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HÖLDER’S REVERSE INEQUALITY
AND ITS APPLICATIONS

Chang-Jian Zhao and Wing Sum Cheung

Abstract. We establish a new reverse Hölder integral inequality and its
discrete version. As applications, we prove Radon’s, Jensen’s reverse and
weighted power mean inequalities and their discrete versions.

1. Introduction

The well-known classical Hölder inequality can be stated as follows.

Theorem 1.1. Let ai and bi (i = 1, . . . , n) be positive real sequences. If p > 1
and 1

p + 1
q = 1, then

(1.1)
(

∑

ap
i

)1/p(

∑

bq
i

)1/q

>
∑

aibi.

Here and in what follows
∑

means
∑n

i=1.

The integral version of (1.1) is the following.

Theorem 1.2. Let f(x) and g(x) be positive continuous functions on [a, b]. If

p > 1 and 1
p + 1

q = 1, then

(1.2)
(

∫ b

a

fp(x) dx
)1/p(

∫ b

a

gq(x) dx
)1/q

>

∫ b

a

f(x) g(x) dx.

Hölder’s inequality plays an important role in different branches of modern
mathematics such as classical real and complex analysis, numerical analysis, prob-
ability and statistics, differential equations and et al. In recent years some au-
thors [1,2,6,7,9,10,16–19] have given considerable attention to Hölder’s inequality
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together by its integral version and various generalizations. Some reverse versions
were recent established [4,13,15,18].

We establish a new reverse Hölder integral inequality and with its discrete
form. As applications, we prove Radon’s, Jensen’s reverse and weighted power
mean inequalities.

2. Hölder’s reverse inequalities

Lemma 2.1. If a, b are positive real numbers and 1
p + 1

q = 1 and p > 1, then

(see [14])

(2.1) S
(a

b

)

a1/pb1/q >
a

p
+

b

q
,

where

S(h) =
h1/(h−1)

e log h1/(h−1)
, h 6= 1.

Theorem 2.1 (Hölder’s reverse inequality). Let 1
p + 1

q = 1 and p > 1. If f(x)

and g(x) are non-negative continuous functions and f1/p(x) g1/q(x) is integrable on

[a, b], then

(2.2)
(

∫ b

a

f(x)pdx
)1/p(

∫ b

a

g(x)qdx
)1/q

6

∫ b

a

S
(Y fp(x)

Xgq(x)

)

· f(x)g(x) dx,

where

X =

∫ b

a

fp(x) dx, Y =

∫ b

a

qq(x) dx,

and S(h) is as in Lemma 2.1.

Proof. Let

a =
fp(x)

X
, b =

gq(x)

Y
.

By using Lemma 2.1, we have

S
(Y fp(x)

Xgq(x)

)

·
f(x)g(x)

X1/pY 1/q
>

1

p

fp(x)

X
+

1

q

gp(x)

Y
.

Therefore
∫ b

a
S

( Y fp(x)
Xgq(x)

)

f(x)g(x)dx

X1/pY 1/q
>

1

p

‖f(x)‖p
p

X
+

1

q

‖g(x)‖p
p

Y
= 1.

This proof is completed. �

Remark 2.1. Obviously, inequality (2.2) is just an inverse of inequality (1.2).
Moreover, let f(x) and g(x) reduce to positive real sequences ai and bi (i =
1, . . . , n), respectively and with appropriate changes in the proof of (2.1), we have

(

∑

ap
i

)1/p(

∑

bq
i

)1/q

6
∑

S
(Y ′ap

i

X ′bq
i

)

aibi,

where X ′ =
∑

ap
i , Y ′ =

∑

bq
i .

This is just an inverse of the well-known Hölder’s inequality (1.1).



