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A DOUBLE INEQUALITY FOR THE COMBINATION
OF TOADER MEAN AND THE ARITHMETIC MEAN
IN TERMS OF THE CONTRAHARMONIC MEAN

Wei-Dong Jiang and Feng Qi

ABSTRACT. We find the greatest value A and the least value u such that the
double inequality

CAa+ (1 —=X)b,Ab+ (1 —Aa) < aA(a,b) + (1 — )T (a,b)
< C(pa+ (1 — p)b, ub+ (1 — p)a)

holds for all a € (0,1) and a,b > 0 with a # b, where C(a,b), A(a,b), and
T'(a,b) denote respectively the contraharmonic, arithmetic, and Toader means
of two positive numbers a and b.

1. Introduction

For p € R and a,b > 0, the contraharmonic mean C/(a, b), the p-th power mean
Mp(a,b), and Toader mean T'(a,b) are respectively defined by

Claty= 2 Mp<a,b>{<(“”+b’”>/2>”‘”, pAo

a+b Vab,

/2 2_a5( 17(1)/0‘)2)7 a>ba
2 ™
T(a,b) = —/ Va2 cos? 0 + b2 sin® 0 df = 2e(\/1—(a/b)?), a<b,
mJo a, a=b,

where £ = &(r) = (;T/Q V1—7r2sin?0df for r € [0,1] is the complete elliptic
integral of the second kind. For more information on complete elliptic integrals,
see [11LA3HI5] and plenty of references therein.

Recently, the Toader mean has attracted attention of several researchers. In
particular, many remarkable inequalities for T'(a,b) can be found in the literature
[6,71[9l[10,18]. Tt was conjectured in [17] that

(1.1) Ms/5(a,b) < T(a,b)
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for all a,b > 0 with a # b. This conjecture was proved in [3l[16] respectively. In [,
the best possible upper bound for the Toader mean was presented by
T'(a,b) < Miy2/1n(x/2)(a,b)

for all a,b > 0 with a # b.

It is not difficult to verify that
(1.2) C(a,b) > Ma(a,b) = \/(a? +b?)/2
for all a,b > 0 with a # b. From (LI to (I2) one has A(a,b) < T(a,b) < C(a,b)
for all a,b > 0 with a # b.

For positive numbers a,b > 0 with a # b, let

J(z) = C(za+ (1 —z)b,ab+ (1 —z)a)

on [% ] It is not difficult to verify that J(x) is continuous and strictly increasing

on [1,1]. Note that J(1) = A(a,b) < T(a,b) and J(1) = C(a,b) > T(a,b).
In [8] it was proved that the double inequality

Claa+ (1 —a)h,ab+ (1 —a)a) < T(a,b) < C(Ba+ (1 — B)b, b+ (1 — B)a)

holds for all a,b > 0 with a # b if and only if o < % and § > % + ¥ 472:”2 .
The main purpose of the paper is to find the greatest value A and the least
value p such that the double inequality

Cha+ (1 —=Xb, b+ (1 —Na) < aA(a,b) + (1 —a)T(a,b)
< C(pa+ (1= p)b,ub+ (1 - pa)

holds for all « € (0,1) and a,b > 0 with a # b. As applications, we also present
new bounds for the complete elliptic integral of the second kind.

2. Preliminaries and lemmas

In order to establish our main result, we need several formulas and lemmas
below.

For 0 <r < 1and r = +1—1r2, Legendre’s complete elliptic integrals of the
first and second kinds are defined in [4,[5] respectively by

/2 do /2
K=K(r)= , — &(r) = —2sin29)?
() /0 (1—r251n29)1/2 d ¢ 5() /0 (1 9) %,
K'=K'(r) = K('), e N e = £(r) = 5(7“)
K(0) = g K(1) = oo £0) =5, £(1) =

For 0 < r < 1, the formulas
dK _E-(PK  dE _E-K d(€-(")’K)

dr (2 dr dr =k,
dUC—8) _ 1€ (2 _26-(K
dr ()%’ IL+r)  1+4vr

were presented in [2] Appendix E, pp. 474-475].
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LeMMA 2.1.  [2] Theorem 3.21(1) and 3.43 Exercise 13(a)] The function
E—(r")2K
r2

is strictly increasing from (0,1) onto (%, 1) and the function 2€ — (r')2K
is increasing from (0,1) onto (g, 2).

LEMMA 2.2. Let u,a € (0,1) and

Jua(r) = ur® — (1 — a){% [28(7‘) — (1 — 7“2)’(:(7“)} — 1}.

Then fua >0 for allr € (0,1) if and only if u > (1 — a)(2 — 1) and fu,a <0 for
all r € (0,1) if and only if u < 52,

PRrROOF. It is clear that

(21) fu,a (0+) = 07

(2:2) fua(17)=u—(1—-a)(4/m - 1),
(2.3) fualr) =2rlu— (1= a)g(r)],
where g(r) = %g_(:#

When u > =2, from ([Z3) and Lemma Il and by the monotonicity of g(r),
it follows that f, o(r) is strictly increasing on (0,1). Therefore, fy o(r) > 0 for all
re (0,1).

