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ON THE LOCATION OF THE ZEROS

OF CERTAIN POLYNOMIALS

S. D. Bairagi, Vinay Kumar Jain,

T. K. Mishra, and L. Saha

Abstract. We extend Aziz and Mohammad’s result that the zeros, of a poly-
nomial P (z) =

∑n

j=0
ajzj , taj > aj−1 > 0, j = 2, 3, . . . , n for certain t ( > 0),

with moduli greater than t(n − 1)/n are simple, to polynomials with complex
coefficients. Then we improve their result that the polynomial P (z), of degree
n, with complex coefficients, does not vanish in the disc

|z − aeiα| < a/(2n); a > 0, max
|z|=a

|P (z)| = |P (aeiα)|,

for r < a < 2, r being the greatest positive root of the equation

xn − 2xn−1 + 1 = 0,

and finally obtained an upper bound, for moduli of all zeros of a polynomial,
(better, in many cases, than those obtainable from many other known results).

1. Introduction and statement of results

While thinking about zeros of a polynomial, Aziz and Mohammad [1] proved
the following result, thereby suggesting that certain zeros of a polynomial with
non-negative increasing coefficients may be simple.

Theorem A. Let P (z) =
∑n

j=0 ajzj be a polynomial of degree n such that

an > an−1 > . . . > a1 > a0 > 0. Then all the zeros of P (z), of modulus > n/(n+1),
are simple.

In [2] Aziz and Mohammad obtained, a generalization as well as a refinement,
of Theorem A.

Theorem B. Let P (z) =
∑n

j=0 ajzj be a polynomial of degree n > 1, such
that for some t > 0 one has taj > aj−1 > 0, j = 2, 3, . . . , n, a0 may be a real or a
complex number. Then all the zeros of P (z), of modulus greater than t(n − 1)/n,
are simple.
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In this paper, we extend Theorem B to polynomials with complex coefficients.
More precisely we prove

Theorem 1.1. If p(z) =
∑n

j=0 ajzj is a polynomial of degree n(> 1) such that
for certain t > 0

(1.1) t|aj | > |aj−1|, j = 2, 3, . . . , n

and for certain real α and β: | Arg aj − β| 6 α 6 π/2, j = 1, 2, 3, . . . , n, then p(z)
can not have a zero of order (> 2), with modulus greater than

t(n − 1)

n

{

cos α + sin α +
2 sin α

n|an|

n−2
∑

j=0

( n

t(n − 1)

)n−1−j

(j + 1)|aj+1|

}

.

In other words all the zeros of p(z), with moduli greater than

t(n − 1)

n

{

cos α + sin α +
2 sin α

n|an|

n−2
∑

j=0

( n

t(n − 1)

)n−1−j

(j + 1)|aj+1|

}

,

are simple.

Theorem 1.2. Let p(z) =
∑n

j=0 ajzj be a polynomial of degree n(> 1), with
Re aj = αj, Im aj = βj, j = 0, 1, . . . , n. If for certain t > 0

(1.2) tαj > αj−1 > 0, j = 2, 3, . . . , n and αn > 0,

then p(z) can not have a zero of order (> 2), with modulus greater than

(1.3)
t(n − 1)

n

{

1 +
2

nαn

n−1
∑

j=0

( n

t(n − 1)

)n−j

(j + 1)|βj+1|

}

.

In other words all the zeros of p(z), with moduli greater than (1.3) are simple.

Next we obtain the following result for polynomials with complex coefficients,
similar to Theorem B, but not an extension of Theorem B to polynomials with
complex coefficients.

Theorem 1.3. Let p(z) =
∑n

j=0 ajzj be a polynomial of degree n(> 1) such

that for certain t > 0: t|aj | > |aj−1|, j = 2, 3, . . . , n. If k is the greatest positive
root of the trinomial equation xn − 2xn−1 + 1 = 0, then p(z) can not have a zero
of order (> 2), with modulus greater than kt(n − 1)/n. In other words all the zeros
of p(z), with moduli greater than kt(n − 1)/n, are simple.

Further in [2], Aziz and Mohammad also obtained a zero free region for poly-
nomials with complex coefficients.

Theorem C. Let P (z) =
∑n

j=0 ajzj be a polynomial with complex coefficients.

