{G'}[x_{11}]$. We have $A = B \cup C$ where $B = A \cap [V(G_2) \cup \cdots \cup V(G_n) \cup (V(G) \smallsetminus \{x_{21}, \ldots, x_{n1}\})]$ and $C = A \cap V(G_1)$. Since $N_{G_1}[x_{11}] \subseteq N_{G'}[x_{11}]$, it follows that C is an independent set in $G_1 \smallsetminus N_{G_1}[x_{11}]$. There exists an $x_{1k} \in N_{G_1}(x_{11})$ such that $C \cup \{x_{1k}\}$ is independent set in $G_1 \smallsetminus x_{11}$, because x_{11} is a shedding vertex of G_1 . For any $y \in V(G_2) \cup \cdots \cup V(G_n) \cup (V(G) \smallsetminus \{x_{21}, \ldots, x_{n1}\})$, we have $\{x_{1k}, y\} \notin E(G')$. Thus $A \cup \{x_{1k}\}$ is independent in $G' \backsim x_{11}$ and so x_{11} is a shedding vertex of G'.

Set $S_1 = \{x_{21}, \ldots, x_{n1}\}$ and $\Delta' = \text{Ind}(G \smallsetminus x_{11})$. We have $G' \smallsetminus x_{11} = G'_1 \cup G'_2$ where $G'_1 = G_1 \smallsetminus x_{11}$ and $G'_2 = (G \smallsetminus x_{11})(G_2, \ldots, G_n)$. Let $\mu \in \Delta'$ with $\mu \subseteq S_1$. Thus $\mu \in \Delta$ and $\mu \subseteq S$. We have

$$\begin{split} \operatorname{link}_{\Delta'} \mu|_{\bar{S}_1} &= \{F \in \Delta' \mid F \subseteq \bar{S}_1, \ F \cup \mu \in \Delta', \ F \cap \mu = \emptyset \} \\ &= \{F \in \Delta \mid F \subseteq \bar{S}, \ F \cup \mu \in \Delta, \ F \cap \mu = \emptyset \} = \operatorname{link}_{\Delta} \mu|_{\bar{S}}. \end{split}$$

Thus we have that $\operatorname{link}_{\Delta'} \mu|_{\bar{S}_1}$ is vertex decomposable by hypothesis. Therefore G'_2 is vertex decomposable by induction and G'_1 is vertex decomposable by hypothesis. It now follows from [8, Lemma 20] that $G' \smallsetminus x_{11}$ is vertex decomposable.

Now consider $G' \smallsetminus N_{G'}[x_{11}]$. If $S \subseteq N_{G'}[x_{11}]$, then

$$G' \smallsetminus N_{G'}[x_{11}] = (G \smallsetminus N_G[x_{11}]) \dot{\cup} (G_1 \smallsetminus N_{G_1}[x_{11}] \dot{\cup} G_2 \smallsetminus x_{21} \dot{\cup} \cdots \dot{\cup} G_n \smallsetminus x_{n1}).$$

Since $S \subseteq V(G)$, it follows that $S \subseteq N_G[x_{11}]$ and $V(G \smallsetminus N_G[x_{11}]) \subseteq \bar{S}.$

Set $\mu = \{x_{11}\}$. We have $\mu \in \Delta$, $\mu \subseteq S$ and $\lim_{\lambda \to \mu} |_{\bar{S}} = \operatorname{Ind}(G \setminus N_G[x_{11}])$ is vertex decomposable by hypothesis. Also, for $2 \leq i \leq n$, $G_i \setminus x_{i1}$ and $G_1 \setminus N_{G_1}[x_{11}]$ are vertex decomposable and hence $(G_1 \setminus N_{G_1}[x_{11}] \cup G_2 \setminus x_{21} \cup \cdots \cup G_n \setminus x_{n1})$ is vertex decomposable by [8, Lemma 20]. Thus $G' \setminus N_{G'}[x_{11}]$ is vertex decomposable.

Assume $S \not\subset N_{G'}[x_{11}]$. After relabeling the vertices of G, we assume that $S \cap N_G[x_{11}] = \{x_{11}, \ldots, x_{l1}\}$ and

$$G' \setminus N_{G'}[x_{11}] = G_0(G_{l+1}, \dots, G_n) \,\dot{\cup} \, (G_1 \setminus N_{G_1}[x_{11}] \,\dot{\cup} \, G_2 \setminus x_{21} \,\dot{\cup} \,\cdots \,\dot{\cup} \, G_l \setminus x_{l1})$$

where $G_0 = (G \setminus N_G[x_{11}])$. Set $S_1 = S \setminus N_G[x_{11}] = \{x_{l+11}, \ldots, x_{n1}\}$. Let $\mu \in$ link Δx_{11} and $\mu \subseteq S_1$. We have

