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A CHARACTERIZATION OF PGL(2, p
n)

BY SOME IRREDUCIBLE COMPLEX
CHARACTER DEGREES

Somayeh Heydari and Neda Ahanjideh

Abstract. For a finite group G, let cd(G) be the set of irreducible complex
character degrees of G forgetting multiplicities and X1(G) be the set of all
irreducible complex character degrees of G counting multiplicities. Suppose
that p is a prime number. We prove that if G is a finite group such that |G| =
| PGL(2, p)|, p ∈ cd(G) and max(cd(G)) = p+1, then G ∼= PGL(2, p), SL(2, p)
or PSL(2, p) × A, where A is a cyclic group of order (2, p − 1). Also, we
show that if G is a finite group with X1(G) = X1(PGL(2, pn)), then G ∼=
PGL(2, pn). In particular, this implies that PGL(2, pn) is uniquely determined
by the structure of its complex group algebra.

1. Introduction and preliminaries

Throughout this paper, let G be a finite group, p a prime number, n a nat-
ural number and let all characters of the groups be complex characters (that is,
characters afforded by irreducible complex representations). The set of irreducible
characters of G is denoted by Irr(G) and we write cd(G) for the set of irreducible
character degrees of G forgetting multiplicities. Denote by X1(G) the first column
of the ordinary character table of G. Thus X1(G) can be considered as the set of
all irreducible character degrees of G counting multiplicities.

It is known that non-abelian simple groups are uniquely determined by their
character tables. It was shown in [9] that the symmetric groups are also uniquely
determined by their character tables. Hupert [5] conjectured that if G is a finite
group and S is a finite non-abelian simple group such that cd(G) = cd(S), then
G ∼= S × A, where A is an abelian group. He verified the conjecture for the
Suzuki groups, the family of simple groups PSL2(q), for even q, and many of the
sporadic simple groups. The authors proved in [12, 8, 3] that each Mathieu-groups,
PSL(2, p), can be uniquely determined by their orders and their largest and second
largest irreducible character degrees, respectively.
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Here we prove the following.

Theorem 1.1. If |G| = | PGL(2, p)| and

(1) p ∈ cd(G), (2) max(cd(G)) = p + 1,

then G ∼= PGL(2, p), SL(2, p) or PSL(2, p) × A, where A is a cyclic group of order

(2, p − 1).

Tong-Viet [10] shows that the simple classical groups of Lie type are uniquely
determined by the first column of their character tables. Here we prove

Theorem 1.2. For the natural number n, PGL(2, pn) is uniquely determined

by the first column of its character table.

Let C be the complex number field. Denote by CG the group algebra of G. The
Brauer’s Problem asks which groups can be determined by the structure of their
complex group algebras. As a consequence of our results, we show that PGL(2, pn)
is uniquely determined by the structure of its complex group algebra.

Throughout the paper, we use the following notations: For a natural number
n, π(n) is the set of prime divisors of n and π(G) is π(|G|). For a prime r, the set
of r-Sylow subgroups of G is denoted by Sylr(G) and nr(G) = | Sylr(G)|. Let s be
a prime and let m be a natural number. We use se ‖ m when se | m but se+1 ∤ m.
The s-part of m is denoted by |m|s, i.e., |m|s = se if se ‖ m. If gcd(s, m) = 1
and s is odd, then we denote by e(s, m) multiplicative order of m modulo s, i.e.,
the smallest natural number n satisfying the condition mn ≡ 1 (mod s). Also,
we write H ch G if H is a characteristic subgroup of G. Set HG = ∩g∈GHg. If

χ =
∑N

i=1 niχi, where for every 1 6 i 6 N , χi ∈ Irr(G), then those χi with ni > 0
are called irreducible constituents of χ.

In the following lemmas, for χ ∈ Irr(G) and the normal subgroup N of G, χN is
the restriction of χ to N and for θ ∈ Irr(N), θG is the induced character on G. For
Theorem 1.1, we need some facts about the relation between Irr(G) and Irr(G/N),
when for some χ ∈ Irr(G), χN = θ ∈ Irr(N).

Lemma 1.1. (Gallagher’s Theorem) [6, Corollary 6.17] Let N E G and let

χ ∈ Irr(G) be such that χN = θ ∈ Irr(N). Then the characters βχ for β ∈ Irr(G/N)
are irreducible distinct for distinct β and are all of the irreducible constituents of θG.