HÖLDER’S REVERSE INEQUALITY AND ITS APPLICATIONS 213

3. Applications of Hölder’s reverse inequality

Theorem 3.1 (Radon’s reverse integral inequality). Let f(x) and g(x) be pos-

itive and continuous functions. If m > 0, then

(3.1)

∫ b

a

fm+1(x)

gm(x)
dx 6

(

∫ b

a
S

(

Ỹ fm+1(x)
X̃gm+1(x)

)

f(x) dx
)m+1

( ∫ b

a
g(x) dx

)m ,

where

X̃ =

∫ b

a

fm+1(x)

gm(x)
dx, Ỹ =

∫ b

a

g(x) dx.

Proof. Let p = m + 1, q = (m + 1)/m and replacing f(x) and g(x) by u(x)
and v(x) in (2.2), respectively, we have

(
∫ b

a

u(x)m+1 dx

)1/(m+1)( ∫ b

a

v(x)(m+1)/mdx

)m/(m+1)

(3.2)

6

∫ b

a

S

(

Ŷ um+1(x)

X̂v(m+1)/m(x)

)

u(x)v(x) dx,

where X̂ =
∫ b

a
um+1(x) dx, Ŷ =

∫ b

a
v(m+1)/m(x) dx. Taking u(x) =

( f(x)
g(x)

)1/(m+1)
,

v(x) = fm/(m+1)(x) g1/(m+1)(x) in (3.2), we obtain

∫ b

a

S

(

Ȳ

X̄g(m+1)/m(x)

)

f(x) dx

>

(
∫ b

a

f(x)

g(x)
dx

)1/(m+1)( ∫ b

a

f(x) g1/m(x) dx

)m/(m+1)

,

where

X̄ =

∫ b

a

f(x)

g(x)
dx, Ȳ =

∫ b

a

f(x) g1/m(x) dx.

Hence

∫ b

a

f(x)

g(x)
dx 6

(

∫ b

a
S

(

Ȳ
X̄g(m+1)/m(x)

)

f(x)dx
)m+1

( ∫ b

a
f(x)g1/m(x) dx

)m .

Replacing f(x) and g(x) by u(x) and v(x), respectively, and leting u(x) = f(x)

and v(x) =
( g(x)

f(x)

)m
, we get

∫ b

a

fm+1(x)

gm(x)
dx 6

(

∫ b

a S
(

Ỹ fm+1(x)
X̃gm+1(x)

)

f(x) dx
)m+1

( ∫ b

a g(x) dx
)m ,

where

X̃ =

∫ b

a

fm+1(x)

gm(x)
dx, Ỹ =

∫ b

a

g(x) dx. �
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Remark 3.1. Let f(x) and g(x) reduce to positive real sequences ai and bi

(i = 1, . . . , n), respectively and with appropriate changes in the proof of (3.1), we
have

∑ am+1
i

bm
i

6

(

∑

S
(

Ỹ ′am+1
i

X̃′bm+1
i

)

ai

)m+1

(
∑

bi

)m ,

where X̃ ′ =
∑

am+1
i /bm

i , and Ỹ ′ =
∑

bi.

This is just an inverse of following well-known the Radon inequality [5]

∑ am+1
i

bm
i

>

(
∑

ai

)m+1

(
∑

bi

)m .

Theorem 3.2 (Jensen’s reverse integral inequality). Let f(x) and p(x) be pos-

itive continuous functions and
∫ b

a
p(x) dx = 1. If 0 < s < t, then

(3.3)
(

∫ b

a

S
(f t(x)

X̌

)

fs(x)p(x) dx
)1/s

>

(

∫ b

a

p(x)f t(x) dx
)1/t

,

where

X̌ =

∫ b

a

p(x)f t(x)t dx.

