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ON THE CONJUGATES OF CERTAIN

ALGEBRAIC INTEGERS

Toufik Zaïmi

Abstract. A well-known theorem, due to C. J. Smyth, asserts that two con-
jugates of a Pisot number, having the same modulus are necessary complex
conjugates. We show that this result remains true for K-Pisot numbers, where
K is a real algebraic number field. Also, we prove that a j-Pisot number, where
j is a natural number, can not have more than 2j conjugates with the same
modulus.

1. Introduction

An algebraic integer α, with modulus greater than 1, is said to be a j-Pisot
(resp. a j-Salem), where j is a natural number, if α has j conjugates with modulus
greater than one and no conjugate (resp. and a conjugate) with modulus one. Up
to a conjugation, roots of unity, j-Pisot numbers and j-Salem numbers, where j
runs through N, form a partition of the set of algebraic integers, since we have
by Kronecker’s theorem that an algebraic integer is a root of unity when all its
conjugates belong to the unit circle. Recall also that the absolute value of a 1-
Pisot (resp. a 1-Salem) is usually called a Pisot (resp. a Salem) number, and
from its definition a Salem number, with degree d, has (d − 2) conjugates with the
same modulus (one) [2]. In contrast with this fact, Smyth has shown [7] that two
conjugates of a Pisot number, having the same modulus, are necessary complex
conjugates. This theorem is somewhat surprising since there is no obvious reason
for such a distribution of the conjugates of a Pisot number in the complex plane.
The aim of this note is to extend this result for some classes of algebraic integers.

Theorem 1.1. A j-Pisot number has at most 2j conjugates with the same

modulus.

Consider, for instance, the smallest Pisot number, usually denoted by θ0. Then,
the minimal polynomial of θ0 is x3 − x − 1 = (x − θ0)(x − α0)(x − α0) [2], and an
easy argument shows that the polynomial x3j − xj − 1 is the minimal polynomial
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of a j-Pisot number, having 2j conjugates with the same modulus; thus the upper
bound 2j, in Theorem 1.1, is the best possible for all j ∈ N.

Also, we may determine j-Pisot numbers, having 2j conjugates with the same
modulus and with minimal polynomials not of the form P (xj), where j ∈ N and P ∈
Z[x], by considering the products of Pisot numbers by certain primitive n−th roots
of unity, where ϕ(n) = j and ϕ is the Euler function. For example, the polynomial
x6+x4−2x3+x2−x+1 is the minimal polynomial of the 2-Pisot number ζθ0, where
ζ := ei2π/3, having 4 conjugates with the same modulus, namely ζα0, ζα0, ζα0,
ζα0. Similarly, if ζ := ei2π/5, then x12+x10+x9+x8−3x7+2x6−2x5−x4+x2−x+1
is the minimal polynomial of the 4-Pisot number ζθ0, having 8 conjugates with the
same modulus.

Other special j-Pisot numbers are contained in the set of K-Pisot numbers,
where K is an algebraic number field. Recall that an algebraic integer α, with
modulus greater than 1, is said to be a K-Pisot number, if for each embedding σ of

K into C, the polynomial M
(σ)
(α,K), whose coefficients are the conjugates by σ of the

coefficients of the minimal polynomial, say M(α,K), of α, over K, has a unique root
with modulus greater than one and no root with modulus one. Clearly, the roots

of M(α,K) are the conjugates of α over K, the polynomial M
(σ)
(α,K) is irreducible

over the field σ(K), and so the K-Pisot number α is a j-Pisot number, when the

degree of K is j, and gcd(M(α,K), M
(σ)
(α,K)) = 1 for all embeddings σ of K into C

other than the identity of K. Some results about K-Pisot numbers may be found
in [3,4,8–10], and the set of such numbers has been defined in [1].

Theorem 1.2. Two conjugates, over a real algebraic number field K, of a

K-Pisot number, having the same modulus are complex conjugates.

It is worth noting that Theorem 1.2 is not true when K is not real. Indeed,
consider, for example, the polynomial P (x) = x3 + x + i ∈ Z[i, x], where i2 =
−1. Then, P (iθ0) = P (iα0) = P (iα0) = 0 and so the cubic polynomial P (x) is
irreducible over Q(i). It follows that x3 + x − i = (x+ iθ0)(x + iα0)(x + iα0) is also
irreducible over Q(i), and so iθ0 is a Q(i)-Pisot number, having two conjugates, over
Q(i), with the same modulus and which are not complex conjugates, as iα0 = −iα0