In order to find the normal abelian subgroups of the given groups in Theorems
1.1 and 1.2, we need the following well-known lemma.

Lemma 1.2 (Ito’s Theorem). [6, Theorem 6.15] Let A E G be abelian. Then

χ(1) | [G :A], for all χ ∈ Irr(G).

The interest of Lemma 1.3 is that it allows one to obtain some information
about cd of the normal subgroup N of G by considering some elements of cd(G)
and [G :N ], which will be needed in the proofs of Theorems 1.1 and 1.2.

Lemma 1.3. [6, Theorem 6.2 and Corollary 11.29] Let N E G and χ ∈ Irr(G).
Let θ be an irreducible constituent of χN and suppose that θ1 = θ, . . . , θt are distinct

conjugates of θ in G. Then χN = e
∑t

i=1 θi, where e = [χN , θ]. Also, χ(1)/θ(1) |
[G :N ].
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Applying Lemma 1.4 to the proof of Theorem 1.1 (Case b) leads us to obtain
some prime divisors of the elements of cd of some normal subgroups of G, by
considering their normal abelian Sylow subgroups.

Lemma 1.4 (Ito–Michler’s Theorem). [4, Theorem 19.10 and Remark 19.11]
Let ρ(G) be the set of all prime divisors of the elements of cd(G). Then p /∈ ρ(G)
if and only if G has a normal abelian p-Sylow subgroup.

In this paper, we need cd(SL(2, q)), cd(PSL(2, q)), cd(PGL(2, q)) and cd(G),
where G is an extension of PSL(2, q), frequently. So we bring them in Lemma 1.5
for making it easy to use.

Lemma 1.5. [11, Theorem A and Corollary C] If q is a power of an odd prime

number, then

(i) cd(SL(2, q)) = {1, q − 1, (q − 1)/2, q, q + 1, (q + 1)/2};

(ii) cd(PSL(2, q)) = {1, q − 1, q, q + 1, (q + ε)/2}, where ε = (−1)(q−1)/2;

(iii) cd(PGL(2, q)) = {1, q − 1, q, q + 1};

(iv) if q >3 and PSL(2, q) 6 G 6 Aut(PSL(2, q)) such that [G :PSL(2, q)]= 2
and G 6= PGL(2, q), then 2(q − 1) ∈ cd(G).

Since for every odd prime divisor r of | PGL(2, pn)|, PGL(2, pn) has exactly
one irreducible character degree divisible by r, we may apply the following lemma
to the proof of Step 3 of Theorem 1.2.

Lemma 1.6. [7, Theorem C and Corollary 7.5] Let G be a finite group with

exactly one irreducible character degree divisible by p. Assume that G is not p-

solvable, and let U = Op(G) and K/U = Op′(G/U). Then K is the unique largest

normal p-solvable subgroup of G. Also, G/K has a simple socle S/K, and [G :S] is

not divisible by p. In particular, S/K ∼= M11, J1 or PSL(2, q), where q is a power

of the prime r.

Lemmas 1.7 and 1.8 will be needed in Step 3 of the proof of Theorem 1.2 and
the proof of Theorem 1.1, respectively.

Lemma 1.7. [6, Theorem 12.15] If | cd(G)| 6 3, then G is solvable.

Lemma 1.8. [12] Let G be a nonsolvable group. Then G has a normal series

1 E H E K E G such that K/H is a direct product of isomorphic non-abelian

simple groups and |G/K| | | Out(K/H)|.

The following lemma follows immediately by checking the order of finite simple
groups of Lie type over a finite field of order q for showing that the non-abelian
chief factor of G is isomorphic to PSL(2, p).

Lemma 1.9. Let H be a finite simple group of Lie type over a finite field of order

q, where q = rt for a prime r. If p ∈ π(H) and e(p, q) = i, then (qi − 1) < |H |r
except in the following cases:

(i) i = 2 and H = PSL(2, q);
(ii) i = 6 and H = P SU(3, q);
(iii) i = 4 and H = 2B2(q), where q = 22m+1, m > 1;

(vi) i = 6 and H = 2G2(q), where q = 32m+1, m > 1.
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2. Proof of Theorem 1.1

Throughout this section, let G be a group satisfying the conditions of the
main theorem. Since p, p + 1 ∈ cd(G), fix χ, φ ∈ Irr(G) such that χ(1) = p and
φ(1) = p + 1.