Proof. From the hypotheses, we have

(3.4)

∫ b

a

S
(f t(x)

X̌

)

fs(x)p(x) dx

=

∫ b

a

S
( Y̌ [ps/t(x)fs(x)]t/s

X̌ [p1−s/t(x)]t/(t−s)

)

ps/t(x)fs(x) · p1−s/t(x) dx,

where X̌ =
∫ b

a
p(x)f t(x) dx and Y̌ =

∫ b

a
p(x) dx. In view if p = t

s and then q = t
t−s ,

and by using (2.2) on the right-hand side of (3.4), we have

(3.5)

∫ b

a

S
( Y̌ [ps/t(x)fs(x)]t/s

X̌[p1−s/t(x)]t/(t−s)

)

ps/t(x)fs(x) · p1−s/t(x) dx

>

(

∫ b

a

(ps/t(x)fs(x))t/sdx
)s/t(

∫ b

a

[(p(x))1−s/t]t/(t−s)dx
)(t−s)/t

.

From (3.4), (3.5) and in view of
∫ b

a
p(x) dx = 1, we obtain

∫ b

a

S
(f t(x)

X̌

)

fs(x) p(x) dx >

(

∫ b

a

p(x)f t(x) dx
)s/t

.

Hence
(

∫ b

a

S
(f t(x)

X̌

)

fs(x) p(x) dx
)1/s

>

(

∫ b

a

p(x)f t(x) dx
)1/t

. �
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Remark 3.2. If f(x) and p(x) reduce to positive real sequences ai and λi

(i = 1, . . . , n), respectively and with appropriate changes in (3.3), we have

(

∑

S
( at

i

X̌ ′

)

as
i λi

)1/s

>

(

∑

λia
t
i

)1/t

,

where X̌ ′ =
∑

λia
t
i.

This is just an inverse of the following well-known Jensen’s inequality [3]

(

∑

as
i λi

)1/s

6

(

∑

λia
t
i

)1/t

,

Theorem 3.3 (Reverse weighted power mean integral inequality). Let f(x)

and p(x) be positive and continuous functions. If r > 0 and
∫ b

a p(x) dx = 1, then

(3.6)
(

∫ b

a

S
(

∫ b

a
p(x)f2r(x) dx

f2r(x)

)

p(x)f r(x) dx
)1/r

>

(

∫ b

a

p(x)f2r(x) dx
)1/2r

.

Proof. From the hypotheses, we have

(3.7)

∫ b

a

S
(

∫ b

a
p(x)f2r(x) dx

f2r(x)

)

p(x)f r(x) dx

=

∫ b

a

S
(p(x)

∫ b

a p(x)f2r(x) dx

p(x)f2r(x)
∫ b

a
p(x) dx

)

p1/2(x) · p1/2(x)f r(x) dx.

From (2.2), we obtain

(3.8)
(

∫ b

a

f(x)2dx
)1/2(

∫ b

a

g(x)2dx
)1/2

6

∫ b

a

S
( Y̆ f2(x)

X̆g2(x)

)

f(x) g(x) dx,

where X̆ =
∫ b

a
f2(x) dx, Y̆ =

∫ b

a
g2(x) dx. By using (3.8) on the right-hand side of

(3.7), we have

(

∫ b

a

S
(

∫ b

a
p(x)f2r(x) dx

f2r(x)

)

p(x)f r(x) dx
)2

>

∫ b

a

p(x) dx ·

∫ b

a

p(x)f2r(x) dx =

∫ b

a

p(x)f2r(x) dx.

Hence

(

∫ b

a

S
(

∫ b

a
p(x)f2r(x) dx

f2r(x)

)

p(x)f r(x) dx
)1/r

>

(

∫ b

a

p(x)f2r(x) dx
)1/2r

. �

Remark 3.3. If f(x) and p(x) reduce to positive real sequences ai and λi

(i = 1, . . . , n), respectively and with appropriate changes in (3.6), we have

(

∑

S
(

∑

λia
2r
i

a2r
i

)

λia
r
i

)1/r

>

(

∑

λia
2r
i

)1/2r

.
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This is just an inverse of the following well-known weighted power mean in-
equality [5]

(

∑

λia
r
i

)1/r

6

(

∑

λia
2r
i

)1/2r

.

It is worth noting that literature [11] is relevant in spirit and methodology to
the present paper, but for the Hilbert-type integral inequality and its connection
with analytic number theory.
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