When v < 152, from (Z3) and Lemma [ZI] and by the monotonicity of g(r),
we obtain that f,, (r) is strictly decreasing on (0, 1). Therefore, f, () < 0 for all
r e (0,1).

When 152 < u < (1-a)(2 1), from Z2) and Z3) and by the monotonicity
of g(r), we see that there exists A € (0, 1) such that f, o(r) is strictly increasing in
(0, A] and strictly decreasing in [A, 1) and

(2.4) fua(17) 0.

Therefore, making use of equation (Z1]), inequality ([2.4]), and the piecewise mono-
tonicity of fu.(r) lead to the conclusion that there exists 0 < A < n < 1 such that
fu,a(r) > 0for r € (0,7) and f, o(r) <O for r € (n,1).

When (1 —a)(2 - 1) <u< =%, by [Z2), it follows that

(2.5) Jual17) > 0.

From ([22) and ([23) and by the monotonicity of g(r), we see that there exists
A € (0,1) such that f, o(r) is strictly increasing in (0, \] and strictly decreasing in
[A,1). Therefore, fy o(r) > 0 for r € (0,1) follows from (ZII) and ([ZH) together
with the piecewise monotonicity of fy (7). O

3. Main results
Now we are in a position to state and prove our main results.
THEOREM 3.1. Ifa € (0,1) and \, u € (%, 1), then the double inequality
Cha+ (1 =X, b+ (1 —XNa) < aA(a,b) + (1 —a)T(a,b)
< C(pa~+ (1 — p)b,ub+ (1 — p)a)
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holds for all a,b > 0 with a # b if and only if

/\gé+ ”1;‘)‘ and u>%[1+\/(1—a)(4/7r71)]

PROOF. Since A(a,b), T(a,b), and C(a,b) are symmetric and homogeneous
of degree one, without loss of generality, assume that a > b. Let p € (%, 1),
t=2€(0,1), and r = {5%. Then

C(pa+ (1 —p)b,pb+ (1 —p)a) — aA(a,b) — (1 — &)T(a,b)
_ a[p—i— (1 —p)b/a)* + (pb/a+1 — p)? 3 aal +b/a
1+b/a 2

SR ( 1= 0/a)?)
{[p+ 1— +(pt+1p)2a1+t(1a)%g<m)}

1+t 2
1 1 22& — (r')?
i — ,(1,(1)_M
1+r 1+7r ™ 1+7r

1+70[(1—2;9) +1—a—(1—a) (25 () IC)}
From this and Lemma [Z.2] Theorem [B.1] follows. O

COROLLARY 3.1. Forr € (0,1) and ' =1 — 12, we have

7 [174 307" +17(")2  3(1+1') ' +2(1—1")?/x
(3.1) 5[ 8(1+ 1) 2 ]<5(T)<W[ 1+ ]

ProOOF. This follows from letting a = %, A= %, and pu = (1 + 7”‘““) in
Theorem [B.11

4. Remarks

REMARK 4.1. Recently, the complete elliptic integrals have attracted attention
of numerous mathematicians. In [9], it was established that

/ /
(4.1) g[% 1+2(r)2+1z7"}<5(r)
<E{ 4—7 1+(r’)2+(\/§7r74)(1+r’)
vV 2 e
for all » € (0,1). In [11] it was proved that

14+7)t-r T—1 1—172 147
= <E(r) < + 10g177ﬂ,

™

]
™ 1. (d+r)"
(4.2) 1 8 T

2
for all » € (0,1). In [19] it was presented that

ﬁ\/6+2\/177"273r2 .
2 2v/2 =

V10 — 21 — 72 — 5r2

(4.3) g NG

&(r) <
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for all » € (0,1). In [9] it was pointed out that the bounds in @I for £(r) are
better than the bounds in ([@2) for some r € (0, 1).

REMARK 4.2. The lower bound in (3] for £(r) is better than the lower bound

in (ZJ). Indeed,

174302 +172>  3(142) [1 [1+22 1+
8(1+ux) 2

2 > Ty
322420+ 3—-2/2(1+ %) (1 + )
N 8(1+ x)

and
(3% + 20 +3)> — [2v2(1+a2) (1+2)] = (1—2)* >0
for all z € (0,1).

REMARK 4.3. The following equivalence relations show that the lower bound
in BJ)) for £(r) is better than the lower bound in (Z3):

174302 +172*  3(1 4 ) - V6 + 2z —3(1 — 22)
8(1+ x) 2 2v/2
& (52 + 62+ 5)% >8(x+1)2Bx? +2r+3) & (z—1)* >0,

where z € (0, 1).

REMARK 4.4. This paper is a slightly revised version of the preprint [12].
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