I. Let p = 3 and P ∈ Syl3(G). If n3(G) = 1, then, since P is a cyclic group
of order 3, Ito’s theorem forces 3 = χ(1) | [G : P ] = 8, which is impossible.
Thus n3(G) = 4 and hence, PG = 1, so G = G/PG →֒ S4. But |G| = |S4|, so
G ∼= S4

∼= PGL(2, 3), as claimed. The same reasoning completes the proof in the
case when p = 2.

II. Let p > 3. We claim that G is not solvable. On the contrary, suppose that
G is solvable. We are going to get a contradiction in the following cases:

Case a. Let (p−1)/2 be even. Let H be a Hall subgroup of G of order 2p(p−1).
Thus [G :H ] = (p+1)/2. Hence G/HG →֒ S(p+1)/2. Since p > (p+1)/2, p ∈ π(HG).
Let P ∈ Sylp(HG). We can see that np(HG) = 1, so P ch HGEG and hence, P EG.
But since |P | = p, P is abelian and hence, by Ito’s theorem, p = χ(1) | [G : P ],
which is a contradiction.

Case b. Let (p + 1)/2 be even. If there exists an odd prime r and a natural
number α such that rα ‖ (p + 1)/4, then let H be a Hall subgroup of G of order
p(p − 1)(p + 1)/rα. Thus [G :H ] = rα. Hence, G/HG →֒ Srα . But rα 6 (p + 1)/4.
Thus p ∈ π(HG). Let P ∈ Sylp(HG). Since |P | = p, P is abelian. Also, np(HG) =
kp + 1 | (p − 1)(p + 1)/rα. First suppose that k > 1. Then there exists a natural
number t such that rαt(kp+1) = (p−1)(p+1). Therefore, p | trα+1 and hence there
exists a natural number s such that ps = rαt + 1. Hence, (ps − 1)(kp + 1) = p2 − 1,
which implies k = s = 1. Therefore, rα | p − 1. On the other hand, r | p + 1, so
r | gcd(p−1, p+1) = 2, which is a contradiction. It follows that np(HG) = 1. Thus
P EG and hence, Ito’s theorem implies that p = χ(1) | [G :P ], which is impossible.

Let p + 1 = 2α, for some natural number α. Let H be a Hall subgroup of G
of order 2p(p + 1) = 2α+1p. Then [G : H ] = (p − 1)/2 and G/HG →֒ S(p−1)/2.
Thus p ∈ π(HG). Let P ∈ Sylp(HG). Since |P | = p, P is abelian. If np(HG) = 1,
then P E G, so applying Ito’s theorem to P and χ leads us to get a contradiction.
Therefore, np(HG) 6= 1, so we can see at once that np(HG) = p + 1 = 2α and
hence, [H : HG] | 2. Let θ ∈ Irr(HG) such that [φHG

, θ] 6= 0. Then Lemma 1.3
shows that p + 1 = φ(1) | θ(1)[G :HG] = θ(1)[G :H ][H : HG], so either |H | = |HG|
and p + 1 | θ(1) or |HG| = |H |/2 and (p + 1)/2 | θ(1). Also, p ∈ π(HG) and
np(HG) 6= 1, so Ito–Michler’s Theorem guarantees that there exists η ∈ cd(HG)
such that p | η(1). It is known that Σα∈Irr(HG)α(1)2 = |HG|. Thus either |HG| =

|H | and p2 + (p + 1)2 6 |HG| or |HG| = |H |/2 and p2 + ((p + 1)/2)2 6 |HG|. This
forces either p2 + (p + 1)2 6 2p(p + 1) or p2 + (p + 1)2/4 6 p(p + 1), which is
impossible.

Therefore, G is not solvable. Now, Lemma 1.8 shows that G has a normal series
as 1 E H E K E G such that K/H is a direct product of m copies of a non-abelian
simple group S. Since p‖|G|, we deduce that exactly one of the following holds:

p | |G/K|, p | |H |, p | |K/H |.
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Thus the proof falls into the following cases:

i. Let p | |G/K|. We know that K/H is isomorphic to m copies of a non-
abelian simple group S. Thus Out(K/H) ∼= Out(S) ≀ Sm. Also Lemma 1.8 shows
that |G/K| | | Out(K/H)|. Therefore p | | Out(S)| or p | |Sm|. If p | |Sm|, then
m > p. But the order of the smallest simple group is 60 and hence, 60p 6 |K/H |.
It follows that 60p 6 p(p2 − 1), a contradiction. Hence, p | | Out(S)| and p ∤ |S|.
Now, considering the order of the outer automorphism groups of alternating groups
and simple sporadic groups leads us to see that S is a simple group of Lie type over

a finite field of order q, where q = pf
0 for some prime number p0 and some natural

number f such that p | f (see [2]). Since p ∤ |S| and |S| | |G|, |S| | (p2 − 1) and

since p > 5, q | |S| and p0 > 2, we deduce that 2p 6 pp
0 6 pf

0 = q 6 p2 − 1, which is
a contradiction.