Then for no real a > 0, P (z) vanishes in the disk |z − aeiα| < a/(2n), where

Max
|z|=a

|P (z)| = |P (aeiα)|.

We obtain a refinement of Theorem C, for r < a < 2, r being the greatest
positive root of the equation xn − 2xn−1 + 1 = 0.
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Theorem 1.4. Let p(z) be a polynomial of degree n (> 2) and K, the greatest
positive root of the equation xn+1 − 2xn + 1 = 0. If

max
|z|=a

|p(z)| = |p(aeiαa)|, a > 0,(1.4)

Ra =











an(a−1)
n(an−1) , 0 < a < K, a 6= 1,

1/n2, a = 1,

1/n, a > K,

(1.5)

then for no a > 0, p(z) vanishes in the disc |z − aeiαa | < Ra.

Finally we obtain an upper bound for moduli of all zeros of a polynomial (better
in many cases than those obtainable from many other known results).

Theorem 1.5. Let p(z) = a0zn +
∑n

k=m akzn−k be a polynomial, with

(1.6) r = max
m6k6n−1

∣

∣

∣

ak+1

ak

∣

∣

∣

and let ξ be unique positive root of the equation

(1.7) xm − rxm−1 −
|am|

|a0|
= 0.

Then all the zeros of p(z) lie in |z| < ξ.

By taking m = 1 in Theorem 1.5 we get

Corollary 1.1. Let p(z) = a0zn +a1zn−1 +a2zn−2 + · · ·+an be a polynomial,
with

R = max
(∣

∣

∣

a2

a1

∣

∣

∣
,
∣

∣

∣

a3

a2

∣

∣

∣
, . . . ,

∣

∣

∣

an

an−1

∣

∣

∣

)

.

Then all the zeros of p(z) lie in |z| < R + |a1/a0|.

Remark 1.1. In many cases Corollary 1.1 gives better upper bounds than
those obtainable by other known results. For the polynomial

p1(z) = a0z5 + a1z4 + a2z3 + a3z2 + a4z + a5,

with |a0| = 1, |a1| = 2, |a2| = 3, |a3| = 4, |a4| = 5, |a5| = 6, all the zeros lie in

(i) |z| < 7, by Cauchy [3], [10, Thoerem (27,2)], [11, 12],
(ii) |z| 6 4, by Kojima [8, 9],
(iii) |z| 6 R, R > 3.6, by Govil and Rahman [6, Theorem 1],
(iv) |z| 6 R, 6.9 < R < 7, by Dehmer [4, Theorem 3.2],
(v) |z| 6 R, R > 3.8, by Jain [7, Corollary 1],
(vi) |z| 6 R, 3.9 < R < 4, by Dehmer and Mowshowitz [5, Theorem 2],

(vii) |z| 6 4, by Dehmer and Mowshowitz [5, Theorem 4],
(viii) |z| < 3.5, by Corollary 1.1.
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2. Lemmas

For the proofs of the theorems we require the following lemmas.

Lemma 2.1. If p(z) =
∑n

j=0 ajzj is a polynomial with complex coefficients such

that for certain real β and α one has | Arg aj − β| 6 α 6 π/2, j = 0, 1, . . . , n and
|an| > |an−1| > · · · > |a0|, then p(z) has all its zeros on or inside the circle

|z| = cos α + sin α +
2 sin α

|an|

n−1
∑

j=0

|aj |.

This lemma is due to Govil and Rahman [6].

Lemma 2.2. If p(z) =
∑n

j=0 ajzj is a polynomial such that for certain a > 0

(2.1) |an| > a|an−1| > a2|an−2| > · · · > an−1|a1| > an|a0|

and for certain real β and α

(2.2) | Arg aj − β| 6 α 6 π/2, j = 0, 1, . . . , n

then p(z) has all its zeros in

|z| 6
1

a

(

cos α + sin α +
2 sin α

|an|

n−1
∑

j=0

an−j |aj|

)

.

Proof of Lemma 2.2. Using (2.1) and (2.2) we can say that polynomial
p(z/a) satisfies the hypotheses of Lemma 2.1 and therefore has all its zeros in

|z| 6 cos α + sin α +
2 sin α

|an|

n−1
∑

j=0

an−j |aj |.