$$\begin{aligned} \operatorname{link}_{\operatorname{link}_{\Delta} x_{11}} \mu|_{\bar{S}_{1}} &= \{F \in \operatorname{link}_{\Delta} x_{11} \mid F \subseteq \bar{S}_{1}, \ F \cup \mu \in \operatorname{link}_{\Delta} x_{11}, \ F \cap \mu = \emptyset \} \\ &= \{F \in \Delta \mid F \subseteq \bar{S}, \ F \cup \mu \cup \{x_{11}\} \in \Delta, \ F \cap (\mu \cup \{x_{11}\}) = \emptyset \} \\ &= \operatorname{link}_{\Delta} (\mu \cup \{x_{11}\})|_{\bar{S}}. \end{aligned}$$

From hypothesis, we have that $\lim_{\Delta} (\mu \cup \{x_{11}\})|_{\bar{S}}$ is vertex decomposable and so $\lim_{\lim_{\Delta} x_{11}} \mu|_{\bar{S}_1}$ is vertex decomposable for any face μ of $\lim_{\Delta} x_{11}$ with $\mu \subseteq S_1$. Note that $\operatorname{Ind}(G_0) = \lim_{\Delta} x_{11}$ and hence $G_0(G_{l+1}, \ldots, G_n)$ is vertex decomposable by induction. Also, $G_1 \setminus N_{G_1}[x_{11}], G_2 \setminus x_{21}, \ldots, G_l \setminus x_{l1}$ are vertex decomposable by hypothesis. Thus $G' \setminus N_{G'}[x_{11}]$ is vertex decomposable by [8, Lemma 20].

 (\Rightarrow) Conversely, assume that $G' = G(G_1, \ldots, G_n)$ is vertex decomposable. Set $\Delta' = \operatorname{Ind}(G')$. After relabeling the vertices of G, we assume that $\mu = \{x_{11}, \ldots, x_{l1}\}$ and $\mu \in \Delta$. Hence $\{x_{11}, \ldots, x_{l1}\}$ is independent set in G. We show that $\operatorname{link}_{\Delta}(\mu)|_{\bar{S}}$ is vertex decomposable. For $1 \leq j \leq l$, let A_j be a facet of $\operatorname{Ind}(G_j)$ with $x_{j1} \in A_j$. Note that for $1 \leq i \leq n$, G_i is connected graph and hence has no isolated vertex. Thus $\operatorname{Ind}(G_j)$ has no cone point and let for $l+1 \leq j \leq n$, A_j be a facet of $\operatorname{Ind}(G_j)$ with $x_{j1} \notin A_j$. It follows that $A = \bigcup_{j=1}^n A_j$ is a face of Δ' . One can check that $\operatorname{link}_{\Delta}(\mu)|_{\bar{S}} = \operatorname{link}_{\Delta'}(A)$.

Suppose $F \in \lim_{\Delta} (\mu)|_{\bar{S}}$. It is clear that for $1 \leq i \leq n, x_i \notin F$ and $F \cup \mu \in \Delta$ and so $F \cup A$ is independent set in G' and hence $F \cup A \in \Delta'$. Also, $F \cap A = \emptyset$ because $F \cap \mu = \emptyset$. Since $\Delta \subseteq \Delta'$ and $F \in \Delta$, we have $F \in \Delta'$ and so $F \in \lim_{\Delta'} (A)$.

We now consider the reverse inclusion. Let $F \in \operatorname{link}_{\Delta'}(A)$. We have $F \cap A = \emptyset$ and hence $F \cap A_j = \emptyset$ for $1 \leq j \leq n$. We claim that for $1 \leq j \leq n$, $F \cap (V(G_j)) = \emptyset$. Let there exists an $i \in \{1, \ldots, n\}$ such that $F \cap V(G_i) \neq \emptyset$, and let $x \in F \cap V(G_i)$. Since $F \cap A_i = \emptyset$, $x \notin A_i$. On the other hand, one has $F \cup A \in \Delta'$. Therefore $A_i \cup \{x\}$ is an independent set in G_i and $A_i \subset A_i \cup \{x\}$, that contradiction with facet A_i and so $F \cap (V(G_i)) = \emptyset$ and $F \subseteq \overline{S}$. Since $\overline{S} \subseteq V(G)$, we have $F \subseteq V(G)$. Moreover, $\mu \subseteq A$, $F \cup A \in \Delta'$ and Δ' is simplicial complex, thus $F \cup \mu \in \Delta'$. Also, $F \cup \mu \in \Delta$, because $F, \mu \in \Delta$ and $\Delta \subseteq \Delta'$. Since $F \cap A = \emptyset$ and $\mu \subseteq A$, we have $F \cap \mu = \emptyset$. Therefore $F \in \operatorname{link}_{\Delta}(\mu)|_{\overline{S}}$. Since $\Delta' = \operatorname{Ind}(G')$ is vertex decomposable, $\operatorname{link}_{\Delta'}(A)$ is vertex decomposable by [1, Theorem 2.5] and so $\operatorname{link}_{\Delta}(\mu)|_{\overline{S}}$ is vertex decomposable for any $\mu \subseteq S$ and $\mu \in \Delta$.