ii. Let p | |H |. Let θ ∈ Irr(H) be a constituent of χH . Then Lemma 1.3
implies that χ(1)/θ(1) | [G :H ], and since p ∤ [G :H ], θ(1) = p. So χH = θ and now,
Gallagher’s theorem shows that for every β ∈ Irr(G/H), βχ ∈ Irr(G). So for every
β ∈ Irr(G/H), pβ(1) ∈ cd(G). But by our assumption, max(cd(G)) = p + 1, so for
every β ∈ Irr(G/H), β(1) = 1 and hence, G/H is abelian, which is a contradiction.

iii. Let p | |K/H |. Since K/H is isomorphic to the direct product of m copies
of S, we must have pm | |K/H |. But we know that p ‖ |G|. This implies that
K/H is a simple group such that p is the maximal prime divisor of its order. Also
|K/H | | p(p2 − 1). Now, these conditions on K/H rule out the case that K/H is a
sporadic simple group.

If K/H is an alternating group, then S ∼= An, for some n > 5, so p 6 n and
n!/2 = |An| = |S| 6 p(p2 − 1) 6 n(n2 − 1). This implies that p = n = 5 and hence,
K/H ∼= A5

∼= PSL(2, 5).
Let K/H be a finite simple group of Lie type over a finite field of order q, where

q = ru for a prime r. If p 6= r, then suppose e(p, q) = i. Since |K/H | | |G|, we
deduce that one of the following holds:

1. Let |K/H |r = |p2 − 1|2. Then r = 2 and since gcd(p − 1, p + 1) = 2,
we can see that |p2 − 1|2 = 2|p − 1|2 or 2|p + 1|2. If 4 | q, then either i = 1
or p ∤ q − 1 and hence, p | (qi − 1)/(q − 1). If i = 1, then since |K/H |r = qt,
we can see that q − 1 | |K/H |r − 1, so p | |K/H |r − 1 = |p2 − 1|2 − 1, which is
impossible. So i 6= 1 and hence, p | (qi − 1)/(q − 1). Thus 3p 6 (q − 1)p 6 qi − 1
and |K/H |r 6 2(p + 1). Therefore, (qi − 1) > |K/H |r and so, K/H is isomorphic
to one of the groups obtained in Lemma 1.9(1–3). If i = 6 and K/H ∼= P SU(3, q),
then p | (q3 + 1)/(q + 1). Thus 5p 6 (q3 + 1) < 2q3 6 2|K/H |r 6 4(p + 1),
which is impossible. If i = 4 and K/H ∼= 2B2(q), where q = 22m+1, then since
2m + 1 is odd, q2 + 1 is not prime, so we can see that p 6= q2 + 1 and hence,
3p 6 q2 + 1 6 2(p + 1) + 1, which is impossible. Thus K/H ∼= PSL(2, q). Now
let q = 2. If p 6= qi − 1, then we can see that 3p 6 qi − 1. Now applying the
previous argument leads us to get a contradiction. If p = 2i − 1, then i is prime
and 2i = p + 1. Since |K/H |2 = |p2 − 1|2, we deduce that |K/H |2 = 2i+1. But
p > 5, so i > 3. Thus checking the order of finite simple groups of Lie type leads
us to get a contradiction.
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2. Let |K/H |r | (p + 1)/2 or |K/H |r | (p − 1)/2. Then p 6 qi − 1 and
|K/H |r 6 (p + 1)/2. Thus (qi − 1) > |K/H |r and so, K/H is isomorphic to
one of the groups obtained in Lemma 1.9. If i = 6 and K/H ∼= P SU(3, q), then
p 6 (q3 + 1) 6 |K/H |r + 1 6 (p + 1)/2 + 1, which is impossible. If i = 4 and
K/H ∼= 2B2(q), where q = 22m+1, then since p | q2 + 1, p 6 q2 + 1 = |K/H |r + 1 6

(p + 1)/2 + 1 and hence, p 6 3, which is impossible. The same reasoning rules out
the case that i = 6 and K/H ∼= 2G2(q), where q = 32m+1. Thus K/H ∼= PSL(2, q).