Accordingly the polynomial p(z) ≡ p
(

az
a

)

will have all its zeros in

|z| 6
1

a

{

cos α + sin α +
2 sin α

|an|

n−1
∑

j=0

an−j |aj|

}

. �

Lemma 2.3. Let p(z) =
∑n

j=0 ajzj be a polynomial. If Re aj = αj, Im aj = βj,

j = 0, 1, . . . , n and αn > αn−1 > · · · > α1 > α0 > 0, αn > 0, then p(z) has all its
zeros in

|z| 6 1 +
2

αn

n
∑

j=0

|βj |.

This lemma is due to Govil and Rahman [6].

Lemma 2.4. Let p(z) =
∑n

j=0 ajzj be a polynomial of degree n (> 1), with

(2.3) Re aj = αj , Im aj = βj , j = 0, 1, . . . , n.

If for certain a > 0

(2.4) αn > aαn−1 > a2αn−2 > · · · > an−1α1 > anα0 > 0, αn > 0
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then p(z) has all its zeros in

|z| 6
1

a

{

1 +
2

αn

n
∑

j=0

an−j |βj |

}

.

Proof of Lemma 2.4. Using (2.4) and (2.3) we can say that the polynomial
p(z/a) satisfies the hypotheses of Lemma 2.3 and therefore has all its zeros in

|z| 6 1 +
2

αn

n
∑

j=0

an−j |βj |.

Accordingly the polynomial p(z) ≡ p(az/a) will have all its zeros in

|z| 6
1

a

{

1 +
2

αn

n
∑

j=0

an−j |βj |

}

. �

Lemma 2.5. Let p(z) =
∑n

j=0 ajzj be a polynomial with complex coefficients
such that for certain a > 0

|an| > a|an−1| > a2|an−2| > · · · > an−1|a1| > an|a0|.

Then p(z) has all its zeros in |z| 6 K1/a, where K1 is the greatest positive root of
the trinomial equation Kn+1 − 2Kn + 1 = 0.

This lemma is due to Govil and Rahman [6].

Lemma 2.6. Let P (z) = anzn + an−1zn−1 + · · · + a1z + a0, be a polynomial
with complex coefficients. Then for every positive real number r, all the zeros of
P (z) lie in the disc

|z| 6 max

{

r,

n−1
∑

j=0

|aj/an|
1

rn−j−1

}

.

This lemma is due to Aziz and Mohammad [2].

Lemma 2.7. Let p(z) be a polynomial of degree n. Then

max
|z|=1

|p′(z)| 6 n max
|z|=1

|p(z)|.

This lemma is due to Bernstein [13].
On applying Lemma 2.7 to the polynomial p(rz), we get

Lemma 2.8. Let p(z) be a polynomial of degree n (> 1). Then for every posi-
tive r we have max|z|=r |p′(z)| 6 (n/r) max|z|=r |p(z)|.

By repeated application of Lemma 2.8, we get

Lemma 2.9. Let p(z) be a polynomial of degree n(> 1). Then for every posi-
tive r we have

max
|z|=r

|pk(z)| 6
n(n − 1) . . . (n − k + 1)

rk
max
|z|=r

|p(z)|, k = 1, 2, . . . , n.
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3. Proofs of the theorems

Proof of Theorem 1.1. We have

(3.1) p′(z) =

n−1
∑

j=0

(j + 1)aj+1zj =

n−1
∑

j=0

bjzj , say .

Now

(3.2) t|aj+1| > |aj |, j = 1, 2, . . . , n − 1, (by (1.1)).

Further n−1
n

>
j

j+1 , j = 1, 2, . . . , n − 1, which, by (3.2), makes it possible to

write t n−1
n

(j + 1)|aj+1| > j|aj |, j = 1, 2, . . . , n − 1, i.e., |bj | > n
t(n−1) |bj−1|, j =

1, 2, . . . , n − 1, (by (3.1)). We can now apply Lemma 2.2 to the polynomial p′(z),
of degree (n − 1) and say that all the zeros of p′(z) lie in

|z| 6
t(n − 1)

n

{

cos α + sin α +
2 sin α

n|an|

n−2
∑

j=0

( n

t(n − 1)

)n−1−j

(j + 1)|aj+1|

}

.