Now, we prove that $G_i \setminus x_{i1}$ and $G_i \setminus N_{G_i}[x_{i1}]$ are vertex decomposable for $1 \leq i \leq n$. Assume G is a connected graph (otherwise consider connected components of G). Then there exists a $y \in V(G)$ such that $x_{i1}y \in E(G)$. Also, $\lim_{\Delta'} y$ and

link $\Delta' x_{i1}$ are vertex decomposable, because Δ' is vertex decomposable [1, Theorem 2.5]. Note that $G_i \smallsetminus x_{i1}$ and $G_i \smallsetminus N_{G_i}[x_{i1}]$ are respectively connected components of link $\Delta' y$ and link $\Delta' x_{i1}$ and so they are vertex decomposable [8, Lemma 20]. \Box

Let $S = \{x_{11}, \ldots, x_{n1}\}$ be a subset of V(G). The graph $G \cup W(S)$ is obtained from G by adding a whisker to every vertex of S.

COROLLARY 3.1. [1, Theorem 4.4] Let $\operatorname{Ind}(G)$ be the independence complex of a graph G on a vertex set V(G) and let $S \subseteq V(G)$. Then $\operatorname{Ind}(G \cup W(S))$ is vertex decomposable if and only if $\operatorname{Ind}((G \setminus N_G[\mu])|_{\overline{S}})$ is vertex decomposable for all $\mu \in \operatorname{Ind}(G)$ with $\mu \subseteq S$.

PROOF. Adding a whisker to a vertex of G is the same as attaching the complete graph K_2 to a vertex of G, and we have $G \cup W(S) = G(K_2, \ldots, K_2)$.

Note that $\operatorname{link}_{\operatorname{Ind}(G)}(\mu)|_{\bar{S}} = \operatorname{Ind}(G \setminus N_G[\mu])|_{\bar{S}} = \operatorname{Ind}((G \setminus N_G[\mu])|_{\bar{S}})$. Now, apply Theorem 3.1.

The cycle of length n is denoted by C_n . The induced cycle C_n of G is called *chordless cycle* of length n. In [8, Theorem 1] Woodroofe showed that if G is a graph with no chordless cycles of length other from 3 or 5, then G is vertex decomposable.

COROLLARY 3.2. Let G be a simple graph on the vertex set V(G) and $S = \{x_{11}, \ldots, x_{n1}\}$ a subset of V(G). Let $m_1, \ldots, m_n \ge 2$ be integers and G_1, \ldots, G_n connected simple graphs on the vertex sets $V(G_i) = \{x_{i1}, \ldots, x_{im_i}\}$ for $i = 1, \ldots, n$. Assume that x_{i1} is a shedding vertex of G_i for $i = 1, \ldots, n$. If $G_i < x_{i1}$ and $G_i < N_{G_i}[x_{i1}]$ for $i = 1, \ldots, n$ are vertex decomposable and G < S is a graph with no chordless cycles of length other than 3 or 5, then $G(G_1, \ldots, G_n)$ is vertex decomposable.

PROOF. Note that $\lim_{Ind(G)}(\mu)|_{\bar{S}} = \operatorname{Ind}(G \setminus N_G[\mu])|_{\bar{S}} = \operatorname{Ind}((G \setminus N_G[\mu])|_{\bar{S}})$. For every $\mu \subseteq S$, $(G \setminus N_G[\mu])|_{\bar{S}}$ is an induced subgraph of $G|_{\bar{S}}$, so it is a graph with no chordless cycles of length other from 3 or 5, and hence it is vertex decomposable by [8, Theorem 1]. Now, apply Theorem 3.1.

Therefore, we infer the following result.

COROLLARY 3.3. Let G be a simple graph on the vertex set V(G) and let $S \subseteq V(G)$. If $G \setminus S$ is a graph with no chordless cycles of length other than 3 or 5, then $G \cup W(S)$ is a vertex decomposable graph.