3. Let |K/H |r = |p − 1|2 or |K/H |r = |p + 1|2. If |K/H |r 6= p − 1 and
|K/H |r 6= p + 1, then we can see that |K/H |r 6 (p + 1)/3 and hence, applying
the same argument as that used in 2 leads us to K/H ∼= PSL(2, q). Thus for some
natural number t, |K/H |r = 2t and either |K/H |r = p − 1 or |K/H |r = p + 1.
Since p | |K/H |, checking the order of finite simple groups of Lie type shows that
either p = 7 and K/H ∼= PSL(3, 2) ∼= PSL(2, 7) or K/H ∼= PSL(2, q).

But if K/H ∼= PSL(2, q), where p ∤ q, then since p ∈ π(K/H), either p | q − 1
or p | q + 1, so we have the following possibilities:

• If p = q − 1, then q = 2α, for some natural number α and

|G| = p(p − 1)(p + 1) = q(q − 1)(q − 2) < q(q2 − 1) = |K/H |,

which is impossible.

• If p | q − 1 and p 6 (q − 1)/2, then

|G| = p(p2 − 1) 6 ((q − 1)/2)((q + 1)/2)((q − 3)/2) < q(q2 − 1)/2 = |K/H |,

which is a contradiction.

• If p | q + 1, then applying the same argument as above leads to q = 4 and
p = 5. Thus K/H ∼= PSL(2, 4) ∼= PSL(2, 5).

These show that p | q. Since p ‖ |G|, we deduce that p = q. Thus considering
the order of finite simple groups of Lie type over a finite field of order p forces
K/H = PSL(2, p), and so |H | = 2 or |G/K| = 2. Let for some natural number
d with d | 2n, dp(q − 1) or dp(q + 1) belongs to cd(G/K) = cd(G), |G/K| = 1
and hence, G = K and G ∼= 2 : PSL(2, p). Thus either G ∼= Z(G) × PSL(2, p)
or G ∼= SL(2, p). If |G/K| = 2, then |H | = 1 and hence, K = PSL(2, p) and
G = PSL(2, p) : 2 = PGL(2, p). Thus the theorem is proved.

Corollary 2.1. Let |G| = | PGL(2, p)|. If cd(G) = cd(PGL(2, p)), then G is

isomorphic to PGL(2, p).

Proof. It follows immediately from the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

First let n = 1. Since X1(PGL(2, p)) = X1(G), cd(G) = cd(PGL(2, p)) and
|G| = | PGL(2, p)|, because |G| =

∑
χ∈Irr(G) χ(1)2. Thus Corollary 2.1 completes

the proof. Now let n > 1. Since cd(G) = cd(PGL(2, pn)), we deduce by Lemma
1.5(iii) that cd(G) = {1, pn − 1, pn + 1, pn}. Thus for every r ∈ π(G) − π((2, p − 1)),
G has exactly one irreducible character degree divisible by r. We are going to
complete the proof in the following steps.
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Step 1. If M is a nontrivial normal solvable subgroup of G, then p is odd,
M = Z(G) and |M | = 2.

Proof . Let N be a normal minimal subgroup of G such that N 6 M . Then
there exists r ∈ π(G) such that N is an r-elementary abelian subgroup. Thus
Ito’s theorem and our assumption force pn, pn − 1, pn + 1 | [G : N ] and hence
pn(p2n − 1)/(2, p − 1) | [G : N ] = | PGL(2, pn)|/|N |. Therefore, |N | = (2, p − 1).
Since M 6= 1, we deduce that |N | 6= 1 and hence, 2 | p − 1 and |N | = 2. This forces
N 6 Z(G). Also, applying Ito’s theorem and our assumption force pn, pn−1, pn+1 |
[G :Z(G)] and hence, |Z(G)| = |N | = 2. We claim that M = N . If not, then we can
assume that L/N is a normal minimal subgroup of G/N such that L/N 6 M/N .
Thus there exists s ∈ π(G) such that L/N is a s-elementary abelian subgroup. If
s 6= 2, then since N = Z(G), we deduce that G contains a normal subgroup K such
that K ∼= L/N , which is a contradiction with the above statements. Thus s = 2.
If |L| = 4, then Ito’s theorem and our assumption guarantee pn(p2n − 1)/2 | [G :L],
which is a contradiction. Thus |L| > 4. Now for ε = ±, let χε ∈ Irr(G) such that
χε(1) = pn + ε1 and θε ∈ Irr(L) such that [χε, θε] 6= 0. Thus Lemma 1.3 shows
that χε(1)/θε(1) | [G : L] and hence there exists θ ∈ Irr(L) such that |L|/2 | θ(1).
On the other hand, L/N is 2-elementary abelian and |L/N | > 4. Thus there exists
xN ∈ L/N such that O(xN) = 2 and 〈xN〉 6= L/N . Therefore, 〈x〉N is a normal
abelian subgroup of L of order 4 and hence Ito’s theorem shows that θ(1) | |L|/4,
which is a contradiction. Therefore, M = N , as claimed.