6= iα0. Notice also, in this case, that the 2-Pisot number iθ0 has 4 conjugates with
the same modulus, namely ±iα0 and ±iα0, the polynomial Q(x) = (x3 +x+i)(x3 +
x − i) = x6 + 2x4 + x2 + 1 is the minimal polynomial of iθ0 and Q(x) = R(x2),
where R(x) = x3 + 2x2 + x + 1 is the minimal polynomial of the Q-Pisot number
−θ2

0.
Throughout, when we speak about conjugates and the degree of an algebraic

number, or of an algebraic number field, without mentioning the basic field, this
is meant over the field of the rationals Q. Except contrary mention, the minimal
polynomial of an algebraic number is also considered over Q. As usually the no-
tation N (resp. the notation C, Z, and R) designates the set of positive rational
integers (resp. the field of complex numbers, the ring of the rational integers and
the field of real numbers). The proofs of the theorems above are presented in the
next section. Recall, finally, that an interesting related result, due to Boyd [5] and
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Ferguson [6], asserts that a real and a non-real conjugates of an algebraic number

β can not have the same modulus, provided the minimal polynomial of β is not of

the form P (xj), where P ∈ Z[x] and j ∈ N. The analog of the above cited result
of [7], for algebraic numbers is not always true. Indeed, consider, for instance, a
real algebraic number β > 1 whose other conjugates are of modulus at most one
and with a conjugate of modulus one (β is a Salem number when it is an algebraic
integer), and a rational number r ∈ (1/β, 1). Then, the real algebraic number rβ
is greater than one, and has (d − 2) conjugates with the same modulus (less than
one), where d is the degree of β. Similarly, we may use a j-Salem number, with
degree d, to obtain algebraic numbers having j conjugates with modulus greater
than one, and (d − 2j) conjugates with the same modulus, less than one.

2. The proofs

Proof of Theorem 1.1. Let j ∈ N and let α be a j-Pisot number whose
conjugates α1, α2, . . . , αd are ordered so that 1 < |αj | 6 · · · 6 |α1|. To show
that α can not have more than j conjugates belonging to the upper half plane
U := {z ∈ C | Im(z) > 0} with the same modulus, we consider, similarly as in the
proof of Theorem 8.1.3 of [2], the polynomial

f(x) =
∏

16k<l6d

(x − αkαl).

Because the product describing f is a symmetric function of the conjugates of α, we
see that f ∈ Z[x] and so f is a multiple, in the ring Z[x], of the minimal polynomial
of each αkαl, where 1 6 k < l 6 d. Now, assume on the contrary that α has
j + 1 conjugates, say α1+j , . . . , α2j+1, in U with the same modulus. We may also
suppose, without loss of generality, that α1+j is (resp. that α1+j and α2+j are)
real when the set {α1+j, . . . , α2j+1} contains a real number (resp. contains two real
numbers). Notice that the above mentioned theorem of Boyd and Ferguson yields
that this last supposition is effective, only when the minimal polynomial of α is of
the form P (xk) for some P ∈ Z[x] and k ∈ N; in fact, we prefer to continue the
proof without using this result. Then,

(2.1) |α2j+1| = · · · = |α1+j | < 1 < |αj | 6 · · · 6 |α1|,

d > j + 2 + 2(j − 1) = 3j, and we easily obtain a contradiction by considering
separately each of the following three cases.

• α1+j ∈ R and j > 2. Then, for every s ∈ {3, . . . , j + 1}, the number αs+j is
not real and there is t = t(s) ∈ {2j + 2, . . . , d} such that α2

1+j = |α1+j |2 =

|αs+j |2 = αs+jαs+j = αs+jαt. Hence, α2
1+j is a root of f with multiplicity

greater than (j − 2), α2
1 is a root of f with multiplicity at least (j − 1), and so

the set S := {(k, l) | α2
1 = αkαl and 1 6 k < l 6 d} contains more than (j − 2)

elements. Notice, by (2.1), that any pair (k, l) in S must satisfy k < l 6 j, and
(1, l) /∈ S for each l ∈ {2, . . . , j}, as α1 6= αl ⇒ α2

1 6= α1αl (this ends the proof
of this case for j = 2). In a similar manner, we obtain that each of the following
(j − 2) sets: {(2, 3), (2, 4) . . . , (2, j)}, {(3, 4), (3, 5), . . . , (3, j)}, . . . , {(j − 1, j)}
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may not contain more than one element of S, and so the cardinality of S is at
most (j − 2), since S ⊂

⋃

26k6j−1

(
⋃

k+16l6j{(k, l)}
)

.
• α2 ∈ R and j = 1. If α3 ∈ R, then α3 = −α2 ⇒ −α1 is a conjugate of α1, and

otherwise we obtain, similarly as in the case above, that α2
2 = α3α3 is a root

of f ⇒ α2
1 is a root of f ⇒ α2

1 = αkαl, for some (k, l) with 1 6 k < l 6 d.
• α1+j /∈ R. Consider the real algebraic integer ϕ := |α1+j |2 = · · · = |α1+2j |2.