Therefore all the zeros of p(z), with moduli greater than

t(n − 1)

n

{

cos α + sin α +
2 sin α

n|an|

n−2
∑

j=0

( n

t(n − 1)

)n−1−j

(j + 1)|aj+1|

}

,

are simple. �

Proof of Theorem 1.2. We have

(3.3) p′(z) =
n−1
∑

j=0

(j + 1)aj+1zj =
n−1
∑

j=0

bjzj, say.

Now

(3.4) tαj+1 > αj > 0, j = 1, 2, . . . , n − 1, (by (1.2)).

Further n−1
n

>
j

j+1 , j = 1, 2, . . . , n − 1, which, by (3.4), makes it possible us write
t(n−1)

n
(j + 1)αj+1 > jαj > 0, j = 1, 2, . . . , n − 1, i.e.,

(3.5) Re bj >
n

t(n − 1)
Re bj−1 > 0, j = 1, 2, . . . , n − 1, (by (3.3)).

As Re bn−1 > 0, by (3.3) and (1.2), we can say by using (3.5) that the polynomial
p′(z) satisfies the hypotheses of Lemma 2.4 and therefore has all its zeros in

|z| 6
t(n − 1)

n

{

1 +
2

nαn

n−1
∑

j=0

( n

t(n − 1)

)n−j

(j + 1)|βj+1|

}

.

Accordingly all the zeros of p(z), with moduli greater than

t(n − 1)

n

{

1 +
2

nαn

n−1
∑

j=0

( n

t(n − 1)

)n−j

(j + 1)|βj+1|

}

are simple. �



ON THE LOCATION OF THE ZEROS OF CERTAIN POLYNOMIALS 293

Proof of Theorem 1.3. It is similar to the proof of Theorem 1.1 with one
change: Lemma 2.5 instead of Lemma 2.2. �

Proof of Theorem 1.4. With w = aeiαa , let us consider the polynomial

F (z) = p(wz/n + w)(3.6)

= p(w) + z(w/n)p′(w) +
z2

2!
(w/n)2p′′(w) + · · · +

zn

n!
(w/n)np(n)(w).

Then the polynomial

(3.7) G(z) = znF (1/z) =

n
∑

k=0

(w/n)k p(k)(w)

k!
zn−k,

will have all its zeros, by using Lemma 2.6 with r = a, in the disc

|z| 6 max

{

a,

n−1
∑

k=0

|w/n|n−k |p(n−k)(w)|

(n − k)!|p(w)|an−k−1

}

,

and as

|p(w)| >
ak

n(n − 1) . . . (n − k + 1)
|p(k)(w)|,>

|w|k|p(k)(w)|

nkk!
, k = 1, 2, . . . , n,

by (1.4) and Lemma 2.9, we can say that G(z) has all its zeros in the disc

|z| 6 max

{

a,

n−1
∑

k=0

1

an−k−1

}

=
a

nRa

, (by (1.5)).

Therefore by (3.7), we can say that F (z) has all its zeros in |z| > nRa

a
, i.e., F (z)

does not vanish in |z| < nRa

a
and accordingly, by using (3.6), we can say that p(z)

does not vanish in the disc |z − w| < Ra. �

Proof of Theorem 1.5. Using (1.6) we get

(3.8) |ak| 6 rk−m|am|, m 6 k 6 n.

Now for |z| > r, we have

|p(z)| > |a0||z|n
{

1 −
1

|a0|

n
∑

k=m

|ak|

|z|k

}

,(3.9)

> |a0||z|n
{

1 −
|am|r−m

|a0|

n
∑

k=m

( r

|z|

)k
}

, (by (3.8)),

> |a0||z|n
{

1 −
|am|r−m

|a0|

∞
∑

k=m

( r

|z|

)k
}

,

= |a0||z|n
{

|z|m − r|z|m−1 − (|am|/|a0|)

(|z|m − r|z|m−1)

}

.
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Further if g(x) = xm − rxm−1 − |am|
|a0| , then

(3.10) g(r) = −
|am|

|a0|
< 0,

and as ξ is unique positive root of the equation (1.7), we can say that

(3.11) xm − rxm−1 −
|am|

|a0|
> 0 for x > ξ,

with

(3.12) ξ > r, (by (3.10)).

Now by (3.9), (3.11) and (3.12) we can say that |p(z)| > 0 for |z| > ξ. �
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