COROLLARY 3.4. Let G be a simple graph on the vertex set V(G) and $S = \{x_{11}, \ldots, x_{n1}\}$ a subset of V(G) with $|S| \ge |V(G)| - 3$. Let $m_1, \ldots, m_n \ge 2$ be integers and G_1, \ldots, G_n connected simple graphs on the vertex sets $V(G_i) = \{x_{i1}, \ldots, x_{im_i}\}$ for $i = 1, \ldots, n$. Assume x_{i1} is a shedding vertex of G_i for $i = 1, \ldots, n$. Moreover, let $G_i \setminus x_{i1}$ and $G_i \setminus N_{G_i}[x_{i1}]$ for $i = 1, \ldots, n$ be vertex decomposable. Then $G(G_1, \ldots, G_n)$ is vertex decomposable.

PROOF. Since $|S| \ge |V(G)| - 3$, $G \le S$ is a graph on at most 3 vertices. So $G \le S$ is either a tree, edgeless graph, $K_2 \cup K_1$ or C_3 . Thus $G \le S$ is chordal and the assertion holds by Corollary 3.2.

Therefore the following result holds.

COROLLARY 3.5. Let G be a simple graph, and let $S \subset V(G)$. Assume that $|S| \ge |V(G)| - 3$. Then $G \cup W(S)$ is a vertex decomposable graph.

In the following example it is shown that the bound |V(G)| - 3 in Corollary 3.4 is sharp.

EXAMPLE 3.1. Let G and G_1 be graphs shown in the figure below, and let $S = \{x_1\}$. Note that the only shedding vertices of $G(G_1)$ are x_1, y and z. Then $G(G_1)$ is not vertex decomposable, because $G(G_1) \setminus N[y] = G(G_1) \setminus N[z] = C_4$ and $G(G_1) \setminus x_1 = K_2 \cup C_4$ are not vertex decomposable.

COROLLARY 3.6. Let G be a simple graph on the vertex set V(G) and $S = \{x_{11}, \ldots, x_{n1}\}$ a subset of V(G). Let $m_1, \ldots, m_n \ge 2$ be integers and G_1, \ldots, G_n connected simple graphs on the vertex sets $V(G_i) = \{x_{i1}, \ldots, x_{im_i}\}$ for $i = 1, \ldots, n$. Assume that x_{i1} is a shedding vertex of G_i for $i = 1, \ldots, n$. Moreover, let G_i , $G_i < x_{i1}$ and $G_i < N_{G_i}[x_{i1}]$ for $i = 1, \ldots, n$ be vertex decomposable. Then

- (i) If S is a vertex cover of G, then $G(G_1, \ldots, G_n)$ is vertex decomposable.
- (ii) If $G \setminus S$ is a forest, then $G(G_1, \ldots, G_n)$ is vertex decomposable.
- (iii) If $G = C_n$ is a cycle and x a vertex of C_n , then $G(G_1)$ is vertex decomposable.

PROOF. If S is a vertex cover of G, then $G \setminus S$ is an edgeless graph and so it is a chordal graph. Also, every forest is a chordal graph. Now, (i) and (ii) follow from Corollary 3.2. Finally, the resulting graph of removing a vertex from C_n is a tree and hence (iii) follows from (ii).

References

- J. Biermann, C. A Francisco, H. T. Há, A. Van Tuyl, Colorings of simplicial complexes and vertex decomposability, J. Commut. Algebra 7 (2015), 337–352.
- L. J. Billera, J. S. Provan, Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5(4) (1980), 576–594.
- A. Björner, M. Wachs, Shellable nonpure complexes and posets I, Trans. Am. Math. Soc. 348 (1996), 1299–1327.
- A. Dochtermann, A. Engström, Algebraic properties of edge ideals via combinatorial topology, Electron. J. Comb. 16(2) (2009), research paper 2, 24 pp.

- 5. J. Herzog, T. Hibi, Monomial Ideals, Grad. Texts Math. 260, Springer-Verlag, 2010.
- M. Mousivand, S.A. Seyed Fakhari, S. Yassemi, A new construction for Cohen-Macaulay graphs, Commun. Algebra 43(12) (2015), 5104–5112.
- 7. R. H. Villarreal, Cohen-Macaulay graphs, Manuscr. Math 66 (1990), 277-293.
- 8. R. Woodroofe, vertex decomposable graphs and obstructions to shellability, Proc. Am. Math. Soc 137 (2009), 3235–3246.

Young Researchers and Elite Club Khomein Branch Islamic Azad University Khomein Iran hajisharifi@iaukhomein.ac.ir (Received 31 12 2014) (Revised 15 10 2015)

School of Math. Stat. Comp. Sci. College of Science University of Tehran Tehran Iran yassemi@ut.ac.ir