Then, 0 < ϕ < 1, and by the same way as in the first case, we have that ϕ
is a root of f with multiplicity greater than j. Hence, ϕ has a conjugate, say
ϕ′, with modulus greater than one, which is also a root of f with multiplicity
at least (j + 1), and so the cardinality of the set T := {(k, l) | ϕ′ = αkαl and
1 6 k < l 6 d} is greater than j. Since T ⊂

⋃

16k6j

⋃

k+16l6d{(k, l)}, and each

of the following j sets: {(1, 2), (1, 3), . . . , (1, d)}, {(2, 3), (2, 4), . . . , (2, d)}, . . . ,
{(j, j +1), . . . , (j, d)} may not contain more than one element of T , we see that
the cardinality of T is at most j. �

Proof of Theorem 1.2. Let K be a real algebraic number field and let α
be a K-Pisot number with degree d over K. For any element σ of the set, say E,

of the embeddings of K into C, let α
(σ)
1 , α

(σ)
2 , . . . , α

(σ)
d designate the roots of the

polynomial M
(σ)
(α,K), ordered so that

(2.2)
∣

∣α
(σ)
1

∣

∣ > 1 >
∣

∣α
(σ)
2

∣

∣ > · · · >
∣

∣α
(σ)
d

∣

∣.

Then, M(α(σ),σ(K))(x) = M
(σ)
(α,K)(x) =

∏

16k6d

(

x − α
(σ)
k

)

and the product
∏

σ∈E M(α(σ),σ(K)) is a multiple, in the ring Z[x], of the minimal polynomial of α.
The scheme of the proof is similar to the one of Theorem 1.1, by considering the
polynomials

fσ(x) :=
∏

16k<l6d

(

x − α
(σ)
k α

(σ)
l

)

,

where σ runs through E. If Zσ(K) designates the ring of the integers of the field

σ(K), then fσ(x) ∈ Zσ(K)[x], and the minimal polynomial, over K, of each α
(σ)
k α

(σ)
l ,

where 1 6 k < l 6 d, divides, in Zσ(K)[x], the polynomial fσ. Now, assume on
the contrary that α has two conjugates, say α2 and α3, over K, having the same
modulus and belonging to the half upper plane U . It is clear that {α2, α3} " R,

since otherwise α3 = −α2 and so −α is a conjugate, over K, of α = α
(I)
1 , where

I is the identity of K. Also, the case where α2 ∈ R and α3 /∈ R, can not hold,
because the equation α2

2 = α3α3 implies that α2
2 is a root of the polynomial fI ,

the conjugate α2 of α2
2, over K, is also a root of fI , and this last assertion leads

to a contradiction, as we have by (2.2),
∣

∣α
(I)
1

∣

∣

∣

∣α
(I)
1

∣

∣ >
∣

∣α
(I)
k

∣

∣

∣

∣α
(I)
l

∣

∣ ∀(k, l) with
1 6 k < l 6 d. Finally, suppose α2 /∈ R and α3 /∈ R. Similarly as above,
we have that the number ϕ := α2α2 = α3α3 is a root of fI with multiplicity at
least 2, and consequently the square of the polynomial M(ϕ,K) divides, in ZK [x], the

polynomial fI . Hence, for any σ ∈ E the square of the polynomial M
(σ)
(ϕ,K), whose

coefficients are the conjugates by σ of the coefficients of M(ϕ,K), divides, in the ring

Zσ(K), the polynomial fσ, and so the roots of M
(σ)
(ϕ,K) are of modulus less than one,
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as (2.2) ⇒
∣

∣α
(σ)
k α

(σ)
l

∣

∣ < 1 for each (k, l) satisfying 2 6 k < l 6 d, and for every

pair (l, m) with 2 6 l 6= m 6 d, we have α
(σ)
l 6= α

(σ)
m ⇒ α

(σ)
1 α

(σ)
l 6= α

(σ)
1 α

(σ)
m . It

follows that the roots of the polynomial
∏

σ∈E M
(σ)
(ϕ,K)(x) ∈ Z[x] are all of modulus

less than one, and this last assertion is not true because the algebraic integer ϕ,
satisfying the relation 0 < ϕ < 1, should have a conjugate with modulus greater
than one. �
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