Step 2. There exists r ∈ π(G) − {2} such that G is not an r-solvable group.

Proof. Since by Step 1, G is not solvable, the result follows immediately from
the definition of r-solvable groups.

Step 3. G ∼= PGL(2, pn).

Proof. By Step 2, there exists r ∈ π(G) − {2} such that G is not r-solvable.
Also, cd(G) = {1, pn, pn + 1, pn − 1}. Thus Lemma 1.6 shows that if U = Or(G)
and K/U = Or′(G/U), then G/K has a simple socle S/K (which is isomorphic
to M11, J1 or PSL(2, q)), and [G : S] is not divisible by p. Since r 6= 2, step 1
shows that U = 1. Also, cd(G/K) = {χ(1) : χ ∈ Irr(G), K 6 ker(χ)} and
Lemma 1.7 shows that | cd(G/K)| > 4. Therefore, cd(G/K) = cd(G). Thus
pn, pn + 1, pn − 1 | |G/K|. This shows that |G|/2 | |G/K|. Thus considering the
order of Aut(M11) and Aut(J1) guarantees that S/K is not isomorphic to M11

and J1 and hence, S/K ∼= PSL(2, q). If p | [G : S], then Theorem A in [11]
shows that for some natural number with d | 2n, dp(q − 1) or dp(q + 1) belongs to
cd(G/K) = cd(G), which is a contradiction. Thus p ∤ [G : S]. So pn ∈ cd(S/K)
and pn | |S/K|. If p ∤ q, then considering the elements of cd(S/K) mentioned
in Lemma 1.5(ii) shows that pn | q + 1 or pn | q − 1. If pn = q + 1 or q − 1,
then |S/K| = pn(pn − 1)(pn − 2) or pn(pn + 1)(pn + 2) which divides |G| and hence
pn −2 | pn +1 or pn +2 | pn −1, which is impossible. Thus pn | q and since pn ‖ |G|,
we deduce that pn = q and hence, S/K ∼= PSL(2, pn). If p = 2, then |S/K| = |G|
and hence, S = G, as claimed. Now let p be odd. If K 6= 1, then G/S = 1 and by
step 1, K = Z(G), which is a cyclic group of order 2 and hence G ∼= SL(2, pn) or
PSL(2, pn)×Z(G). But cd(SL(2, pn)), cd(PSL(2, pn)) 6= cd(PGL(2, pn)), by Lemma
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1.5, which is a contradiction. Thus K = 1 and |G/S| = 2. Since K = 1 and S is
a socle of G, we can see that CG(S) = 1 and hence, G/S . Out(S). But we know
that if p is an odd prime, then Out(S) = Out(PSL(2, pn)) = (〈δ〉 × 〈γ〉), where δ is
a diagonal automorphism of order 2 and γ is a field automorphism of order n. Also,
PSL(2, p).〈δ〉 = PGL(2, p). If G ≇ PGL(2, pn), then since [G : S] = 2, we deduce
that G contains a field automorphism φ of order 2 and hence, G = PSL(2, pn).〈φ〉.
Thus Lemma 1.5(iv) shows that 2(pn − 1) ∈ cd(G) = cd(PGL(2, pn)), which is a
contradiction. This shows that G ∼= PGL(2, pn), as claimed.

Remark 3.1. By Molien’s theorem [1, Theorem 2.13] X1(PGL(2, pn)) = X1(G)
if and only if CPGL(2, pn) = CG. Thus Theorem 1.2 shows that if CG =
CPGL(2, pn), then G ∼= PGL(2, pn).
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